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1 Proof of Proposition 3.1

1.1 Variance of the degree (3, 3) quadrature rule

Let us denote q =

(
x
y

)
∈ X 2, k(q) = k(x,y), hj(q) = d

fxy(−ρjQvj)+fxy(ρjQvj)

2ρ2j
− k(q) =

sj(q)− k(q). Then it is easy to see that Ehj(q) = 0.

Let us denote I(q) = SR3,3
Q1,ρ1

(fxy), g(q) = I(q)− k(x,y). Using the above definitions we obtain
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Variance of the first term
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Variance of the second term (using independence of hi(q) and hj(q) for i 6= j)
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Variance of the last term (using Cauchy-Schwarz inequality)
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Now, let us upper bound term Eh1(q)2

Eh1(q)2 = E
(
dφ(w>x)φ(w>y)

ρ2

)2

− k(q)2 ≤ dκ4

d− 2
.

Using this expression and plugging (2), (3), (4) into (1) we obtain
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(5)
and it concludes the proof.

1.2 Error probability

The proof strategy closely follows that of [3]; we just use Chebyshev-Cantelli ineqaulity instead
of Hoeffding’s and Bernstein inequalities and all the expectations are calculated according to our
quadrature rules.

Let q =

(
x
y

)
∈ X 2, X 2 is compact set in R2d with diameter

√
2l, so we can cover it with an ε-net

using at most T = (2
√

2l/r)2d balls of radius r. Let {qi}Ti=1 denote their centers, and Lg be the
Lipschitz constant of g(q) : R2d → R. If |g(qi)| < ε/2 for all i and Lg < ε/(2r), then g(q) < ε
for all q ∈ X 2.

1.2.1 Regularity Condition

Similarly to [3] (regularity condition section in appendix) it can be proven that E∇g(q) = ∇Eg(q).

1.2.2 Lipschitz Constant

Since g is differentiable, Lg = ‖∇g(q∗)‖, where q∗ = arg maxq∈X 2 ‖∇g(q)‖. Via Jensen’s
inequality E‖∇h(q)‖ ≥ ‖E∇h(q)‖. Then using independence of hi(q) and hj(q) for i 6= j
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where |φ′(·)| ≤ µ. Then using Markov’s inequality we obtain
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ε
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) ≤ 8

d
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(σprκµ
ε

)2
1.2.3 Anchor points

Let us upper bound the following probability

P
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Let us rewrite the function g(q)
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where φq(ρizi) =
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2ρ2j
. Let us suppose that

∣∣∣ 1−φq(ρz)
ρ2
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apply Hoeffding’s inequality
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1.2.4 Optimizing over r

Now the probability of supq∈X 2 |g(q)| ≤ ε takes the form
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. Maximizing this probability over r gives

us the following bound
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For RBF kernel κ = µ = 1, M = 1
2 , so we obtain the following bound
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Let us compare it with the bound for RFF
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2 Butterfly matrices

For orthogonal matrix Q in quadrature rules the so called butterfly matrix is used. As it happens to
be a product of butterfly structured factors, a matrix of this type conveniently possesses the property
of fast multiplication. For d = 4 an example of butterfly orthogonal matrix is

B(4) =

c1 −s1 0 0
s1 c1 0 0
0 0 c3 −s3
0 0 s3 c3


c2 0 −s2 0

0 c2 0 −s2
s2 0 c2 0
0 s2 0 c2

 =

c1c2 −s1c2 −c1s2 s1s2
s1c2 c1c2 −s1s2 −c1s2
c3s2 −s3s2 c3c2 −s3c2
s3s2 c3s2 s3c2 c3c2

.
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(a) (b)

Figure 1: (a) Butterfly orthogonal matrix factors for d = 16. (b) Sparsity pattern for BPBPBP
(left) and B (right), d = 15.

Definition 2.1. Let ci = cos θi, si = sin θi for i = 1, . . . , d − 1 be given. Assume d = 2k with
k > 0. Then an orthogonal matrix B(d) ∈ Rd×d is defined recursively as follows

B(2d) =

[
B(d)cd −B(d)sd
B̂(d)sd B̂(d)cd

]
, B(1) = 1,

where B̂(d) is the same as B(d) with indexes i shifted by d, e.g.

B(2) =

[
c1 −s1
s1 c1

]
, B̂(2) =

[
c3 −s3
s3 c3

]
.

Matrix B(d) by vector product has computational complexity O(d log d) since B(d) has dlog de
factors and each factor requires O(d) operations. Another advantage is space complexity: B(d) is
fully determined by d− 1 angles θi, yielding O(d) memory complexity.

The randomization is based on the sampling of angles θ. We follow [2] algorithm that first computes a
uniform random point u from Ud. It then calculates the angles by taking the ratios of the appropriate
u coordinates θi = ui

ui+1
, followed by computing cosines and sines of the θ’s. One can easily define

butterfly matrix B(d) for the cases when d is not a power of two.

2.1 Not a power of two

We discuss here the procedure to generate butterfly matrices of size d× d when d is not a power of 2.

Let the number of butterfly factors k = dlog de. Then B(d) is constructed as a product of k factor
matrices of size d× d obtained from k matrices used for generating B(2k). For each matrix in the
product for B(2k), we delete the last 2k − d rows and columns. We then replace with 1 every ci in
the remaining d× d matrix that is in the same column as deleted si.

For the cases when d is not a power of two, the resulting B has deficient columns with zeros (Figure
1b, right), which introduces a bias to the integral estimate. To correct for this bias one may apply
additional randomization by using a product BP, where P ∈ {0, 1}d×d is a permutation matrix.
Even better, use a product of several BP’s: B̃ = (BP)1(BP)2 . . . (BP)t. We set t = 3 in the
experiments.

3 Remarks on quadrature rules

Even functions. We note here that for specific functions fxy(w) we can derive better versions of
SR rule by taking on advantage of the knowledge about the integrand. For example, the Gaussian
kernel has fxy(w) = cos(w>(x− y)). Note that f is even, so we can discard an excessive term in
the summation in degree (3, 3) rule, since f(w) = f(−w), i.e SR3,3 rule reduces to

SR3,3
Q,ρ(f) =

1−
d+1∑
j=1

d

(d+ 1)ρ2j

 f(0) +
d

d+ 1

d+1∑
j=1

f(ρjQvj)

ρ2j
. (6)
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Obtaining a proper ρ. It may be the case when sampling ρ that 1 −
∑d+1
j=1

d
(d+1)ρ2j

< 0 which
results in complex a0 term. Simple solution is just to resample ρj to satisfy the non-negativity
of the expression. According to central limit theorem

∑d+1
j=1

d
(d+1)ρ2j

tends to normal random

variable with mean 1 and variance 1
d+1

2
d−2 . The probability that this values is non-negative equals

p = P(1−
∑
j=1

d
(d+1)ρ2 ≥ 0) 1

2 . The expectation of number of resamples needed to satisfy
non-negativity constraint is 1

p tends to 2.

4 Arc-cosine kernels

Arc-cosine kernels were originally introduced by [1] upon studying the connections between deep
learning and kernel methods. The integral representation of the bth-order arc-cosine kernel is

kb(x,y) = 2

∫
Rn

Θ(w>x)Θ(w>y)(w>x)b(w>y)bp(w)dw,

kb(x,y) = 2

∫
Rd

φb(w
>x)φb(w

>y)p(w)dw,

where φb(w>x) = Θ(w>x)(w>x)b, Θ(·) is the Heaviside function and p is the density of the stan-
dard Gaussian distribution. Such kernels can be seen as an inner product between the representation
produced by infinitely wide single layer neural network with random Gaussian weights. They have
closed form expressions in terms of the angle θ = cos−1

(
x>y
‖x‖‖y‖

)
between x and y.

Arc-cosine kernel of 0th-order shares the property of mapping the input on the unit hypersphere with
RBF kernels, while order 1 arc-cosine kernel preserves the norm as linear kernel (Gram matrix on
original features):

These expressions for 0th-order and 1st-order arc-cosine kernels are given by

k0(x,y) = 1− θ

π
, k1(x,y) =

‖x‖‖y‖
π

(sin θ + (π − θ) cos θ).

The 0-order arc-cosine kernel is given by k0(x,y) = 1− θ
π , the 1-order kernel is given by

k1(x,y) = ‖x‖‖y‖
π (sin θ + (π − θ) cos θ).

Let φ0(w>x) = Θ(w>x), φ1(w>x) = max(0,w>x). We now can rewrite the integral representa-
tion as follows:

kb(x,y) = 2

∫
Rd

φb(w
>x)φb(w

>y)p(w)dw ≈ 2

n

n∑
i=1

SR3,3
Qi,ρi

.

For arc-cosine kernel of order 0 the value of the function φ0(0) = Θ(0) = 0.5 results in

SR3,3
Q,ρ(f) =0.25

1−
d+1∑
j=1

d

(d+ 1)ρ2j

+
d

d+ 1

d+1∑
j=1

f(ρjQvj) + f(−ρjQvj)

2ρ2
.

In the case of arc-cosine kernel of order 1, the value of φ1(0) is 0 and the SR3,3 rule reduces to

SR3,3
Q,ρ(f) =

d

d+ 1

d+1∑
j=1

f(|ρQvj |)
2ρ2j

.
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