
Appendices
A Proof of Theorem 1

For any parameter of interest, we denote its minimum value and its maximum value with subscripts m
and M , respectively, and its minimum value and its maximum value in the dataset with subscripts m̂
and M̂ , respectively. Given dataset D = {D(1), · · · , D(d)

}, we first note that for � 2 {�2
C|;,�

2
E|;},

as d ! 1,
�M̂ ! �M , �m̂ ! �m. (5)

We only prove the former, as the proof of the latter is similar.

For any ✏ > 0, we define the event F (✏) = {�M � �M̂ � ✏}. Also, we define

p(i)(✏) = P (�M � ✏  �(i)
 �M ).

We assume that the distribution of the parameters has a bounded support, and is positive on its support.
Therefore, for all i 2 [d], p(i)(✏) > 0. Therefore, for all ✏ > 0, we have

lim
d!1

P (F (✏)) = lim
d!1

Y

i2[d]

(1� p(i)(✏)) = 0.

This implies that �M̂ ! �M as d ! 1.

Consider the logarithm of the regression parameters. For the causal direction we have

log(Var(C)) = log �2
C|; = log �2

C , log |�E|C | = log |a|, log �2
E|C = log �2

E .

For the reverse direction, we have

log(Var(E)) = log �2
E|; = log(a2�2

C + �2
E),

log |�C|E | = log(|a|�2
C)� log �2

E|;, log �2
C|E = log(�2

C�
2
E)� log �2

E|;.

In the causal direction, due to independence of the cause mechanism from the effect mechanism, we
have

V1 := E[log |�E|C | |log �2
C|;=(log �2

C|;)m
] = E[log |a| |log �2

C=log(�2
C)m ] = E[log |a|],

V2 := E[log |�E|C | |log �2
C|;=(log �2

C|;)M
] = E[log |a| |log �2

C=log(�2
C)M ] = E[log |a|],

V3 := E[log �2
E|C |log �2

C|;=(log �2
C|;)m

] = E[log �2
E |log �2

C=log(�2
C)m ] = E[log �2

E ],

V4 := E[log �2
E|C |log �2

C|;=(log �2
C|;)M

] = E[log �2
E |log �2

C=log(�2
C)M ] = E[log �2

E ],

and hence

V5 := |V2 � V1|+ |V4 � V3| = 0.

By (5), T IB
C!E(D) ! V5. Therefore, T IB

C!E(D) ! 0 as d ! 1.

Since log �2
E|; is a monotonically increasing function of �2

C , |a|, and �2
E , we have

log �2
E|; = (log �2

E|;)m , �2
C = (�2

C)m, |a| = |a|m, �2
E = (�2

E)m,

and
log �2

E|; = (log �2
E|;)M , �2

C = (�2
C)M , |a| = |a|M , �2

E = (�2
E)M .

Therefore, for the reverse direction we have

Ṽ1 := E[log |�C|E | |log �2
E|;=(log �2

E|;)m
] = log(|a|m(�2

C)m)� log(|a|2m(�2
C)m + (�2

E)m),

Ṽ2 := E[log |�C|E | |log �2
E|;=(log �2

E|;)M
] = log(|a|M (�2

C)M )� log(|a|2M (�2
C)M + (�2

E)M ),

Ṽ3 := E[log �2
C|E |log �2

E|;=(log �2
E|;)m

] = log((�2
C)m(�2

E)m)� log(|a|2m(�2
C)m + (�2

E)m),

Ṽ4 := E[log �2
C|E |log �2

E|;=(log �2
E|;)M

] = log((�2
C)M (�2

E)M )� log(|a|2M (�2
C)M + (�2

E)M ),
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and hence

Ṽ5 := |Ṽ2 � Ṽ1|+ |Ṽ4 � Ṽ3| = | log(
|a|M (�2

C)M
|a|m(�2

C)m
) + log(

|a|2m(�2
C)m + (�2

E)m
|a|2M (�2

C)M + (�2
E)M

)|

+ | log(
(�2

C)M (�2
E)M

(�2
C)m(�2

E)m
) + log(

|a|2m(�2
C)m + (�2

E)m
|a|2M (�2

C)M + (�2
E)M

)|

If Ṽ5 = c, Assumption 1 guarantees that c 6= 0. Also, by (5), T IB
E!C(D) ! Ṽ5. Therefore, as

d ! 1, T IB
E!C(D) ! c for some positive value c.

B Extension of the IB Method to Second-Order Test

For testing if X is the cause of Y , let �X!Y = {|�Y |X |,�2
Y |X}. For any parameter of interest, we

denote its minimum and its maximum value in the dataset with subscripts m̂ and M̂ , respectively.
For inferring if X is the cause of Y , let

I
IB2(�,�2

X|;) := I
IB(�,�2

X|;)

+ |Var(log � |log(�2
X|;)=(log(�2

X|;))M̂
)� Var(log � |log(�2

X|;)=(log(�2
X|;))m̂

)|,

and according to (3), we define the causal direction indicator T
IB2
X!Y (D) :=P

�2�X!Y
I
IB2(�,�2

X|;). To see the causal relation between X and Y , we calculate T IB2
X!Y (D) and

T
IB2
Y!X(D) and pick the direction which has the smaller value, i.e., argmin⇡2{X!Y,Y!X} T

IB2
⇡ (D),

as the true causal direction.

C Proof of Theorem 2

We first note that if for domains D(i) and D(j), Q(i,j)
C!E 6= 0, then at least one of the variables a, �2

C ,
or �2

E has varied across the two domains and hence, by faithfulness assumption, Q(i,j)
E!C = 3. Noting

that 0  Q(i,j)
X!Y  3, this implies that

Q(i,j)
C!E  Q(i,j)

E!C , 8i, j.

Summing up over {i, j}, it implies that T MC
C!E(D) =

�d
2

�
, and hence T

MC
C!E(D) � T

MC
E!C(D).

If there exists a pair of domains {D(i), D(j)
} for which 1  Q(i,j)

C!E  2, then since Q(i,j)
E!C = 3, we

have Q(i,j)
C!E < Q(i,j)

E!C . Therefore, T MC
E!C(D) 

�d
2

�
� 1. Also, as mentioned earlier, T MC

C!E(D) =�d
2

�
. Therefore, in this case, we have T

MC
C!E(D) > T

MC
E!C(D).

D An Efficient Method for Estimating Coefficients and Noise Variances

From the SEM in equation (4), we have X = (I �B)�>N . Hence, the correlation matrix could be
calculated as ⌃ = E[XX>] = (I � B)�>⌦(I � B)�1, where ⌦ is a p ⇥ p diagonal matrix with
values �2

1 , · · · ,�
2
p on the diagonal. Therefore, the precision matrix, i.e., the inverse of the correlation

matrix will be ⇥ = (I �B)⌦�1(I �B)>. This expression could be used to obtain the elements of
⇥ as follows: (

⇥i,i = ��2
i +

Pp
j=1 B

2
i,j�

�2
j 8i 2 [p],

⇥i,j = �Bi,j�
�2
j �Bj,i�

�2
i +

Pp
k=1 Bi,kBj,k�

�2
k 8i 6= j.

(6)

Let J(·) be the operator that flips an input square matrix over its anti-diagonal. Define G := J(⇥).
We calculate the LU-factorization of the matrix G, which is G = LU , where L is a lower-triangular,
and U is an upper-triangular matrix, respectively. The procedure is shown in Algorithm 3. Due to the
factorization step, the computational complexity of this algorithm is O(p3). For input order ⇡, the
algorithm outputs B̂⇡ and ⌦̂⇡ , which satisfy the following result.
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Algorithm 3 Parameter Estimator
Input: Order ⇡.
Compute covariance matrix ⌃ = E[(⇡(1), · · · ,⇡(p))>(⇡(1), · · · ,⇡(p))], and ⇥ = ⌃�1.
G = J(⇥), Perform LU-factorization on G: G = LU .
⌦̄ = Diagonal matrix with ⌦̄m,m = 1/Um,m, for 1  m  p.
B̂⇡ = �J(⌦̄U) + I , ⌦̂⇡ = J(⌦̄).
Output: ⌦̂⇡ and B̂⇡ .

Theorem 7. For a given order ⇡ on variables, for any 1  m  p, let Sm :=
(⇡(1), · · · ,⇡(m� 1))>. In the population setup, for the matrices B̂⇡ and ⌦̂⇡ obtained from Al-

gorithm 3, we have (B̂⇡)(1:m�1),m = �⇡(m)|Sm
, and (⌦̂⇡)m,m = �2

⇡(m)|Sm
, and zero elsewhere.

Specifically, for a causal order, we have B̂⇡ = B, and ⌦̂⇡ = ⌦ up to permutation.

Theorem 7 shows the connection between the covariance matrix and the adjacency matrix of the
causal network.

Proof. Consider the last variable in the given order, i.e., ⇡(p). According to Algorithm 3, for any
1  m  p� 1, we have

B̂m,p = �
U1,m

U1,1
= �

L�1
1,·G·,m

L�1
1,·G·,1

= �
G1,m

G1,1
= �

⇥m,p

⇥p,p
.

As observed in [Pou11], this value is equal to the element of �⇡(p)|Sp
corresponding to ⇡(m).

Therefore,
B̂(1:p�1),p = �⇡(p)|Sp

.

Similarly, for any 1  m  p� 1, we have

⌦̂p,p = ⌦̄1,1 =
1

U1,1
=

1

L�1
1,·G·,1

=
1

G1,1
=

1

⇥p,p
,

which is equal to �2
⇡(p)|Sp

.

Next, we show that in the elimination step in Algorithm 3, we remove the linear effect of ⇡(p) from
all preceding variables in the given order, and an inductive argument over the variables eliminated
in each next round gives the desired result: In the elimination, we add the vector �Gm,1

G1,1
G1,· to the

m-th row of G, that is for all k, Gm,k will be updated as follows:

(Gm,k)new = (Gm,k)old �
Gm,1

G1,1
Gk,1

(Gm,k)new = (Gm,k)old �
Gm,1

G1,1

Gk,1

G1,1
G1,1

(Gm,k)new = (Gm,k)old � [�⇡(p)|Sp
]m[�⇡(p)|Sp

]k�
�2
⇡(p)|Sp

.

This removes the linear effect of ⇡(p) from ⇡(m). Specifically, if the order is consistent, we are
eliminating B2

m,p�
�2
p from ⇥m,m, and Bm,pBk,p��2

p from ⇥m,k, which are terms related to ⇡(p) as
seen in equation (6).

Remark 2. We only need to calculate ⇥ in one domain and for one order: There exist methods

in the literature, e.g., [XG16], for calculating the difference between two precision matrices, i.e.,

�(i,j) = ⇥(j)
� ⇥(i)

directly. Therefore, we can calculate the inverse only in one domain, say,

domain D(i)
(preferably the one in which we have the largest set of samples), and then for any other

domain j, obtain ⇥(j) = ⇥(i) + �(i,j)
Also, as seen in equation (6) the elements of ⇥ permute

according to an arbitrary ordering and recalculation is not required.
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E Proof of Theorem 3

The proof has the same rationale as Theorem 1 and we avoid repeating the details. Due to the
independence among the parameters of the system, an argument exactly the same as the one in
Theorem 1 shows that T eIB

⇡⇤ (D) ! 0.

In order ⇡0, we find the last variable which is positioned after at least one if its children, Let this
variable be Xu and a child that comes before it in the order be Xv . Let ⌦u and ⌦v be the elements of
⌦̂⇡0 corresponding to Xu and Xv , respectively. Since Xu is missing when regressing Xv , ⌦v will be
an increasing function of Bu,v and �2

u. Therefore, for the maximum value of ⌦v, Bu,v and �2
u are

fixed to (Bu,v)M and (�2
u)M , respectively, and other parameters of the system involved in ⌦v are

also fixed. Similarly, for the minimum value of ⌦v, Bu,v and �2
u are fixed to (Bu,v)m and (�2

u)m,
respectively, and other parameters of the system involved in ⌦v are also fixed. By [Pou11], ⌦u is a
rational function of parameters of the system, including Bu,v and �2

u. When taking the expected value
of ⌦u conditioned on maximum and minimum values of ⌦v, the parameters involved in ⌦v are all
fixed, and the parameters not involved are independent of ⌦v . Therefore, since Bu,v and �2

u are taking
two distinct values in the maximum and minimum, by the faithfulness assumption, the expected value
conditioned on minimum and maximum of ⌦v will be different. Therefore, since T

eIB
⇡0 (D) is the

sum of absolute values, including the absolute value of the difference of the aforementioned expected
values, it will be bounded away from zero. The argument for extending this result to the case with
samples and letting d ! 1 is the same as Theorem 1.

F Proof of Theorem 4

Similar to the proof of Theorems 1 and 3 and , the claim T
IB
Xs,�1(D) ! 0 is due to the independence

among the parameters of the system. Also, the claim T
IB
Xv,�1(D) ! c could be concluded from the

proof of Theorem 3, as the last variable which is positioned after at least one if its children would be
Xv itself.

G Proof of Theorem 5

We relabel variables according to ⇡⇤ to have ⇡⇤(i) = Xi, that is, in the causal order, any variable
with smaller label proceeds variables with larger labels. Since ⇡⇤ is causal, B̂⇡⇤ = B, and ⌦̂⇡⇤ = ⌦.
Therefore, �0

⇡⇤ is exactly the set of parameters of the system. Therefore, for a pair of domains
{D(i), D(j)

}, Q(i,j)
⇡⇤ denotes exactly how many of the parameters of the system have changed across

domains D(i) and D(j).

On the other hand, since ⇡0 is not causal, there exists parent variables who are regressed on their
children, and hence, the corresponding elements of B̂⇡0 and ⌦̂⇡0 will be functions of more that one
parameter of the system. Therefore, by faithfulness assumption, they will vary by a change in any of
the involved parameters across any two domains D(i) and D(j). Therefore, an argument similar to
the one in the proof of Theorem 2 implies that

T⇡⇤(D) � T⇡0(D).

Also, since ⇡0 is not causal, there exists indices i and j, such that (Xi, Xj) 2 A (recall that A is the
set of directed edges), but (⇡0)�1(Xi) > (⇡0)�1(Xj). Having ⇡0 as the order, we regress Xi on a set
S including Xj . We denote the coefficient corresponding to Xj by �, and the variance of the residual
of the regression by �2.

First, we note that � will be non-zero, as Xj is in the Markov blanket of Xi. Applying the result of
[Pou11], � and �2 can be written as follows

� =
B̃i,j �̃

�2
j �

P
k:Xk2S B̃i,kB̃j,k�̃

�2
k

�̃�2
i +

P
k:Xk2S B̃2

i,k�̃
�2
k

,

and
�2 = (�̃�2

i +
X

k:Xk2S

B̃2
i,k�̃

�2
k )�1,
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where �̃2
i and B̃i,j are the variance of the residual and the coefficient in the subgraph induced on

{Xi}[S. Due to the faithfulness assumption, the correlations will not be cancelled out, and hence, �
and �2 depend on �̃2

i and B̃i,j , which in turn depend on �2
i and Bi,j . Therefore, if , say, Bi,j remains

fixed and �2
i varies across two domains D(i) and D(j), then similar to the proof of Theorem 2, we

will have
T⇡⇤(D) > T⇡0(D).

H An Example For Requirement of considering both orders ⇡X,�1 and ⇡X,�2

in Algorithm 2

Suppose the ground truth structure is X1 ! X2 ! X3 ! X4 ! X5, and suppose we start with
initial ordering ⇡t = {1, 5, 4, 2, 3}. If Algorithm 2 does not consider ⇡X,�2, the following can
happen:

Round 1: Algorithm 2 forms ⇧X1 = {⇡t,⇡X1,�1}. We have ⇡t = argmax⇡2⇧X1
T

MC
⇡ (D).

Therefore, the ordering will not change.

Round 2: Algorithm 2 forms ⇧X5 = {⇡t,⇡X5,�1}. We have ⇡X5,�1 = argmax⇡2⇧X5
T

MC
⇡ (D).

Therefore, the ordering will change to ⇡t = {1, 4, 2, 3, 5}.

Round 3: Algorithm 2 forms ⇧X4 = {⇡t,⇡X4,�1}. We have ⇡X4,�1 = argmax⇡2⇧X4
T

MC
⇡ (D).

Therefore, the ordering will change to ⇡t = {1, 2, 3, 5, 4}.

Round 4: Algorithm 2 forms ⇧X2 = {⇡t,⇡X2,�1}. We have ⇡t = argmax⇡2⇧X2
T

MC
⇡ (D).

Therefore, the ordering will not change.

Round 5: Algorithm 2 forms ⇧X3 = {⇡t,⇡X3,�1}. We have ⇡t = argmax⇡2⇧X3
T

MC
⇡ (D).

Therefore, the ordering will not change.

Therefore Algorithm 2 outputs ⇡t(�1) = 4 as a sink variable while it is not a sink.

I Proof of Theorem 6

Since Xs is a sink variable, by moving it to the last position in the order, none of its ancestors will
be regressed on it, and hence, this move minimizes the dependencies among estimated regression
parameters, which in turn minimizes the number of varying parameters. Therefore, for all ⇡ 2 ⇧Xs ,
T

MC
⇡Xs,�1

(D) � T
MC
⇡ (D).

Suppose in the initial order ⇡t, there is a sink variable Xs as ⇡t(�1). Then for any other variable
Xv , moving it to ⇡t(�1) either increases the dependencies or if , say, Xv is also a sink variable, will
not change it. Therefore, based on our prioritization, Xs will remain in position ⇡t(�1) until the
end of the round. If in the initial order there is a non-sink variable as ⇡t(�1), when we are checking
its source ancestor Xs, since there exists a pair of domains across which at least 1 and at most 2 of
variables Var(Xv), Bv,s, �2

s varies, moving Xs below Xv will increase the value of the causal order
indicator; that is, for all ⇡ 2 ⇧Xs , T MC

⇡Xs,�1
(D) > T

MC
⇡ (D). Therefore, Xs will move to the bottom

of the order, and similar to the previous case, it will remain at that position until the end of that round.
Therefore, in either case, at the end of round, ⇡t(�1) will be a sink variable.
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