
A Supplementary Material

A.1 Closed-Form Solution of Sparsegen

Formulation is given by:
p∗ = sparsegen(z) = argmin

p∈∆K−1

{‖p− g(z)‖22 − λ‖p‖22} (9)

The Lagrangian of the above formulation is:

L (z,µ, τ) =
1

2
‖p− g(z)‖22 −

λ

2
‖p‖22 − µTp+ τ(1Tp− 1) (10)

Defining the Karush-Kuhn-Tucker conditions with respect to optimal solutions (p∗,µ∗, τ∗):
p∗i − gi(z)− λp∗i − µ∗i + τ∗ = 0,∀i ∈ [K], (11)

1Tp∗ = 1,p∗ ≥ 0,µ∗ ≥ 0, (12)
µ∗i p
∗
i = 0,∀i ∈ [K].(complementary slackness) (13)

From Eq.13, if we want p∗i > 0 for certain i ∈ [K], then we must have µ∗i = 0. This implies
p∗i − gi(z) − λp∗i + τ∗ = 0 (according to Eq. 11). This leads to p∗i = (gi(z) − τ∗)/(1 − λ).
For i /∈ S(z), where pi = 0, we have gi(z) − τ∗ ≤ 0 (as µ∗i ≥ 0). From Eq. 12 we obtain∑
j∈S(z)(gj(z)− τ∗) = 1− λ, which leads to τ∗ = (

∑
j∈S(z) gj(z)− 1 + λ)/|S(z)|.

Proposition 0.1 The closed-form solution of sparsegen is as follows (∀i ∈ [K]):

ρi(z) = sparsegeni(z; g, λ) =
[gi(z)− τ(z)

1− λ
]

+
, (14)

where τ(z) is the threshold which makes
∑
j∈[K] ρj(z) = 1. Let g(1)(z) ≥ g(2)(z) · · · ≥ g(K)(z)

be the sorted coordinates of g(z). The cardinality of the support set S(z) is given by k(z) :=
max{k ∈ [K] | 1− λ+ kg(k)(z) >

∑
j≤k g(j)(z)}. Then τ(z) can be obtained as,

τ(z) =

∑
j≤k(z) g(j)(z)− 1 + λ

k(z)
=

∑
j∈S(z) gj(z)− 1 + λ

|S(z)| ,

A.2 Special cases of Sparsegen

Example 1: g(z) = z (sparsegen-lin):
When g(z) = z, sparsegen reduces to a regularized extension of sparsemax. This is translation
invariant, has monotonicity and can work for full domain. It is also Lipschitz continuous with the
Lipschitz constant being 1/(1− λ). The visualization of this variant is shown in Fig.2.

Example 2: g(z) = exp(z) (sparsegen-exp):
exp(z) here means element-wise exponentiation of z, that is gi(z) = exp(zi). For z where all
zi > 0, sparsegen-exp leads to sparser solutions than sparsemax.

Checking with properties from Sec.3.3, sparsegen-exp satisfies monotonicity as exp(zi) is a mono-
tonically increasing function. However, as exp(z) is not Lipschitz continuous, sparsegen-exp is not
Lipschitz continuous.

It is interesting to note that sparsegen-exp reduces to softmax when λ is dependent on z and equals
1−∑j∈[K] e

zj , as it results in τ(z) = 0 and S(z) = [K] according to Eq.14.

Example 3: g(z) = z2 (sparsegen-sq):

Unlike sparsegen-lin and sparsegen-exp, sparsegen-sq does not satisfy the monotonicity property
as gi(z) = z2

i is not monotonic. Also sparsegen-sq has neither translation invariance nor scale
invariance. Moreover, as z2 is not Lipschitz continuous, sparsegen-sq is not Lipschitz continuous.
Additionally, when λ depends on z and λ = 1 −∑j∈[K] z

2
j , sparsegen-sq reduces to spherical

softmax.

Example 4: g(z) = log(z) (sparsegen-log):
log(z) here means element-wise natural logarithm of z, that is gi(z) = log(zi). This is scale invariant
but not translation invariant. However, it is not defined for negative values or zero values of zi.

12

A.3 Derivation of Sparsecone

Let us project a point z = (z1, . . . , zK) ∈ RK onto the simplex along the line connecting z with
q = (−q, . . . ,−q) ∈ RK . The equation of this line is αz + (1− α)q. If the point of intersection of
the line with the probability simplex (denoted by 1Tz = 1) is represented as ẑ = α∗z + (1− α∗)q,
then it should have the property:

∑
i ẑi = α∗

∑
i zi − (1 − α∗)Kq = 1, which leads to α∗ =

(1 +Kq)/(
∑
i zi +Kq). Also, ẑi ≥ 0 condition must be satisfied, as it should lie on the probability

simplex. Thus, the required point can be obtained by solving the following:

p∗ = argmin
p∈∆K−1

‖p− ẑ‖22 = argmin
p∈∆K−1

‖p− α∗z − (1− α∗)q‖22, (15)

= argmin
p∈∆K−1

‖p− α∗z‖22 = sparsemax(α∗z), (16)

α∗ =
1 +Kq∑

i∈[K] zi +Kq
(17)

As α∗ is a function of z, it is denoted by α(z). The formulation in Eq.15 is equivalent to Eq.16,
utilizing the translation invariance property of sparsemax as (1 − α∗)q is a constant term for a
particular z. Thus, we can say sparsecone can be obtained by sparsemax(α(z)z), where α(z) is
given by Eq.17.

A.4 Derivation of Sparsehourglass

The above formulation fails for z such that
∑
i zi < −Kq. For example, it fails for z = (−2,−1),

where q = (−1,−1) (the solution will give greater probability mass to -2 compared to -1), that is
q = 1. To make it work for such a z, we can find a mirror point z̃ satisfying the following properties :
(1)
∑
i z̃i = −∑i zi, and (2) z̃i− z̃j = zi− zj∀(i, j), and (3) sparsehourglass(z) = sparsecone(z̃).

Let sparsecone(z̃) be given by sparsemax(α(z̃)z̃) (as seen earlier) and sparsehourglass(z) be defined
by sparsemax(α∗z). Can we find α∗ which satisfies the mirror point properties above? Property
(3) is true iff α(z̃)(z̃i − z̃j) = α∗(zi − zj)∀(i, j). Using property (2) we get, α(z̃) = α∗. From
definition of sparsecone, α(z̃) = (1 +Kq)/(

∑
i z̃i +Kq). Using property (1), we get α∗ = α(z̃) =

(1+Kq)/(
∑
i z̃i+Kq) = (1+Kq)/(−∑i zi+Kq). As α∗ is a function of z, let it be represented

as α̂(z). Thus, sparsehourglass is defined as follows:

p∗ = sparsehourglass(z) = argmin
p∈∆K−1

‖p− α̂(z)z‖22 (18)

= sparsemax(α̂(z)z) (19)

α̂(z) =
1 +Kq

|∑i∈[K] zi|+Kq
(20)

A.5 Proof for Lipschitz constant of Sparsehourglass

Lipschitz constant of composition of functions is bounded above by the product of Lipschitz constants
of functions in the composition. Applying this principle on Eq.19 we find an upper bound for the
Lipschitz constant of sparsehg (denoted as Lsparsehg) as the product of Lipschitz constant of sparsemax
(denoted as Lsparsemax) and Lipschitz constant of g(z) = α̂(z)z (which we denote as Lg).

Lsparsehg ≤ Lsparsemax × Lg (21)

We use the property that Lipschitz constant of a function is the largest matrix norm of Jacobian of
that function. For sparsemax that would be,

Lsparsemax = argmax
x,z∈RK

‖Jsparsemax(z)x‖2
‖x‖2

where, Jsparsemax(z) is the Jacobian of sparsemax at given value z. From the term given in Sec.3,

Jsparsemax(z) =
[
Diag(s) − ssT

|S(z)|

]
whose matrix norm is 1. We use the property that, for any

symmetric matrix, matrix norm is the largest absolute eigenvalue, and the eigenvalues of Jsparsemax(z)
are 0 and 1. Hence, Lsparsemax = 1.

13

For g(z) = α̂(z)z, let us look at the Jacobian of g(z), which is given as

Jg(z) = α̂(z)I − α̂(z) sgn(
∑
i zi)

|∑i zi|+Kq

z1 z1 . . . z1

z2 z2 . . . z2

...
. . .

zK zK

 , (22)

where I denotes identity matrix. Eigen values of Jg(z) are α̂(z) and α̂(z)(1− |
∑
zi|

|
∑
zi|+Kq), and the

largest among them is clearly α̂(z). As α̂(z) > 0, all the eigen values of Jg(z) are greater than
0, making Jg(z) a positive definite matrix. We now use the property that for any positive definite
matrix, matrix norm is the largest eigenvalue. From Eq.20, we see that the largest eigen value of
Jg(z) is α̂(z) which assumes the largest value when

∑
i zi = 0. The highest value of α̂(z) is 1+ 1

Kq ;
therefore, Lg = 1 + 1

Kq . Thus,

Lsparsehg ≤ Lsparsemax × Lg = 1× (1 +
1

Kq
) = 1 +

1

Kq

It turns out this is also a tight bound; hence, Lsparsehg = 1 + 1
Kq .

A.6 Synthetic dataset creation

We use scikit-learn for generating synthetic datasets with 5000 instances split across train (0.5), val
(0.2) and test (0.3). Each instance is a multilabel document with a sequence of words. Vocabulary
size and number of labels K are fixed to 10. Each instance is generated as follows: We draw number
of true labels N ∈ {1, . . . ,K} from either a discrete uniform distribution. Then we sample N labels
from {1, . . . ,K} without replacement and sample L number of words (document length) from the
mixture of sampled label-specific distribution over words.

A.7 More results on multilabel classification experiments

A.7.1 Synthetic Dataset

Fig.6 shows JSD between normalized true label and predicted distribution. Though sparsemax+huber
is performing overall the best, in the case when number of labels is small we could see sparsehg+hinge
and sparsemax+hinge performing as good as sparsemax+huber. In general we could see that
sparsehg+hinge is performing better than sparsemax+hinge, which in turn is better than softmax+log.

2 4 6 8
mean #labels

0.02

0.04

0.06

JS
D

(a) Varying mean #labels

0 1 2 3 4
range #labels

0.004

0.005

0.006

0.007

JS
D

(b) Varying range #labels

500 1000 1500 2000
Document length

0.004

0.006

0.008

0.010

0.012

JS
D

softmax+log
sparsemax+huber
sparsemax+hinge
sparsehg+hinge

(c) Varying document length

Figure 6: JSD on multilabel classification synthetic dataset

A.7.2 Real Datasets

Table 3: F-score on three benchmark multilabel datasets

Activation + Loss SCENE EMOTIONS BIRDS
softmax+log 0.71 0.65 0.43
sparsemax+huber 0.70 0.63 0.42
sparsemax+hinge 0.68 0.65 0.41
sparsehg+hinge 0.69 0.65 0.41

14

A.8 Controlled Sparse Attention

Here we discuss attention mechanism with respect to encoder-decoder architecture as illustrated in
Fig. 7. Lets say we have a sequence of inputs (possibly sequence of words) and their corresponding
word vectors sequence be X = (x1, . . . ,xK). The task will be to produce a sequence of words
Y = (y1, . . . , yL) as output. Here an encoder RNN encodes the input sequence into a sequence of
hidden state vectors H = (h1, . . . ,hK). A decoder RNN generates its sequence of hidden states
S = (s1, . . . , sL) by considering different hi while generating different sj . This is known as hard
attention. This approach is known to be non-differentiable as it is based on a sampling based approach
[6]. As an alternative solution, a softer version (called soft attention) is more popularly used. It
involves generating a score vector zt = (zt1, . . . , ztK) based on relevance of encoder hidden states
H with respect to current decoder state vector st using Eq.23. The score vector is then transformed
to a probability distribution using the Eq.24. Considering the attention model parameters [Ws,Wh,
v], we define the following:

zti = vT tanh(Wsst +Whhi). (23)
pt = softmax(zt) (24)

Following the approach by [14], we replace Eq.24 with our formulations, namely, sparsegen-lin and
sparsehourglass. This enables us to apply explicit control over the attention weights (with respect
to sparsity and tradeoff between scale and translation invariance) produced for the sequence to
sequence architecture. This falls in the sparse attention paradigm as proposed in the earlier work.
Unlike hard attention, these formulations lead to easy computation of sub-gradients, thus enabling
backpropagation in this encoder-decoder architecture composed RNNs. This approach can also be
extended to other forms of non-sequential input (like images) as long as we can compute the score
vector zt from them, possibly using a different encoder like CNN instead of RNN.

Figure 7: Encoder Decoder with Sparse Attention

A.8.1 Neural Machine Translation

The first task we consider for our experiments is neural machine translation. Our aim is to see how
our techniques compare with softmax and sparsemax with respect BLEU metric and interpretability.
We consider the french-english language pair from the NMT-Benchmark project4 and perform
experiments both ways using controlled sparse attention. The dataset has around 1M parallel training
instances along with equal validation and test sets of 1K parallel instances.

We find from our experiments (refer Table.2) that sparsegen-lin surpasses the BLEU scores of softmax
and sparsemax for FR-EN translation, whereas the other formulations yield comparable performance.
On the other hand, for EN-FR translation, softmax is still better than others. Quantitatively, these
metrics show that adding explicit controls do not come at the cost of accuracy. In addition, it is
encouraging to see (refer Fig.8) that increasing λ for sparsegen-lin leads to crisper and hence more
interpretable attention heatmaps (the lesser number of activated columns per row the better it is).

4http://scorer.nmt-benchmark.net/

15

Figure 8: The attention heatmaps for softmax, sparsemax and sparsegen-lin (λ = 0.75) in translation
(FR-EN) task.

Figure 9: The attention heatmaps for softmax, sparsemax and sparsegen-lin (λ = 0.75) in summa-
rization (Gigaword) task.

A.8.2 Abstractive Summarization

We next perform our experiments on abstractive summarization datasets like Gigaword, DUC2003
& DUC20045. This dataset consists of pairs of sentences where the task is to generate the second
sentence (news headline) as a summary of the larger first sentence. We trained our models on
nearly 4M training pairs of Gigaword and validated on 190K pairs. Then we reported the test scores
according to ROUGE metrics on 2K test instances of Gigaword, 624 instances of DUC2003 and 500
instances of DUC2004.

The results in Table.2 show that sparsegen-lin stands out in performance amongst other formulations
with the other formulations closely following and comparable to softmax and sparsemax. It is
also encouraging to see that all the models trained on Gigaword generalizes well on other datasets
DUC2003 and DUC2004. Here again the λ control leads to more interpretable attention heatmaps as
shown in Fig.9.

5https://github.com/harvardnlp/sent-summary

16

