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Abstract

This supplementary document contains the technical proofs of convergence results
and some additional numerical results of the NeurIPS’18 paper entitled “New
Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sam-
pling and Convexity”. It is structured as follows. The proof of our key technical
lemma, Lemma 1, is presented in Appendix A, followed by the proofs of main
results in Appendices B and C for Section 3 and Section 4, respectively. Some
detailed descriptions of data and algorithm along with more numerical results are
provided in Appendix D.

A Proof of Lemma 1

Before proving Lemma 1 in the manuscript, we first give a useful lemma as stated in Lemma 2.

Lemma 2. Assume that a1, . . . ,an denote the feature vectors of the n samples and let
{σ(1), . . . , σ(n)} be a permutation over {1, . . . , n} chosen uniformly at random. Let S̄k =

{σ(1), . . . , σ(k)} and S̃k = {σ(k+1), . . . , σ(n)}. For brevity, we further define

z̃k =
1

n− k
∑
ik∈S̃k

(∇fik(x)− µ) and z̃0 = 0

z̄k =
1

k

∑
ik∈S̄k

(∇fik(x)− µ) and z̄0 = 0,

where µ = ∇f(x). Then we have

E
[
‖z̃k‖22

]
≤ 4G2

n− k

[
1− (n− k)2 − k

n(n− k)

]
, E [‖z̃k‖2] ≤ 2G√

n− k

√
1− (n− k)2 − k

n(n− k)
,

E
[
‖z̄k‖22

]
≤4G2

k

[
1− k − 1

n

]
, E [‖z̄k‖2] ≤ 2G√

k

√
1− k − 1

n
.

Proof. Since µ = 1
n

∑n
ik=1∇fik(x), we can establish

z̃k =
1

n− k

−(n− k)µ+ nµ−
∑
ik∈S̄k

∇fik(x)

 = − 1

n− k
∑
ik∈S̄k

(∇fik(x)− µ) . (3)
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On the other hand, we have

E
[
∇fσ(k)

(x)|z̃k−1, . . . , z̃0

]
=

1

n− k + 1

n∑
i=k

∇σ(i)
f(x) =

1

n− k + 1

(
nµ−

k−1∑
i=1

∇fσ(i)
(x)

)

=µ− 1

n− k + 1

k−1∑
i=1

(
∇fσ(i)

(x)− µ
)
.

(4)

So we can obtain the following relation between E[z̃k] and z̃k−1:

E [z̃k|z̃k−1, . . . , z̃0]

=− 1

n− k

k−1∑
i=1

(
∇fσ(i)

(x)− µ
)
− 1

n− k
(
E
[
∇fσ(k)

(x)|z̃k−1, . . . , z̃0

]
− µ

)
¬
=− 1

n− k

k−1∑
i=1

(
∇fσ(i)

(x)− µ
)
− 1

n− k

[
µ− 1

n− k + 1

k−1∑
i=1

(
∇fσ(i)

(x)− µ
)
− µ

]

=− 1

n− k + 1

k−1∑
i=1

(
∇fσ(i)

(x)− µ
)

­
=z̃k−1,

where ¬ holds since we plug Eqn. (4) and ­ holds due to Eqn. (3). This means that the sequence z̃k
is actually a martingale. Meanwhile we have

z̃k =
n− k + 1

n− k
z̃k−1 +

1

n− k
[
∇fσ(k)

(x)− µ
]

= z̃k−1 +
1

n− k
[
∇fσ(k)

(x)− µ+ z̃k−1

]
.

Then we can further bound

E
[
‖z̃k‖2|z̃k−1, . . . , z̃0

]
=E[‖z̃k − z̃k−1 + z̃k−1‖2]

=E[‖z̃k − z̃k−1‖2 + 2〈z̃k − z̃k−1, z̃k−1〉+ ‖z̃k−1‖2]

=E
[

1

(n− k)2
‖∇fσ(k)

(x)− µ+ z̃k−1‖2 + ‖z̃k−1‖2
]

¬
≤ 4G2

(n− k)2
+ ‖z̃k−1‖2,

(5)

where ¬ holds since we have ‖∇fσ(k)
(x)−µ+ z̃k−1‖2 ≤ 2(‖∇fσ(k)

(x)−µ‖2 +‖z̃k−1‖2) ≤ 4G2,
where G = maxi ‖∇fi(x)− µ‖2. Conditioned on all the random process and sum Eqn. (5) together,
we obtain

E
[
‖z̃k‖2

]
≤4G2

k∑
i=1

1

(n− i)2
+ E‖z̃0‖2 ≤ 4G2

k∑
i=1

1

(n− i)2

¬
≤ 4G2

(n− k)2
+

4(k − 1)G2

n(n− k)

=
4G2

n− k

(
1− (n− k)2 − k

n(n− k)

)
,

where ¬ holds since for 1 ≤ k ≤ n, we have
∑n
i=k+1

1
i2 ≤

n−k
k(n+1) . Since the function

√
· is concave

function, we can use Jensen’s inequality to obtain

E [‖z̃k‖] ≤
√
E [‖z̃k‖2] ≤ 2G√

n− k

√
1− (n− k)2 − k

n(n− k)
.

In a similar way, we can prove that ẑk = k
n−k z̄k is a martingale sequence and

ẑk = ẑk−1 +
1

n− k
[
∇fσ(k)

(x)− µ+ ẑk−1

]
.
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Therefore, we can bound

E
[
‖ẑk‖2

]
≤ 4G2

(n− k)2
+ E‖ẑk−1‖2 ≤ 4G2

k∑
i=1

1

(n− i)2
.

So by using ẑk = k
n−k z̄k, it follows

E
[
‖z̄k‖2

]
≤4G2

k2

k∑
i=1

(n− k)2

(n− i)2
≤ 4G2

k2

(
1 +

n−1∑
i=n−k+1

(n− k)2

i2

)
¬
≤ 4G2

k2

(
1 + (n− k)2 k − 1

n(n− k)

)

≤4G2

k2

(
1 + k − 1− k(k − 1)

n

)
≤ 4G2

k

(
1− k − 1

n

)
.

Therefore, by Jensen’s inequality we have

E [‖z̄k‖] ≤
√
E [‖z̄k‖2] ≤ 2G√

k

√
1− k − 1

n
.

The proof is completed.

Now we use Lemma 2 to prove the following lemma.

Lemma 3. Let gk be the gradient estimate in Algorithm 1 by WoRS. We have E
[
‖gk −∇f(xk)‖22

]
≤

ck, where

ck =
8G2

n− bk

[
1− (n− bk)2− bk

n(n− bk)

]
+

8G2

sk

[
1− sk − 1

n− bk

]
,

and bk =
∑k−1
i=0 si.

Proof. Firstly, we introduce the following sequence of random variables zk:

zk =
1

s′k

∑
ik∈S′k

(
∇fik(xk)−∇f(xk)

)
and z0 = 0,

where S ′k = S −
⋃k−1
i=0 Si and s′k = n −

∑k−1
i=0 si respectively denote the indexes and number of

remaining samples after the (k − 1)-th without-replacement sampling in which S = {1, 2, · · · , n}.
So actually zk is actually equivalent to z̃bk where bk =

∑k−1
i=1 si due to the definition of z̃bk in

Lemma 2:

z̃bk =
1

n− bk

∑
ik∈S̃k

(∇fik(x)−∇f(x)) and z̃0 = 0,

where S̃k = S −
⋃k−1
i=1 Si. This is because that both zk and z̃bk actually measure the gradient

variance of the data points indexed by S ′k = S −
⋃k−1
i=0 Si which is sampled by WoRS. The only

difference is that in the sequence zk, we sample the data S ′k = S −
⋃k−1
i=0 Si by removing mini-batch

Sk at the k-th iteration, while in z̃bk in Lemma 2, we sample the data S̃k = S−
⋃k−1
i=1 Si by removing

one data in one sampling operation under WoRS. Since both sequences use without-replacement
sampling, they have the same gradient variance when the sampled data have the same number. So we
can use the bound of z̃bk to bound zk. Thus, by Lemma 2, we can obtain that z̃bk is a martingale
(namely, E[z̃k|z̃k−1, . . . , z̃0] = z̃k−1) and its norm can be bounded as

E [‖zk‖2|zk−1, . . . ,z0] = E[‖z̃k‖2|z̃k−1, . . . , z̃0] ≤ 2G√
n− bk

√
1− (n− bk)2 − bk

n(n− bk)
,

E
[
‖zk‖22|zk−1, . . . ,z0

]
= E[‖z̃k‖22|z̃k−1, . . . , z̃0] ≤ 4G2

n− bk

[
1− (n− bk)2 − bk

n(n− bk)

]
.

(6)
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On the other hand, we define a sequence of z̄i for the process of without-replacement sampling a
subset Ŝi of size ŝi from S ′k of size s′k:

z̄i =
1

ŝi

∑
ik∈Ŝi

∇fik(xk)− µ̄k and z̄0 = 0,

where ŝi actually equals to sk. Then we can use the result in Lemma 2 on z̄i to bound its norm:

E [‖z̄i‖2|z̄i−1, . . . , z̄0] ≤ 2G√
ŝi

√
1− ŝi − 1

s′k
and E

[
‖z̄i‖22|z̄i−1, . . . , z̄0

]
≤ 4G2

ŝi

[
1− ŝi − 1

s′k

]
.

(7)

Finally, we combine these two bounds together to obtain our final results. We can formulate the
k-th without-replacement sampling as a random process, including two phases. In the first phase,
we view the remaining samples after the first k − 1 without-replacement sampling as a without-
replacement sampling. In this case, we obtain s′k samples indexed by S ′k = S −

⋃k−1
i=1 Si. This

sampling step corresponds to the martingale zi. Then, in the second phase, we sample sk data from
the remaining s′k samples indexed by S ′k, which corresponds to the martingale sequence z̄i. Define
µ̄ = 1

s′k

∑
ik∈S′k

∇fik(xk). Then we can bound

E[‖gk −∇f(xk)‖22] ≤2E[‖µ̄−∇f(xk)‖22 + ‖gk − µ̄‖22]

=2E[‖zk‖22|zk−1, . . . ,z0] + E[‖z̄sk‖22|z̄sk−1, . . . , z̄0; zk−1, . . . ,z0]

≤ 8G2

n− bk

[
1− (n− bk)2 − bk

n(n− bk)

]
+

8G2

sk

[
1− sk − 1

n− bk

]
.

This completes the proof.

We are now in the position to prove Lemma 1.

Proof of Lemma 1. Since we have n ≥
∑k
i=0 si and sk is monotone increasing, it follows n −∑k−1

i=0 si ≥ sk ≥ sk−1. So in Lemma 3, we have

1−
(n−

∑k−1
i=0 si)

2 −
∑k−1
i=0 si

n(n−
∑k−1
i=0 si)

≤ 1 +

∑k−1
i=0 si

n(n−
∑k−1
i=0 si)

≤ 1 +
1

n−
∑k−1
i=0 si

≤ 2. (8)

Therefore, plugging this into Lemma 3, we can further obtain

E‖gk − µ‖22 ≤
24G2

sk
.

This proves the desired bound in the lemma.

B Proofs of Results in Section 3

For brevity, here we use fk and f∗ to denote f(xk) and f(x∗), respectively.

B.1 Proof of Theorem 1

Before we prove Theorem 1, we first give a useful corollary derived from Lemma 1.

Corollary 1. Let the sub-sampled gradient gk be defined in Algorithm 1 without replacement and
sk+1 ≥ sk(k ≥ 0). Then we have

E[‖gk −∇f(xk)‖2] ≤ 4G
√
sk
. (9)

where G = maxi ‖∇fi − µ‖2.
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Proof. From Eqn. (8) in proof of Lemma 1 we have

1−
(n−

∑k−1
i=0 si)

2 −
∑k−1
i=0 si

n(n−
∑k−1
i=0 si)

≤ 2.

Therefore, by using Eqn. (6) and (7)we can further obtain

E‖gk −∇f(xk)‖2 ≤
(2
√

2 + 1)G
√
sk

≤ 4G
√
sk
.

The proof is completed.

Now we begin to prove Theorem 1. For brevity, here we use fk and f∗ to denote f(xk) and f(x∗),
respectively.

Proof. Now we begin to prove the linear convergence of HSGD. We firstly give an useful inequality:

E〈xk − x∗ − ηk∇fk,∇fk − gk〉 =E〈xk − x∗ − ηk(∇fk −∇f∗),∇fk − gk〉
=E‖xk − x∗ − ηk(∇fk −∇f∗)‖ · ‖∇fk − gk‖
=E

(
‖xk − x∗‖+ ηk‖∇fk −∇f∗‖

)
‖∇fk − gk‖

¬
≤
(
‖xk − x∗‖+ ηk`‖xk − x∗‖

) 4G
√
sk

≤ 4G
√
sk

(1 + ηk`) ‖xk − x∗‖

(10)

where ¬ holds since f(x) is `-smooth and we can bound E‖∇fk − gk‖ by using Corollary 1.

Then we give the recurrence relation between E‖xk+1 − x∗‖2 and E‖xk − x∗‖2 as follows:

E‖xk+1 − x∗‖2

=E‖ΦX (xk − x∗ − ηkgk)‖2

=E‖xk − x∗ − ηk∇fk − ηk(∇fk − gk)‖2

=E
(
‖xk − x∗ − ηk∇fk‖2 + η2

k‖∇fk − gk‖2 −2ηk〈xk − x∗ − ηk∇fk,∇fk − gk〉
)

=E
(
‖xk − x∗‖2 − 2ηk〈xk − x∗,∇fk −∇f∗〉 +η2

k‖∇fk −∇f∗‖2
)

+ η2
kE‖∇fk − gk‖2

− 2ηkE〈xk − x∗ − ηk∇fk,∇fk − gk〉
¬
≤E

(
‖xk − x∗‖2 − 2ηkρ‖xk − x∗‖2 + η2

k`
2‖xk − x∗‖2

)
+η2

kE‖∇fk−gk‖2

− 2ηkE〈xk−x∗−ηk∇fk,∇fk−gk〉
­
≤(1− 2ηkρ+ η2

k`
2)‖xk − x∗‖2 + η2

k

24G2

sk
+

8Gηk√
sk

(1 + ηk`) ‖xk − x∗‖,

where ¬ holds because we use the `-smooth property of f(x), and for a strong convex function f(x),
we have the monotonicity of ∇f :

〈xk − x∗,∇fk −∇f∗〉 ≥ ρ‖xk − x∗‖2.

­ holds due to Lemma 1 and Eqn. (10).

Here we set ηk = ρ
`2 and sk = τ(1/ζ)k, where ζ ∈ (0, 1). Then consider ` ≥ ρ, it yields

E‖xk+1 − x∗‖2 ≤
(

1− ρ2

`2

)
E‖xk − x∗‖2 +

8ρG

`2
√
τ

(
1 +

ρ

`

)
ζk/2‖xk − x∗‖+

24ρ2G2

τ`4
ζk.

For brevity, let α = 1− ρ2

`2 , β = 8ρG
`2
√
τ

(
1 + ρ

`

)
and γ = 24ρ2G2

τ`4 . Thus, we have

E‖xk+1 − x∗‖2 = αE‖xk − x∗‖2 + βζk/2E‖xk − x∗‖+ γζk.
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We further assume that τ is large enough such that

γ =
24ρ2G2

τ`4
≤ δ‖x0 − x∗‖2, (11)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

E‖xk − x∗‖2 ≤ θk‖x0 − x∗‖2 (12)
where θ < 1 is a constant and will be given below.

Obviously, when k = 0, Eqn. (12) holds. Now assume that for all t ≤ k, Eqn. (12) holds. Then for
t = k + 1, we have

E‖xk+1 − x∗‖2 ≤αE‖xk − x∗‖2 + βζk/2E‖xk − x∗‖+ γζk

≤αθk‖x0 − x∗‖2 + βζk/2θk/2E‖x0 − x∗‖+ γζk

¬
≤
(
α+

β

‖x0 − x∗‖
+ δ

)
θk‖x0 − x∗‖2

­
≤θk+1‖x0 − x∗‖2,

where ¬ and ­ hold since we let

θ ≥ max(ζ, α+
β

‖x0 − x∗‖
+ δ). (13)

This means that if Eqn. (13), then Eqn. (12) always holds. So the conclusion holds.

Now we discuss the values of θ, ζ and τ such that Eqn. (12) is satisfied. We just set δ = 24ρ2G2

τ`4‖x0−x∗‖2 ,

τ = max
(

324G2

ρ2‖x0−x∗‖2 ,
432G2

`2‖x0−x∗‖2

)
and θ = ζ = 1− ρ2

18`2 , which gives

θ ≥α+
β

‖x0 − x∗‖
+ δ

=1− ρ
2

`2
+

8ρG

`2
√
τ

(
1 +

ρ

`

) 1

‖x0−x∗‖2
+

24ρ2G2

τ`4‖x0−x∗‖2

≥1− ρ2

`2
+

8ρ2

9`2
+

ρ2

18`2
= 1− ρ2

18`2
.

In this case, all the conditions, including Eqn. (11) and (13). So we can see that the values of θ, ζ and
τ are proper. Therefore, we have

E‖xk − x∗‖2 ≤
(

1− ρ2

18`2

)k
‖x0 − x∗‖2.

The proof if completed.

B.2 Proof of Corollary 1

Proof. To achieve ε-accurate solution, i.e.

‖xk − x∗‖2 ≤ θk‖x0 − x∗‖2 ≤ ε,

where θ = 1− ρ2

18`2 , we have

k∗ ≥ log1/θ

(
‖x0 − x∗‖2

ε

)
.

Therefore, the IFO complexity is

τ

[
1 +

1

ζ
+ · · ·+ 1

ζk∗−1

]
=τ

(1/ζ)
log1/θ

(
‖x0−x∗‖2

ε

)
− 1

1/ζ − 1
=

τ

1/ζ − 1

[
‖x0 − x∗‖2

ε
− 1

]
≤ τ

1/ζ − 1

[
‖x0 − x∗‖2

ε

]
= O

(
`2G2

ρ2ε

)
.

This means that we have the IFO complexity O
(
`2G2

ρ2ε

)
. The proof is completed.
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B.3 Proof of Theorem 2

Proof. Now we begin to prove the linear convergence of WoRS-based HSGD. Firstly, by smooth
property, we have

Efk+1 ≤E
[
fk + 〈∇fk,xk+1 − xk〉+

`

2
‖xk+1 − xk‖2

]
¬
=E

[
fk − ηk〈∇fk, gk −∇fk +∇fk〉+

`

2
‖ΦX

(
xk − ηkgk

)
− xk‖2

]
=E

[
fk − ηk〈∇fk, gk −∇fk +∇fk〉+

`

2
‖ΦX

(
ηkg

k
)
‖2
]

≤E
[
fk − ηk〈∇fk, gk −∇fk +∇fk〉+

`η2
k

2
‖gk −∇fk +∇fk‖2

]
=E

[
fk−ηk(1− ηk`)〈∇fk, gk−∇fk〉+

`η2
k

2
‖gk−∇fk‖2 − ηk

(
1− `ηk

2

)
‖∇fk‖2

]
,

where ¬ holds due to xk ∈ X . Here we set ηk = 1
` and plug it into the above inequality:

Efk+1 ≤E
[
fk +

1

2`
‖gk −∇fk‖2 − 1

2`
‖∇fk‖2

]
¬
≤ E

[
fk +

12G2

`sk
− 1

2`
‖∇fk‖2

]
, (14)

where ¬ holds since we can bound E‖∇fk − gk‖22 by using Lemma 1.

On the other hand, f(x) is a strongly convex function. Namely, we have

f(y) ≥ f(x) +∇f(x)T (y − x) +
ρ

2
‖y − x‖2.

Then by minimizing y on both sides, it yields

1

2ρ
‖∇f(x)‖2 ≥ f(x)− f(x∗). (15)

We plug Eqn. (15) into Eqn. (14) and obtain

E(fk+1 − f∗) ≤
(

1− ρ

`

)
(fk − f∗) +

12G2

`sk
.

Here we set sk = τ(1/ζ)k, where ζ ∈ (0, 1). For brevity, let α = 1− ρ
` and γ = 12G2

τ` . It yields

E(fk+1 − f∗) ≤α(fk − f∗) + γζk.

We further assume that τ is large enough such that

γ =
12G2

τ`
≤ δ(f0 − f∗), (16)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

fk − f∗ ≤ θk(f0 − f∗), (∀k), (17)
where θ < 1 is a constant and will be given below.

Obviously, when k = 0, Eqn. (17) holds. Now assume that for all t ≤ k, Eqn. (17) holds. Then for
t = k + 1, we have

E(fk+1 − f∗) ≤αE(fk − f∗) + γζk ≤ αθk(f0 − f∗) + γζk

¬
≤ (α+ δ) θk(f0 − f∗)

­
≤ θk+1(f0 − f∗),

where ¬ and ­ hold since we let
θ ≥ max(ζ, α+ δ). (18)

This means that if Eqn. (18) holds, then Eqn. (17) always holds. So the conclusion holds.
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Now we discuss the values of θ, ζ and τ such that Eqn. (18) is satisfied. We just set δ = 12G2

τ`(f0−f∗) ,

τ ≥ 6G2

ρ(f0−f∗) and θ = ζ = 1− ρ
2` , giving

θ ≥α+ δ ≥ 1− ρ

`
+

ρ

2`
= 1− ρ

2`
.

In this case, all the conditions hold, including Eqn. (16) and (18). So we can see that the values of θ,
ζ and τ are proper. Therefore, we have

E(fk − f∗) ≤
(

1− ρ

2`

)k
(f0 − f∗).

Then we derive the IFO complexity. To achieve ε-accurate solution, i.e.

E(fk − f∗) ≤ θk(f0 − f∗) ≤ ε,

where θ = 1− ρ
2` , we have

k∗ ≥ log1/θ

(
f0 − f∗

ε

)
.

Therefore, the IFO complexity is

τ

[
1 +

1

ζ
+ · · ·+ 1

ζk∗−1

]
=τ

(1/ζ)
log1/θ

(
f0−f∗
ε

)
− 1

1/ζ − 1
=

τ

1/ζ − 1

[
f0 − f∗

ε
− 1

]
≤ τ

1/ζ − 1

[
f0 − f∗

ε

]
≤ O

(
κG2

ε

)
,

where κ = `/ρ. This means that we have the IFO complexity O
(
κG2

ε

)
. The proof is completed.

The proof is completed.

B.4 Proof of Theorem 3

For brevity, here we use fk and f∗ to denote f(xk) and f(x∗), respectively.

Proof. From Eqn. (10) in Appendix B.1, we have

E〈xk − x∗ − ηk∇fk,∇fk − gk〉 ≤
4G
√
sk

(1 + ηk`) ‖xk − x∗‖.

For arbitrary x1 ∈ X and x2 ∈ X that satisfy ‖x1 − x2‖2 ≤ D, we can bound E〈xk − x∗ −
ηk∇fk,∇fk − gk〉 as follows:

E〈xk − x∗ − ηk∇fk,∇fk − gk〉
¬
≤ 4G
√
sk

(1 + ηk`) ‖xk − x∗‖ ≤
4(1 + ηk`)GD√

sk
. (19)
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Then we utilize Eqn. (19) to further give the relationship between E‖xk+1−x∗‖2 and E‖xk−x∗‖2:

E‖xk+1 − x∗‖2

=E‖ΦX
(
xk − ηkgk

)
− x∗‖2

¬
≤E‖xk − x∗ − ηk∇fk − ηk(∇fk − gk)‖2

=E
(
‖xk − x∗ − ηk∇fk‖2 + η2

k‖∇fk − gk‖2 − 2ηk〈xk − x∗ − ηk∇fk,∇fk − gk〉
)

­
≤E‖xk − x∗ − ηk∇fk‖2 +

8ηk(1 + ηk`)GD√
sk

+
24η2

kG
2

sk

=E
(
‖xk − x∗‖2 − 2ηk〈xk − x∗,∇fk〉+ η2

k‖∇fk‖2
)

+
8ηk(1 + ηk`)GD√

sk
+

24η2
kG

2

sk
®
≤E

(
‖xk − x∗‖2 + 2ηk(f∗ − fk) + 2`η2

k(fk − f∗)
)

+
8ηk(1 + ηk`)GD√

sk
+

24η2
kG

2

sk

=E
(
‖xk − x∗‖2 − 2ηk(1− `ηk)(fk − f∗)

)
+

8ηk(1 + ηk`)GD√
sk

+
24η2

kG
2

sk
,

(20)

where ¬ holds due to x∗ ∈ X . ­ holds since we use Corollary 1 and Eqn. (19), and ® holds due to
the convexity of f(x):

f∗ − fk ≥ −〈∇fk,xk − x∗〉,
and the `-smooth property of f(x):

f∗ ≤ inf
y

(
f(x) + 〈∇f(x),y − x〉+

`

2
‖y − x‖2

)
= f(x)− 1

2`
‖∇f(x)‖2,

where we set y = x−∇f(x)/`.

Next we sum up Eqn. (20) from k = θT to T − 1 and obtain
T−1∑
k=θT

2ηk(1− `ηk)E(fk − f∗) ≤ ‖xθT − x∗‖2 − ‖xT − x∗‖2 +

T−1∑
k=θT

[
8ηk(1 + ηk`)GD√

sk
+

24η2
kG

2

sk

]
.

Here we set ηk = 1
2` . Then it yields

1

(1− θ)T

T−1∑
k=θT

E(fk − f∗)

≤ 2`

(1− θ)T
(
‖xθT − x∗‖2 − ‖xT − x∗‖2

)
+

1

(1− θ)T

T−1∑
k=θT

(
12GD
√
sk

+
12G2

`sk

)
.

(21)

Then, we further set sk = (k + 1)2. We have
T−1∑
k=θT

1
√
sk

=

T−1∑
k=θT

1

k + 1
≤
∫ T−1

θT

1

x
dx = log(x)

∣∣T−1
θT ≤ log

(
1

θ

)
and

T−1∑
k=θT

1

sk
=

T−1∑
k=θT

1

(k + 1)2
≤

T−1∑
k=θT

(
1

k
− 1

k + 1

)
≤ 1

θT
.

Finally, we submit the above inequalities into Eqn. (21) and set θ = 1
2 :

E(f(xa)− f(x∗)) =
1

(1− θ)T

T−1∑
k=θT

E(fk − f∗)

≤4`

T
‖xθT − x∗‖2 +

24GD

T
+

48G2

`T 2
≤ 4`D2 + 24GD

T
+

48G2

`T 2
.

The proof is completed.
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B.5 Proof of Corollary 2

Proof. From Theorem 3, we know that the convergence rate is decided by O((6GD + `D2)/T ). In
order to achieve ε accuracy, we need T ≥ O( 6GD+`D2

ε ). So the IFO complexity of the algorithm is

O(12 + 22 + · · ·+ T 2) = O
(

(6GD + `D2)3

ε3

)
.

The proof is completed.

B.6 Proof of Theorem 4

For brevity, here we use fk and f∗ to denote f(xk) and f(x∗), respectively.

Proof. From Eqn. (14) in Sec. B.3, by setting ηk = 1
` we have

Efk+1 ≤ E
[
fk +

12G2

`sk
− 1

2`
‖∇fk‖2

]
. (22)

We set sk = k + 1 and sum up Eqn. (22) from k = θT to T − 1:

1

(1− θ)T

T−1∑
k=θT

E‖∇fk‖2 ≤ 2`

(1− θ)T
(fθT − fT ) +

24G2

(1− θ)T

T−1∑
k=θT

1

sk

¬
≤ 2`

(1− θ)T
(fθT − fT ) +

24G2

(1− θ)T
log

(
1

θ

)
,

where ¬ holds since we have
θ2T∑

k=θ1T+1

1

sk
≤
∫ θ2T−1

θ1T

1

x
dx = log(x)

∣∣∣θ2T−1
θ1T

≤ log

(
θ2

θ1

)
.

Suppose we are given arbitrary x1 ∈ X and x2 ∈ X that satisfy ‖x1 − x2‖2 ≤ D, and f(x) is
`-smooth. We have

fθT − fT =(fθT − f∗)− (fT − f∗) ≤ `

2
‖xθT − x∗‖22 +

`

2
‖xT − x∗‖22 ≤ `D2.

By setting θ = 1/2, we can further establish

E‖∇f(xa)‖2 =
1

0.5T

T∑
k=0.5T+1

E‖∇fk‖2≤ 4`2D2 + 35G2

T
.

The proof if completed.

B.7 Proof of Corollary 3

Proof. From Theorem 4, we know

E‖∇f(xa)‖2 ≤ 4`2D2 + 35G2

T
.

In this case, we can further achieve E‖∇f(xa)‖2 ≤ ε. We need T ≥ 4`2D2+35G2

ε . So the IFO
complexity is

O

((
4`2D2 + 35G2

)2
ε2

)
.

The proof is completed.
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C Proofs of Results in Section 4

C.1 Proof of Theorem 5

Before proving Theorem 5, we first give a useful lemma stated in Lemma 4.

Lemma 4. [1] For the convex function f(x) = g(Ax), if the function g(·) is α-strongly convex and
X is a compact set, then f(x) satisfies Polyak-Łojasiewicz (PL) inequality:

µ(f(x)− f(x∗)) ≤ 1

2
‖∇f(x)‖22,

where µ = ασ(A) in which α is a universal constant and σ(A) denotes the smallest non-zero
singular value of the matrixA.

Now we are to prove Theorem 5. For brevity, here we use fk and f∗ to denote f(xk) and f(x∗),
respectively.

Proof. From Eqn. (14) in Sec. B.3, by setting ηk = 1
` we have

Efk+1 ≤E
[
fk +

12G2

`sk
− 1

2`
‖∇fk‖2

]
. (23)

Then since each individual function fi(x) is of form fi(x) = h(〈ai,x〉), we can formulate f(x) =
g(Ax), where A = [aT1 ;aT2 ; · · · ,aTn ] (namely, each row denotes a datum vector). Since h(·) is
stongly convex, then by Lemma 4 we know g′(x) = g(Ax) satisfies the Polyak-Łojasiewicz (PL)
inequality:

µ(g′(x)− g′(x∗)) ≤ 1

2
‖∇g′(x)‖22,

where µ = ασ(A) in which σ(A) denotes the smallest non-zero singular value of the matrixA. It
can be easily verified that µ = ασ(A) ≤ `. Note that the most commonly used optimization losses,
namely least square and logistic regression, satisfy such a PL inequality [1]. Thus, by substituting the
above PL inequality into Eqn. (23), it yields

Efk+1 ≤E
[
fk +

12G2

`sk
− µ

2`
(fk − f∗)

]
,

which is actually equivalent to

E[fk+1 − f∗] ≤
(

1− µ

`

)
E[fk − f∗] +

12G2

`sk
.

Then we set sk = τ(1/ζ)k, where ζ ∈ (0, 1). Then by considering ` ≥ ρ, it yields

E[fk+1 − f∗] ≤
(

1− µ

`

)
E[fk − f∗] +

12G2

`τ
ζk.

For brevity, let α = 1− µ
` and γ = 12G2

τ` . Thus, we have

E[fk+1 − f∗] ≤α[fk − f∗] + γζk.

We further assume that τ is large enough such that

γ =
12G2

τ`
≤ δ(f0 − f∗), (24)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

E(fk − f∗) ≤ θk
(
f0 − f∗

)
, (25)

where θ < 1 is a constant and will be given below.
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Obviously, when k = 0, Eqn. (25) holds. Now assume that for all t ≤ k, Eqn. (25) holds. Then for
t = k + 1, we have

E(fk+1 − f∗) ≤αE(fk − f∗) + βζk

≤αθk
(
f0 − f∗

)
+ βζk

¬
≤ (α+ δ) θk

(
f0 − f∗

)
­
≤θk+1

(
f0 − f∗

)
,

where ¬ and ­ hold since we let
θ ≥ max(ζ, α+ δ). (26)

This means that if Eqn. (26) holds, then Eqn. (25) always holds. So the conclusion holds.

Now we discuss the values of θ, ζ and τ to make Eqn. (26) satisfied. We just set δ = µ
2` , τ ≥ 24G2

µ(f0−f∗)
and θ = ζ = 1− µ

2` , giving

θ ≥α+ δ = 1− µ

2`
.

In this case, all the conditions hold, including Eqn. (24) and (26). So we can see that the values of θ,
ζ and τ are proper. Therefore, we have

E(fk − f∗) ≤
(

1− µ

2`

)k
(f0 − f∗).

The proof if completed.

C.2 Proof of Corollary 4

Proof. To achieve ε-accurate solution, i.e.

E(fk − f∗) ≤ θk(f0 − f∗) ≤ ε,
where θ = 1− µ

2` , we have

k∗ ≥ log1/θ

(
f0 − f∗

ε

)
.

Therefore, the IFO complexity is

τ

[
1 +

1

ζ
+ · · ·+ 1

ζk∗−1

]
=τ

(1/ζ)
log1/θ

(
f0−f∗
ε

)
− 1

1/ζ − 1
=

τ

1/ζ − 1

[
f0 − f∗

ε
− 1

]
≤ τ

1/ζ − 1

[
f0 − f∗

ε

]
≤ O

(
48`G2

µ2ε

)
.

The proof is completed.

D Additional Experimental Results

D.1 Descriptions of Testing Datasets and Compared Algorithms

We first briefly introduce the ten testing datasets in the manuscript. Among them, nine datasets are
provided in the LibSVM website1, including ijcnn1, a9a, w8a, covtype, rcv11, protein, satimage,
sensorless and letter. We also evaluate our algorithms on the mnist2 dataset, which is a very
commonly used handwritting recognition dataset. Their detailed information is summarized in
Table 2. We can observe that these datasets are different from each other in feature dimension,
training samples, and class numbers, etc.

Now we briefly introduce the compared algorithms in the manuscript, including SVRG [2], SAGA [3],
AVRG [4] and SCGC [5]. Since SGD is well known, here we do not introduce it.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://yann.lecun.com/exdb/mnist/
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Table 2: Descriptions of the ten testing datasets.
#class #sample #feature #class #sample #feature

ijcnn1 2 49,990 22 protein 3 14,895 357
a9a 2 32,561 123 satimage 6 4,435 36
w8a 2 49,749 300 sensorless 7 2,310 19
covtype 2 581,012 54 letter 26 10,500 16
rcv11 2 20,242 47,236 mnist 10 60,000 784

• SVRG: It is a variance-reduced variant of SGD. At the k-th epoch, it firstly computes
the full gradient ∇f(x̃) at a snapshot point x̃. Typically, the snapshot point x̃ is set
to the final output xk−1 of the previous epoch. Then it updates the variables as xkt =
xkt−1−ηt

(
fit(x

k
t−1)− fit(x̃) +∇f(x̃)

)
where it is the sampled index at the t-th iteration

in the k-th epoch. The iteration number T in each epoch is usually set to the sample number
n and the final output of the k-th epoch is usually the final computed solution xkT in this
epoch in implementation.

• SAGA: It needs a table to store the gradient of historical computed variables. Specifically,
let the initial point denoted by x0 and the known gradient ∇fi(φ0

i ) (i = 1, · · · , n) where
φ0
i = x0. Then at the k iteration, it picks an index j at random. Then it sets φkj = xk−1

and stores∇fj(φkj ) in the table. All other entries in the table remain unchanged. Finally, it
updates xk as xk = xk−1 − ηk

(
fj(φ

k
j )− fj(φk−1

j ) + 1
n

∑n
i=1 fi(φ

k−1
i )

)
. SAGA is also

a variance-reduced method.

• AVRG: It uses the historical gradient to estimate full gradient of the snapshot point in
SVRG. Namely, at each epoch, it sums up the gradient fit(x

k
t−1) and uses its average as the

estimation of f(x̃) in next epoch. Such a strategy can reduce computational complexity.

• SCGC: It has similar updating process as SVRG. Namely, it also takes the output in
the previous epoch as the current snapshot point. But at each epoch, it only samples a
subset Sk of data and uses the average gradient g(x̃) of the samples in Sk at the snapshot
point x̃ to estimate the full gradient at x̃. During the iteration, it updates xkt as xkt =
xkt−1 − ηt

(
fit(x

k
t−1)− fit(x̃) + g(x̃)

)
where it is the sampled index from Sk in the t-th

iteration. Typically, the size of Sk gradually increases along with more iterations. Note
that to date there has been no work analyzing the convergence performance of SCGC under
WoRS.
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Figure 5: WoRS vs. WRS in HSGD. We test logistic regression (regularization parameter λ = 0.01)
on ijcnn, covtype, w8a and rcv11, and evaluate softmax regression (regularization parameter
λ = 0.1) on protein and satimage.
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D.2 Comparison between WoRS and WRS in HSGD

Then we present more experimental results to compare WoRS and WRS. Since the `2-regularized
logistic and multi-class softmax regression problems are strongly convex, we follow Theorem 2
to exponentially expand the mini-batch size sk in HSGD and set τ = 1. From the comparison in
Figure 5, we can find that WoRS strategy often outperforms WRS in the anaphasis of going through
data for one pass, while at the beginning of the iteration, their performance is mostly the same. This
is because at the beginning, only a few samples are selected and it is highly probable for WRS to
select different samples, which is almost the same as WoRS. Thus, their performance in the early
phase is very similar. In contrast, as the iteration proceeds, more samples are required. It is likely
that WRS selects repeated samples which provide redundant descending information (gradient). By
comparison, WoRS has no such weakness as it uses different samples. So it can utilize all samples
more effectively and runs faster.
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