
New Insight into Hybrid Stochastic Gradient Descent:
Beyond With-Replacement Sampling and Convexity

Pan Zhou∗ Xiao-Tong Yuan† Jiashi Feng∗
∗ Learning & Vision Lab, National University of Singapore, Singapore

† B-DAT Lab, Nanjing University of Information Science & Technology, Nanjing, China
pzhou@u.nus.edu xtyuan@nuist.edu.cn elefjia@nus.edu.sg

Abstract

As an incremental-gradient algorithm, the hybrid stochastic gradient descent (HS-
GD) enjoys merits of both stochastic and full gradient methods for finite-sum
problem optimization. However, the existing rate-of-convergence analysis for
HSGD is made under with-replacement sampling (WRS) and is restricted to con-
vex problems. It is not clear whether HSGD still carries these advantages under
the common practice of without-replacement sampling (WoRS) for non-convex
problems. In this paper, we affirmatively answer this open question by showing
that under WoRS and for both convex and non-convex problems, it is still possi-
ble for HSGD (with constant step-size) to match full gradient descent in rate of
convergence, while maintaining comparable sample-size-independent incremental
first-order oracle complexity to stochastic gradient descent. For a special class of
finite-sum problems with linear prediction models, our convergence results can be
further improved in some cases. Extensive numerical results confirm our theoretical
affirmation and demonstrate the favorable efficiency of WoRS-based HSGD.

1 Introduction
We consider the following finite-sum minimization problem:

min
x∈X

f(x) :=
1

n

∑n

i=1
fi(x), (1)

where each individual fi(x) is `-smooth and the feasible set X ⊆ Rd is convex. In the field of
machine learning, formulation (1) encapsulates a large body of optimization problems including
least square regression, logistic regression and deep neural networks training, to name a few. Such a
problem can be solved by various algorithms, e.g. full gradient descent (FGD) [1], stochastic GD
(SGD) [2], hybrid SGD [3], SDCA [4] and SVRG [5].

In this paper, we are particularly interested in Hybrid SGD (HSGD) [3, 6, 7] which is an inexact
gradient method that iteratively samples an evolving mini-batch of the terms in (1) for gradient
estimation. The iteration of HSGD is given by

xk+1 = ΦX
(
xk − ηkgk

)
,with gk =

1

sk

∑
ik∈Sk

∇fik(xk),

where ΦX (·) denotes the Euclidean projection onto X , ηk is the learning rate, and Sk denotes the set
of the sk selected samples at the k-th iteration. In early iterations, HSGD selects a few samples to
compute the full gradient approximately; and along with more iterations, sk is increased gradually,
leading to more accurate full gradient estimation. Such a mechanism allows HSGD to simultaneously
enjoy the merits of both SGD and FGD, i.e. rapid initial process of SGD and constant learning rate
ηk without sacrificing the convergence rate of FGD [6].

Motivation. Though HSGD has been shown, both in theory and practice, to bridge smoothly the
gap between full and stochastic gradient descent methods, its rate-of-convergence analysis remains
restrictive in several aspects.
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Figure 1: Comparison of WoRS-based HSGD. (a)
WoRS vs. WRS in HSGD: optimizing a softmax
regression model with a single full pass over the
data letter. (b) Comparison among randomized
algorithms for optimizing a feedforward neural
network with 50 full passes over the data sen-
sorless. HSGD-exp and HSGD-lin respective-
ly denote WoRS based HSGD with exponentially
and linearly increasing mini-batch sizes (ref. Sec-
tion 3.2 and 3.4). See more results in supplement.

First, the convergence behavior of HSGD un-
der without-replacement sampling (WoRS) is
not clear. In the existing analysis [6], the s-
tochastic gradient is assumed to be computed
under with-replacement sampling (WRS). But
for stochastic optimization, it is a more com-
mon practice to use WoRS, i.e., to pass the loss
functions fi(x) sequentially, after random shuf-
fling, without revisiting any of them [8, 9]. This
makes significant discrepancy between the the-
oretical guarantee and practical implementation.
As shown in Figure 1 (a), WoRS tends to provide
better performance than WRS in actual imple-
mentation.

Second, the convergence behavior of HSGD for
non-convex problems is not clear. Prior con-
vergence guarantees on HSGD are limited to
convex problems. Bertsekas [3] established lin-
ear convergence of HSGD for least square problems. Friedlander et al. [6] proved that HSGD
converges linearly for strongly convex problems with exponentially increasing sk, and sub-linearly
for arbitrary convex problems with polynomially increasing sk. Unfortunately, non-convex conver-
gence guarantee on HSGD is still absent, though highly desirable in machine learning applications
and extensively studied in other stochastic algorithms, e.g. SVRG [10, 11]. In Figure 1 (b), HSGD has
sharper convergence behavior than several state-of-the-art SGD methods in training neural networks.

Third, the Incremental First-order Oracle (IFO) complexity (i.e. stochastic gradient computation; see
Definition 2) of HSGD is largely left unknown. Although Friedlander et al. [6] showed that HSGD
maintains steady convergence rates of FGD, its IFO complexity is not explicitly analyzed, making it
less clear where HSGD should be positioned w.r.t. existing stochastic gradient approaches in overall
computational complexity.

Summary of contributions. In this work, we address the aforementioned three limitations in the
existing analysis of HSGD. We analyze the rate-of-convergence of HSGD under WoRS in a wide
problem spectrum including strongly convex, non-strongly convex and non-convex problems. Table 1
summarizes our main results on IFO complexity of HSGD (WoRS) and compares them against
state-of-the-art WoRS-oriented results for (stochastic) gradient methods. These results are divided
into two groups: for general problems and for a special class of problems with linear prediction loss
fi(x) = h(a>i x). As shown in the bottom row of Table 1, we contribute several new theoretical
insights into HSGD, which are elaborated in the following paragraphs.

The bounds highlighted in green: For both general and certain specially structured strongly convex
problems, HSGD is n× faster than FGD. Compared to the results for SAGA and AVRG [12], the
IFO complexity of HSGD is not relying on the sample size n but dependent on 1/ε. This suggests
that HSGD will converge faster when n dominates 1/ε. Finally, compared to the results for SGD in
linear prediction problems [13], ours has removed the dependency on the logarithm term log (κ/ε).

The bounds highlighted in red: To our best knowledge, for the first time these new results establish
guarantees on WoRS-based stochastic approaches for non-strongly convex and non-convex problems.

The bounds highlighted in blue: If the loss function h(a>i x) in the linearly structured problem is
strongly convex in terms of a>i x (but f(x) may still be non-strongly convex), HSGD has O (1/ε)
IFO complexity. The least square regression and logistic regression (with a bounded feasible set)
models have such a linear prediction structure.

The bounds highlighted in brown: When the specially structured problem is non-strongly convex,
HSGD converges to the minimum of problem (1), while SGD can only be shown to converge to a
sub-optimum up to some statistical error (see footnote 2 below Table 1).

Related work. Understanding randomized algorithms under WoRS and random reshuffling is gaining
considerable attention in recent years. By focusing on least squares problems, Recht et al. [14] utilized
arithmetic-mean inequality on matrices to show that for randomized algorithms, WoRS is always
faster than WRS if the data are randomly generated from a certain distribution. For more general
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Table 1: Comparison of IFO complexity for randomized algorithms under WoRS. κ = `/ρ denotes
the condition number of `-smooth and ρ-strong convex cases for problem (1). Best viewed in color.

General Problem Specially Structured Problem with fi(x) = h(a>i x)

Stro. conv. Non-Stro. conv. Non-conv. f(·) is f(·) is h(·) is
stro. conv. non-stro. conv. stro. conv.

Metric:E‖xa−x∗‖22≤ε for stro. conv.,E[f(xa)−f(x∗)]≤ε for non-stro. conv.,E‖∇f(xa)‖22≤ε for non-conv.

FGD [9] O
(
nκ2

ε

)
— — O

(
nκ2

ε

)
— —

SAGA [12] O
(
nκ2log

(
1
ε

))
— — O

(
nκ2 log

(
1
ε

))
— —

AVRG [12] O
(
nκ2 log

(
1
ε

))
— — O

(
nκ2 log

(
1
ε

))
— —

HSGD O
(
κ2

ε

)
O
(

1
ε3

)1 O
(

1
ε2

)
O
(
κ2

ε

)
O
(

1
ε3

)
O
(
1
ε

)
Metric:E[f(xa)−f(x∗)]≤ε for both stro. and non-stro. conv., E‖∇f(xa)‖22≤ε for non-conv.

SGD [13] — — — O
(
κ
ε
log

(
κ
ε

))
O
(

1
ε2

)2 —
HSGD O

(
κ
ε

)
O
(

1
ε3

)1 O
(

1
ε2

)
O
(
κ
ε

)
O
(

1
ε3

)
O
(
1
ε

)
1 Our IFO complexity for arbitrary convex cases appears higher than the non-convex ones, as we use sub-

optimality metric E [f(xa)−f(x∗)] ≤ ε for convex cases while E‖∇f(xa)‖22 ≤ ε for non-convex cases.
2 Corollary 1 in [13] provides E [f(xa)−f(x∗)] ≤ RT /k+2(12+

√
2D)/

√
n where D denotes the diameter

of the domain X , k is the iteration number and RT ∼ O(D`/
√
k) is the regret bound of SGD for (1). The

term 2(12 +
√
2D)/

√
n is a statistical error which is an artifact from the regret analysis approach.

smooth and strongly convex problems, Gürbüzbalaban et al. [9] proved that gradient descent based
on random reshuffling enjoys O(1/k2) rate of convergence after k epoches, as opposed to O(1/k)
under WRS. But this analysis does not explicitly explain why WoRS works well after a few (or
even just one) passes over the data. To answer such a central question, by leveraging regret analysis,
Shamir et al. [13] proved that for a special class of loss functions fi(x) = h(a>i x), SGD and SVRG
using WoRS can achieve competitive IFO complexity to their WRS counterparts. More recently,
Ying et al. [12] proved that for strongly convex problems, both SAGA [15] and their proposed AVRG
algorithm achieve linear convergence rate with WoRS. Recently, Zhou et al. [7] applied the HSGD
algorithm for solving sparsity or rank-constrained problems and proved its linear convergence rate
under the restricted strong convex and smooth conditions. Our work differs from these prior works:
1) For the first time, we provide WoRS based theoretical analysis for HSGD. 2) Our analysis covers
non-strongly convex and non-convex cases which are not covered by the current WoRS analysis of
stochastic gradient methods.

2 Preliminaries

We first introduce the concepts of strong convexity and Lipschtiz smoothness which are commonly
used in analyzing stochastic gradient methods [4, 5, 16, 17, 18, 19].

Definition 1 (Strong convexity and Lipschitz smoothness). We say a function g(x) is ρ-strongly-
convex if there exists a positive constant ρ such that ∀x1,x2 ∈ X , g(x1)≥g(x2) + 〈∇g(x2),x1 −
x2〉+ ρ

2‖x1−x2‖22. Moreover, we say g(x) is `-smooth if there exists a positive constant ` such that
‖∇g(x1)−∇g(x2)‖2 ≤ `‖x1 − x2‖2.

In all our analysis, we will impose the basic Assumption 1 to bound stochastic gradient variance.

Assumption 1 (Bounded gradient). For each loss fi(x), the distance between its gradient∇fi(x)
and the full gradient∇f(x) is upper bounded as maxi ‖∇fi(x)−∇f(x)‖2≤G.

If fi(x) is `-smooth and the domain of interest X is bounded, then the bounded gradient assumption
can be naturally implied. We explicitly write out this assumption for the sake of notation simplicity.
Following [5, 20, 21], we also employ the incremental first order oracle (IFO) complexity as the
computational complexity metric for solving the finite-sum minimization problem (1).

Definition 2. An IFO takes an index i ∈ [n] and a point x ∈ X , and returns the pair (fi(x),∇fi(x)).

The IFO complexity can more accurately reflect the overall computational performance of a first-order
algorithm, as objective value and gradient evaluation usually dominate the per-iteration complexity.
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Algorithm 1 Hybrid SGD under WoRS

Input: Initial point x0, sample index set S={1, · · ·, n}, learning rate {ηk}, mini-batch size {sk}.
for k = 0 to T − 1 do

Select sk samples Sk by WoRS from S −
⋃k−1
i=0 Si.

Compute the gradient gk = 1
sk

∑
ik∈Sk ∇fik(xk).

Update xk+1 = ΦX
(
xk − ηkgk

)
.

end for
Output: xa sampled uniformly from {xk}T−1k=0 for strong convex and linearly structured problems
or {xk}T−1k=b0.5Tc for non-strongly/non-convex problems.

3 General Analysis for HSGD under WoRS

The WoRS-based HSGD algorithm is outlined in Algorithm 1. Here we systematically analyze
its convergence performance for strongly/non-strongly convex and non-convex problems. Similar
to [13], we focus our analysis on the scenario where a single pass (or less) over data is of interest,
which occurs, e.g. in streaming data analysis. According to our empirical study (see, e.g., Figure 3),
running Algorithm 1 for a single pass over data can provide satisfactory accuracy in many cases.

3.1 A key lemma

It is well understood that unbiased gradient estimation with gradually vanishing variance is important
for accelerating randomized algorithms [5, 15]. This is because the increasingly more accurate
estimate of full gradient allows the algorithm to move ahead with more aggressive step-size to
decrease the objective value. However, for WoRS implementation, the mini-batch terms selected at
each iteration are no longer statistically independent, leading to biased gradient estimate gk, i.e.

E[gk] = E
[ 1

sk

∑
ik∈Sk

∇fik(xk)
]
6= ∇f(xk).

Such a biased estimate gk brings a challenge to bounding its variance E‖gk−∇f(xk)‖22 with common
techniques such as Bernstein inequality [22] and those existing bounds on E‖gk −∇f(xk)‖22 under
WRS [23]. To tackle this challenge, we introduce the following sequence of random variables:

zk = µ̄k −∇f(xk) and z0 = 0,

where µ̄k := 1
s′k

∑
ik∈S′k

∇fik(xk), S ′k = S −
⋃k−1
i=0 Si and s′k = n −

∑k−1
i=0 si in which S =

{1, 2, · · · , n} denotes the index set of all samples. We can prove zk’s form a martingale, i.e.
E[zk | zk−1, . . . ,z0] = zk−1. Moreover, we can show that its squared Euclidian norm is bounded by

E
[
‖zk‖22 | zk−1, . . . ,z0

]
≤ 4G2

n− bk

[
1− (n− bk)2 − bk

n(n− bk)

]
,

where bk =
∑k−1
i=0 si. Similarly, we define a sequence of z̄i for the process of without-replacement

sampling a subset Ŝi of size ŝi from S ′k of size s′k:

z̄i =
1

ŝi

∑
ik∈Ŝi

∇fik(xk)− µ̄k and z̄0 = 0.

Also, we can prove that z̄i is a martingale with bounded norm:

E
[
‖z̄i‖22 | z̄i−1, . . . , z̄0

]
≤ 4G2

ŝi

[
1− ŝi − 1

s′k

]
.

Based on the above arguments, we formulate the k-th WoRS as a stochastic process consisting of
two phases. In the first phase, we are given s′k samples indexed by S ′k = S −

⋃k−1
i=0 Si after k − 1

times of WoRS over all the data. The sampling result is recorded by zk. Then, in the second phase,
we sample sk data from the remaining s′k samples indexed by S ′k in a without-replacement fashion,
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which corresponds to z̄i. Based on such a WoRS process, we have

E[‖gk −∇f(xk)‖22]≤2E[‖µ̄k −∇f(xk)‖22+‖gk − µ̄k‖22]

= 2E[‖zk‖22 | zk−1, . . . ,z0] + 2E[‖z̄sk‖22 | z̄sk−1, . . . , z̄0; zk−1, . . . ,z0]

≤ 8G2

n− bk

[
1− (n− bk)2− bk

n(n− bk)

]
+

8G2

sk

[
1− sk − 1

n− bk

]
.

The above claim leads to the following Lemma 1 which is key to our WoRS-based convergence
analysis in the sections to follow. Notice, the above results on gradient variance are some intermediate
results for proving Lemma 1, whose full proofs are deferred to Appendix A.

Lemma 1. The gradient gk estimated by WoRS in Algorithm 1 satisfies E
[
‖gk−∇f(xk)‖22

]
≤ 24G2

sk
.

From Lemma 1, we find that the gradient variance E[‖gk−∇f(xk)‖22] in Algorithm 1 is controlled
by 1/sk. Accordingly, the estimated gradient becomes increasingly more accurate and stable. This
means that by gradually increasing the mini-batch size, HSGD under WoRS can reduce variance,
similar to SVRG and SAGA, but without requiring to integrate historical gradients or full gradient of
the snapshot point into current gradient estimate. In the following sections, we will extensively use
Lemma 1 to analyze HSGD under WoRS.

By applying Bernstein inequality, Friedlander et al. [6] showed that E[‖gk−∇f(xk)‖22] = O
(
n−sk
nsk

)
if the sk samples selected at iteration k are different, but are sampled from the entire data set.
In contrast, our considered WoRS strategy assumes the sk different samples are drawn from the
remaining set S − ∪k−1i=0 Si, and thus needs to take into account the statistical dependence among
iterations to bound the stochastic gradient variance.

3.2 Strongly convex functions

We analyze the convergence behavior of both the computed solution x and the objective f(x) under
the strongly convex setting. Our convergence result on the computed solution is stated in Theorem 1.
Theorem 1. Suppose f(x) is ρ-strongly-convex and each fi(x) is `-smooth. With learning rate ηk=
ρ
`2 and mini-batch size sk = τ

ζk
where ζ = 1− ρ

18`2 and τ ≥ G2

‖x0−x∗‖2 max
(
324
ρ2 ,

432
`2

)
, we have

E‖xa − x∗‖22 ≤
(
1− ρ2

18`2
)T ‖x0 − x∗‖22,

where xa is the output solution of Algorithm 1 and T is the number of iterations.

A proof of this result is given in Appendix B.1. From Theorem 1, if mini-batch size is increased
at an exponential rate 1

1−γ with γ = ρ
18`2 , then the objective in HSGD converges linearly at the

rate of O
(
(1− γ)k

)
for strongly convex problems. This implies that HSGD enjoys the merits of

both SGD and FGD. Specifically, similar to SGD, the per-iteration computation of HSGD is cheap
as it is free of computing the full gradient ∇f(x). Meanwhile, it uses a constant learning rate and
enjoys the steady convergence rate of FGD. As the condition number κ = `/ρ is usually large in
realistic problems, the exponential rate 1

1−γ is actually only slightly above one. This means even
a moderate-scale dataset allows plenty of HSGD iterations in one epoch to decrease the objective
value sufficiently, as illustrated in Figure 2 and 3. Friedlander et al. [6] proved that HSGD has linear
convergence rate under WRS. Theorem 1 generalizes the result to WoRS. Then we can derive the
IFO complexity of HSGD for strongly-convex problems in the following corollary, for which proof is
given in Appendix B.2.
Corollary 1. Suppose the assumptions in Theorem 1 hold. To achieve E‖xa − x∗‖22 ≤ ε, the IFO
complexity of HSGD is O

(
κ2G2

ε

)
where κ = `

ρ denotes the condition number of the objective f(x).

From Corollary 1, the IFO complexity of HSGD for strongly convex problems is at the order of
O
(
κ2

ε

)
, which is not relying on the sample size n. So when n dominates 1

ε , HSGD can be superior to
the algorithms with complexity linearly relying on n, such as SVRG and SAGA.

Gürbüzbalaban et al. [9] showed that by processing each individual fi(x) with random shuffling
at each iteration and adopting a diminishing learning rate ηk = O

(
1
kβ

)
with β ∈ ( 1

2 , 1), the IFO
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complexity of FGD is O
(
κ2 nε

)
for achieving E‖xa − x∗‖22 ≤ ε. So HSGD is n times faster than

FGD. This is because at each iteration, unlike FGD requiring to access all data, HSGD only samples
a mini-batch for gradient estimation without sacrificing convergence rate. Ying et al. [12] proved that
under WoRS, both SAGA and AVRG converge linearly and have IFO complexity ofO

(
nκ2 log

(
1
ε

))
.

Hence, HSGD will outperform SAGA and AVRG if n dominates 1
ε , which is usually the case when

the data scale is huge while the desired accuracy ε is moderately small (e.g. 1/
√
n).

Shamir [13] proved that for linearly structured problems, SGD under WoRS has IFO complexity
O
(
κ
ε log

(
κ
ε

))
by measuring the objective (see Section 4). Here we can also establish the shaper

convergence behavior of the objective value. The result is presented in Theorem 2 with proof provided
in Appendix B.3.
Theorem 2. Assume f(x) is ρ-strongly-convex and each fi(x) is `-smooth. Let learning rate ηk = 1

`

and mini-batch size sk= τ
ζk

with ζ=1− ρ
2` and τ≥ 6G2

ρ[f(x0)−f(x∗)] . Then the output xa of Algorithm 1
satisfies

E [f(xa)− f(x∗)] ≤
(
1− ρ

2`

)T
(f(x0)− f(x∗)).

Moreover, to achieve E[f(xa)− f(x∗)] ≤ ε, the IFO complexity of HSGD is O
(
κG2

ε

)
, where κ = `

ρ .

Theorem 2 shows that HSGD also enjoys linear convergence rate on the objective by using exponential-
ly mini-batch size. But it has lower complexityO

(
κ
ε

)
under the measurement E[f(xa)− f(x∗)] ≤ ε

which is in contrast to the complexity O
(
κ2

ε

)
for achieving E‖xa − x∗‖22 ≤ ε. This is because

the objective analysis allows to use more aggressive step-size 1
` , while the analysis on the solution

requires smaller learning rate ρ
`2 . In this way, HSGD with larger step-size converges faster.

3.3 Non-strongly convex functions

We proceed to analyze the convergence performance of HSGD for non-strongly convex problems. Our
result for this case is summarized in Theorem 3. To our best knowledge, this is the first convergence
guarantee of WoRS-based methods for non-strongly convex problems.
Theorem 3. Suppose f(x) is convex and each fi(x) is `-smooth. Assume that ‖x1−x2‖2≤D holds
for ∀x1,x2 ∈X . Then with the learning rate ηk = 1

2` and mini-batch size sk = (k + 1)2, we have

E[f(xa)− f(x∗)] ≤ 4`D2 + 24GD

T
+

48G2

`T 2
,

where xa denotes the output solution of Algorithm 1 and T is the number of iterations.

A proof of this result is given in Appendix B.4. Theorem 3 shows that if one expands the mini-batch
size at O

(
k2
)
, then the convergence rate of HSGD under WoRS is O

(
1
T

)
. In [13], a sub-linear rate

was established for WoRS-based SGD in a special class of convex problems with fi(x) = hi(〈ai,x〉).
A detailed comparison between their result and ours for such a structured formulation will be discussed
in Section 4. Under the assumption

∑+∞
k=0 ‖gk−∇f(xk)‖2 < +∞, Friedlander et al. [6] showed

that WRS-based HSGD outputs f(xa)− f(x∗) = O
(
1
T

)
. However, such an assumption holds only

if HSGD selects at leastO
(
k2
)

samples at the k-th iteration due to E[‖gk−∇f(xk)‖22] = O
(
n−sk
nsk

)
.

In this way, their result under WRS is of the same order as ours under WoRS. The following corollary
gives the corresponding IFO complexity. A proof of this result is given in Appendix B.5.
Corollary 2. Suppose the assumptions in Theorem 3 hold. To achieve E[f(xa)− f(x∗)] ≤ ε, the
IFO complexity of HSGD is O

( (6GD+`D2)3

ε3

)
.

3.4 Non-convex functions

Now we analyze HSGD for non-convex problems, which to our knowledge has not yet been addressed
elsewhere in literature. The result is stated in Theorem 4 with proof provided in Appendix B.6.
Theorem 4. Suppose each fi(x) is `-smooth and for ∀x1,x2 ∈X , ‖x1−x2‖2 ≤ D. With learning
rate ηk = 1

2` and mini-batch size sk = k+ 1, the output xa of Algorithm 1 with T iterations satisfies

E
[
‖∇f(xa)‖22

]
≤ 4`2D2 + 35G2

T
.
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Theorem 4 guarantees that for non-convex problems, HSGD exhibits O
(
1
T

)
rate of convergence by

linearly expanding the mini-batch size at each iteration. Here we follow the convention in [10, 11, 23]
to adopt the value ‖∇f(xa)‖22 as a measurement of quality for approximate stationary solutions.
Then we drive the IFO complexity of HSGD in the following corollary with proof in Appendix B.7.
Corollary 3. Suppose the assumptions in Theorem 4 hold. To achieve E

[
‖∇f(xa)‖22

]
≤ ε, the IFO

complexity of the HSGD in Algorithm 1 is O
( (4`2D2+35G2)2

ε2

)
.

The IFO complexity for non-convex problems looks lower than that for non-strongly convex ones
in Corollary 2. This is because we use E [f(xa − f(x∗)] ≤ ε as sub-optimality measurement for
arbitrary convex problems and E

[
‖∇f(xa)‖22

]
≤ ε for non-convex problems.

4 Analysis for Linearly Structured Problems

We further consider a special case of problem (1) where each fi(x) has a linear prediction structure:

f(x) :=
1

n

∑n

i=1
fi(x), where fi(x) = h(〈ai,x〉). (2)

Here ai denotes the i-th sample vector and h(·) denotes a convex loss function. Such a formulation
covers several common problems in machine learning, such as fi(x) = 1

2 (bi − a>i x)2 for least
square regression and fi(x) = log(1 + exp(−bia>i x)) for logistic regression, where bi is the real or
binary target output. Such a special problem setting has been considered in [13] for analyzing SGD
under WoRS. To make a comprehensive comparison, we specify our strongly convex analysis to (2),
and improve our non-strongly-convex results when the surrogate loss h(·) is strongly convex.

Strongly convex case. In this case, according to Theorem 2, HSGD converges linearly and its IFO
complexity isO

(
κ
ε

)
. By comparison, SGD under WoRS in [13] converges atO

(
κ
T log

(
1
T

))
and has

IFO complexity O
(
κ
ε log

(
κ
ε

))
, slightly higher than ours due to the presence of the factor log

(
κ
ε

)
.

Moreover, it is allowed in HSGD to use constant step-size which is required to be shrinking in [13].

On this special problem, other results on general strongly convex problems can also be applied.
As discussed in Section 3.2, HSGD is n times faster than FGD [9], and is superior to SAGA [12]
and AVRG [12] when n dominates 1

ε . Shamir [13] showed that SVRG [5] under WoRS has IFO
complexityO

((
n+ κ log

(
1
ε

))
log
(
1
ε

))
in ridge regression with the measurement E[f(x)− f(x∗)].

Comparatively, such an IFO complexity is still higher than HSGD when sample size n is large and
the desired accuracy is moderately small.

Non-strongly convex case with strongly-convex h(·). When the loss f(x) in (2) is non-strongly
convex but the surrogate loss h(·) is strongly convex, we show an improved convergence rate in
Theorem 5 than that in Theorem 3 for general cases. See proof of Theorem 5 in Appendix C.1.
Theorem 5. Suppose fi(x) = h(a>i x) is `-smooth and h(·) is α-strongly convex. Let σ(A) denote
the smallest non-zero singular value of the matrix A = [a>1 ;a>2 ; . . . ,a>n ] and µ = ασ(A). If the
learning rate ηk = 1

` and mini-batch size sk = τ
ζk

with τ≥ 24G2

µ[f(x0)−f(x∗)] and ζ = 1− µ
2` , we have

E [f(xa)− f(x∗)] ≤
(
1− µ

2`

)T
(f(x0)− f(x∗)),

where xa denotes the output solution of Algorithm 1 and T is the number of iterations.

Theorem 5 shows if the function h(a>i x) is strongly convex in terms of the linear prediction a>i x, by
exponentially sampling the data at each iteration, HSGD converges linearly even though f(x) might
be non-strongly convex. Based on Theorem 5, we further derive the IFO complexity of Algorithm 1
for such a special problem, as summarized in Corollary 4 with proof in Appendix C.2.
Corollary 4. Suppose the assumptions in Theorem 5 hold. To achieve E[f(xa)− f(x∗)] ≤ ε for the
special problem, the IFO complexity of the proposed algorithm is O

(
`G2

µ2ε

)
.

It is interesting to compare Theorem 5 and Corollary 4 with those existing ones for SGD. Particularly,
it was shown by Shamir [13] that E [f(xa)− f(x∗)] ≤ RT /T + 2(12 +

√
2D)/

√
n for SGD,

where RT is the regret bound of SGD on problem (2), at the order of O(D`
√
T ). This gives a

7



convergence rate of O(1/
√
T ) and IFO complexity of O(1/ε2). However, there exists an accuracy

barrier O (1/
√
n) due to the statistical error term 2(12 +

√
2D)/

√
n which is the artifact brought by

analyzing the regret. In sharp contrast, our result in Theorem 5 guarantees that HSGD converges to
the global optimum of problem (2). More importantly, provided that h(·) is strongly convex, HSGD
has superior IFO complexity of O

(
1
ε

)
to the SGD complexity O

(
1
ε2

)
given in [13].

5 Experiments

We compare HSGD with several state-of-the-art algorithms, including SGD [2], SVRG [5],
SAGA [15], AVRG [12] and SCGC [23], under WoRS for all. We consider two set-
s of learning tasks. The first contains two convex problems: `2-regularized logistic re-
gression minx

1
n

∑n
i=1

[
log(1 + exp(−bia>i x)) + λ

2 ‖x‖
2
2

]
and k-classes softmax regression

minx
1
n

∑n
i=1

∑k
j=1

[
λ
2k‖xj‖

2
2−1{bi=j} log

exp(a>i xj)∑k
l=1exp(a

>
i xl)

]
, where bi is the target output of ai.

The other one is a non-convex problem of training multi-layer neural networks. We run simulations
on 10 datasets (see Appendix D). Hyper-parameters of all the algorithms are tuned to best.
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(a) Logistic regression. From left to right: ijcnn, A09, w08 and rcv11.
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(b) Softmax regression. From left to right: protein, satimage, sensorless and mnist.

Figure 2: Single-epoch processing: comparison of randomized algorithms for a single pass over data.

5.1 Convex problems

As the first set of problems are strongly convex, we follow Theorem 2 to exponentially expand the
mini-batch size sk in HSGD with τ = 1. We run FGD until the gradient ‖∇f(x)‖2 ≤ 10−10. Then
use the output as the optimal value f∗ for sub-optimality estimation in Figure 1 (a), 2 and 3.

Single-epoch processing in well-conditioned problems. We first consider the case where the
optimization problem is well-conditioned with strong regularization, such that good results can be
obtained after only one epoch of data pass. Single-epoch learning is common in online learning. For
two problems, we respectively set their regularization parameters to λ = 0.01 and λ = 0.1.

Figure 2 summarizes the numerical results. On the simulated well-conditioned tasks most algorithms
achieve high accuracy after one epoch, while HSGD (WoRS) converges much faster. This confirms
Corollary 1 that HSGD is cheaper in IFO complexity (O

(
κ2

ε

)
) than other considered variance-reduced

algorithms (O
(
nκ2 log

(
1
ε

))
) when the desired accuracy is moderately low and data size is large.

Multi-epoch processing in ill-conditioned problems. To solve more challenging problems, a
method usually needs multiple cycles of data processing to reach high accuracy solution. Thus we
develop a practical implementation of HSGD for multiple epochs processing. After visiting all data
in one full pass, it continues to increase the mini-batch size, allowing possible with-replacement
sampling, until sk > n. After that, HSGD degenerates to standard FGD. But this does not happen in

8



our testing cases, since we set the exponential rate sufficiently small. To generate more challenging
optimization tasks, we reset the regularization strength parameter in softmax regression as λ = 0.001.

Figure 3 shows that HSGD under WoRS outperforms all compared algorithms. These observations
align well with those in Figure 2, implying HSGD has sharper convergence behavior when the sample
size n is large and the desired accuracy is moderate. The convergence curves of HSGD also confirm
the effectiveness of our practical implementation in continuously decreasing the objective value.
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Figure 3: Multi-epoch processing: comparison of randomized algorithms for multiple passes over
data (Softmax regression. From left to right: protein, satimage, sensorless and letter).

5.2 Non-convex problems

Here we evaluate HSGD for optimizing a three-layer feedforward neural network with a logistic loss
on ijcnn1 and covtype and softmax loss on sensorless (see Figure 1 (b)). For both cases we set
λ = 0.01. The network has an architecture of d − 30 − c, where d and c respectively denote the
input and output dimension and 30 is the neuron number in the hidden layer. We test two versions of
HSGD, namely HSGD-lin and HSGD-exp, respectively with linearly and exponentially increasing
mini-batch size from s0 = 1. We use the same initialization for all algorithms.

From Figure 4, HSGD-exp exhibits similar convergence behavior as above: it decreases the loss very
quickly. Comparatively, HSGD-lin outputs more accurate solutions with linearly increasing batch
size, which is consistent with Theorem 4. We note HSGD-lin behaves differently in Figure 4 (a) and
(b). In Figure 4 (a), it converges relatively slowly at the beginning, while in Figure 4 (b) much faster,
of which we attribute the reason to the different characteristics of data.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

IFO/n

O
bj

ec
tiv

e 
va

lu
e 

f(
x)

 

 

SGD
SVRG
SAGA
AVRG
SCGC
HSGD−exp
HSGD−lin

0 10 20 30 40 50
−6

−4

−2

0

2

4

6

IFO/n

lo
g
(‖
∇
f
(x
)‖

2 2
)

 

 

SGD
SVRG
SAGA
AVRG
SCGC
HSGD−exp
HSGD−lin

0 10 20 30 40 50
0

5

10

15

IFO/n

O
bj

ec
tiv

e 
va

lu
e 

f(
x)

 

 

SGD
SVRG
SAGA
AVRG
SCGC
HSGD−exp
HSGD−lin

0 10 20 30 40 50

−4

−3

−2

−1

0

IFO/n

lo
g
(‖
∇
f
(x
)‖

2 2
)

 

 

SGD
SVRG
SAGA
AVRG
SCGC
HSGD−exp
HSGD−lin

(a) ijcnn1 (b) covtype
Figure 4: Non-convex results: comparison of randomized algorithms on forward neural networks.

6 Conclusion

We analyzed the rate-of-convergence of HSGD under WoRS for strongly/arbitrarily convex and
non-convex problems. We proved that under WoRS, HSGD with constant step-size can match FG
descent in convergence rate, while maintaining comparable sample-size-independent IFO complexity
to SGD. Compared to the variance-reduced SGD methods such as SVRG and SAGA, HSGD tends to
gain better efficiency and scalability in the setting where the sample size is large while the required
optimization accuracy is moderately small. Numerical results confirmed our theoretical results.
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