A Omitted Proofs

Proof of Thm. 1. Noting that Y; = Y;(T;) = >}, 01,0110 (Xi) + €, let us rewrite 7y as
7A'W = % Z;il Z?:l W15T1t,uf(XZ) =+ % Z:‘L:I erv
Recalling that SAPE(7) = £ 3" S~ 7 (X;)pe(X;) immediately yields the first result. To

n
obtain the second result note that SAPE(7) is measurable with respect to X7.,,, 775, so that

CMSE(7w, ) = (E[fw | X1.n, T1:n] — SAPE(7))2 + Var(fw | X1.n, Tion)-

By Asn. 1
E[(STitei | Xl:anlzn] = 5TitE[€i | Xi] = 5Tit(E[Yz‘(7§) | Xi] - ,ut(Xz')) =0.
Therefore,
E[%W | Xl:’ruTl:n] = % Z:ll Z?:l WiaTitﬂt(Xi)7
giving the first term of CMSE(7y, 7). Moreover, since
Elei€ir | X1, Tin] = 8iir 07, ,

we have

Var(%W | Xl:nalen) = E[(%W - E[%W l )(1:71/1—’1:71])2 | Xl:na Tl:n]

= LE[(XCL Wiei)? | Xiin, Thn) = 72 Y1y W07,

giving the second term. ]

Proof of Cor. 2. This follows from Thm. 1 after noting that 7y, = 7w — B(W,7; 1) and that
By(W,m; i) — Be(W, m; fir) = Be(W, 5 py — fue). O

Proof of Lemma 1. For the first statement, we have
E W, [ frimrioms &) = SUD o, <1111 e, <reve (ter Be(Womes f1))? + 7z WHAW
= 8P|y, <1 (0051 SUPY 1y, <yivn Br (W05 £2))? + 5 WTAW
= supyj,, <1 (XCmy 0B (W, i3 || - llx,)? + 7= WTAW
= (2171:1 ’Yg%g(W, 3 || - ||1Ct))2/q + #WTAW
For the second statement, let z; =  (W;ér,y — m(X;)) and note that since
B[(pe(X5) = fe(Xo)) (s (X5) = f5(X5)) | Xiim, Thin] = 65K (X5, Xj), we have
CMSE(tw,f,m) = E[(Z:; Bi(W, s e — £1))? | X1, Tion] + #WTZW
=3 et 2ot g 2% Bl (e (Xa) — fo( X)) (s (X5) = [5(X5)) | X, T
+ SWTEW
= 2y i 2K (Xi, X) + oy WTSW.
[

Proof of Thm. 3. Let Z = L S0 | 7p (X}) /o, (X;) and W;(7) = 77, (X:) /o1, (X;) and note
that W € W. Moreover, note that

T n Ot
By(W,mi |- ) = 514 S0 (2 — Z)m(X) Ex,

Kt

n 0T ¢ n

< 2L S (o — Dm(X)Ex, Ik, + 2112 iy (2 — Dm(X:) Bx,x,
n S1.t Z—1 n

< 1L S (s — DUm(X)Ex, e, + LY VE(XG X,

51t
Let& = (5. — me(Xi) Ex, and note that E[&;] = E[(E[d7,¢ /¢ (X3) | Xi] — 1)me(Xo) Ex,] =
0 and that &, &a, . .. areiid. Therefore, letting £1, &5, . .. be iid replicates of &1, &o, . . . (ghost sample)
and letting p; be iid Rademacher random variables independent of all else, we have

[l i &illk,] = m=Ell 20 (BLED — €)%, ] < =Bl 20, (€ — )%,
= =Bl 0 pil€] = &)IIR,) < 2= Bl 20 pitillk,]
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Note that [[£1 — &%, + &1 + &l&, = 20&%, +2l&l1%, +2 (&) — 2, &) =2[&lE, +
2||§2H2ICt By induction, Zp,-e{—17+1}" | 21:1 pifi”)QCt =2" Zi—1 ”52”2)6 . Since

Elll&13,) < 2B[ZER (X, X)) + 2B[m3(X)Ku(X, X)] < 4E[ZHD K, (X, X)) <

we get E[[[L S | &[|%,] = O(1/n) and therefore || £ S°7 , &%, = O,(1/n) by Markov’s inequal-
ity. Moreover,as Efnr (X)) or(X)] = B[S, Eldry | X)m(X)/0(X)] = B[Sy, m ()] = 1
and E[r2 (X )/cpT( )2] < oo, by Chebyshev’s inequality, E[(Z —1)?] = O(1/n) so that
(Z - 1) = 0,(1/n) by Markov’s inequality. Similarly, as E[\/K,(X,X)] < oo, we
have L 3" \/Ki(X;, Xi) —p E[\/K:(X,X)]. Putting it all together, by Slutsky’s theorem,
B, 71t [ - ) = Op(1/n). Moreover, [W[}3 = s S0, 73, (X:)/¢, (X:) = Op(n). There-
fore, since A,, < kI and since W,¥ is optimal and W e W, we have

62(W;77‘—; H ) ||pJC1:mﬁn,1:m7An) < 62(W77‘—; ||H An)

P K1:m s Yn,1:m
2 m q/1x 2/‘1 = < 9
<7 (S BV, mi |- e)) + S IWIE = 0,(1/n)
Therefore,
%2(W* T || - M) < a2 € W, s - lioms Ynms An) = Op(1/n),
LW < S WaT AWy < 5 €W 3 - iy o,toms An) = Op(1/m).

Kn?

Now consider case (a). By assumption ||3|] < 72 < oo for all n. Then we have
~ m * 72 *
CMSE(fw;:, 1) <m 3" ([uellE, BE(Wosmis || - lle,) + 22 [Will3 = Op(1/n).

Letting D,, = Tws — SAPE(’]T)| and G be the sigma algebra of X1,7T1, Xo,T5,..., Jensen’s
inequality yields E[D,, | G] = O,(1) from the above. We proceed to show that D,, = O,(1),
yielding the first result. Let v > 0 be given. Then E[D,, | G] = O,(1) says that there exist N M
such that P(E[D,, | G] > M) <wv/2foralln > N. Let My = max{M 2/v} and observe that, for
alln > N,

P(D,, > M2) =P(D,, > M2,E[D, | G] > M) + P(D,, > M2,E[D, | G] < M)
=P(Dy, > M§,E[D, | G] > My) + E[P(D,, > Mg | G)I[E[D, | G] < Mo]|

< v/2+ E[HEHAIE[D, | §] < My]) < v/2+1/Mo < v

Now consider case (b). We first show that B, (W, m; ) = o0p(1). Fix t € [m] and n >
0,v > 0. Because B,(W,, 7s;| - |lx,) = Op(n™'/2) = 0,(n™4) and |W;|l2 = O,(v/n),
there are M, N such that for all n > N both P(n*/*B,(W;:, 7| - [lc,) > i) < v/3
and P(n=Y2|Wi|l > M,m) < v/3. Next, fix 7 = /vn/3/M. By existence of sec-
ond moment, there is gf = Yi_, Bils, with (E [(u(X) — g5(X))?])Y/? < 7/2 where Is(z)
are the simple functions Ig(x) = Iz € S] for S measurable. Let ¢ = 1,...,f. Let
Ui D S; open and E; C S; compact be such that P (X € U;\E;) < 72/(4¢|8:])®>. By

Urysohn’s lemma [36], there exists a continuous function h; with support C; C U; com-

pact, 0 < h; < 1, and hi(z) = 1Vz € E;. Therefore, (E[(Is,(X)— hy)?])Y/?
(E[(Is,(X) = hi)’I[X € U\E])V? < (P(X € U\E:)V? < 7/(4]B;]). By Co-
universality, 3g; = 71, a;Ky(z;,-) such that sup, ¢y [hi(z) — gi(z)| < 7/(4€|B;i]). Because

E[(hi = 9:)%] < supsex [hi(x) = gi(x)[*, we have \/E[(Is/(X) = g.)%] < 7/(2¢|8i]). Let
- ¢ ~ ‘
fu = Yiz1 Bigi- Then (E [(ue(X) — a(X))*NY? < 7/2+ 30, [Bil 7/(2£18i]) = 7 and
it e, < oo. Letdy, = \/% S (e (Xs) — e (X;))? so that E§2 < 72. Now, because we have
By(Wy, w5 puy) = By (W, mes i) + Be(Wie, mes e — fie)
< el Be (W ms [ - i) + \/% Yim (Whidm — mi(X4))?0n
< Naellie, BeW mes [ - i) + (072 Wiill2 + 1)d,
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letting N' = max{N, 2| fu||%, /n*]}, we must then have, for all n. > N’, by union bound and by
Markov’s inequality, that

P(By(Wy,me; i) > ) <P(n= 4| e, > /0) + P48, (Wi, s |- 1) > /)
+P(n= 2| Will2 > M) < v/3+P(8, > //M)
<0+v/34+v/3+v/3=r.
Following the same logic as in case (a), we get CMSE(7w -, m) = 0,(1), so letting D,, =

|#w= — SAPE(7)| and G be as before, we have E[D,, | G] = 0,(1) by Jensen’s inequality. Let
1 > 0,v > 0 be given. Let N be such that P(E[D,, | G] > vn/2) < v/2. Then for all n > N:

P(Dy, > 1) =P(Dy, >n,E[D, | G] > nv/2) + P(D, > n,E[D,, | G] < 1nv/2)
=P(Dy, > n,E[Dy | G] > nv/2) + E[P(Dy, >n | G)L[E[D, | G] < nv/2]]
<v/2+EERAENRD, | g < /2 <v/2+v/2 <,

showing that D,, = 0,(1) and completing the proof. O

Proof of Cor. 4. Case (a) follows directly from the proof of Thm. 3 noting that the bias term now
disappears at rate 0,(1)O,(1/v/n) = 0,(1/+/n). For Case (b), observe that by Cauchy-Schwartz and

Slutsky’s theorem |Be(W, me; p1 — fin )| < (™2 Worll2 + 1)(5 307 (i (Xi) — p(X))*)'/? =

n

Op(ry,). For cases in cases (c) and (d) we treat By (W, my; 4 — fip,) as in the proof of Thm. 3 noting
that ||gee — fint|lic, < |lpeellic, + ||fint ||, and that, in case (¢), || fint|/xc, = Op(1) implies by Markov’s
inequality that || fin¢]|x, = Op(1). The rest follows as in the proof of Thm. 3. O

Proof of Thm. 5. First note that because our problem is a quadratic program, the KKT conditions
are necessary and sufficient and we can always choose an optimizer where strict complementary
slackness holds.

Ignore previous definitions of some symbols, consider any linearly constrained parametric nonlinear
optimization problem in standard form: z(z) € argmin,~q 5, f(7,y) where x € R", y € R™,
and b € RY. KKT says there exist (z) € R™, \(z) € R such that (a) V,, f(z,2(z)) = p(x) +
BT\(z), (b) Bz(z) = b, (c) z(z) > 0, (d) u(z) > 0, and (e) pu(z) ® z(z) = 0, where © is the
Hadamard product. Suppose strict complementary slackness holds in that (f) u(x) + z(z) > 0. By
(a), we have that

Vo (2, 2(2)) + Yy £ (2, 2(8) V() = Vaps(w) + BTV (),
and hence, letting H = V, f(x, 2(z)) and J = V,, f(x, 2(z)),
Vz(z) = H Y (Vep(x) + BTVA(z) — J).
By (b), we have that BVz(x) = 0 so that
BH 'V, u(z) + BH'BTVA=BH"'J,
and hence if the columns of F' form a basis for the null space of B and H = —F(FTHF)~'FT,
Vez(x) = (H'BT(AHTATY TAH' — H V)(J — Vou(x)) = H(J — Vau(z)).

By (e), we have that
2i(2)Vapi(z) + pi(2) Vazi(z) =
and then by (f), letting A = diag(I[z1(z) > 0, ..., 2z, (z) > 0]) have

Avx.u(x) =0, (I - A)sz( )

and therefore ~
AVep(x) — (I = A)H(J — Vopu(x)) =0
yielding finally that

Vez(z)=H(I — (A+ (I - A)H)"Y(I - A)H)J.

The rest of the theorem is then begotten by applying this result and using chain rule. O
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Proof of Thm. 6. Let Z(m) = £ 321, wr,(X,)/or, (X;) and Wi(w) = 7, (Xi)/er, (X,) and
note that W € W. Moreover, note that
T n O+
suprenBe(W, mes || - [Ic,) = SUPrerL| £, <1 %% Zizl(% = Z(m))m(X5) fe(X3)

_ n OT; ¢ _
<(upZm) ) swp A YU (S — 1w (X)) fi(Xe) + Dsup |1 - Z(m)].
mell e €, || fellc, <1 mell

We first treat the random variable
- n 57t
Et(X1m, Trin) = SUPr, ct, | 1, <1 %Zizl(r?}(.) — D) (X5) fo (X3).

Fix Z1.n, t1in, 4., 1.y, Such that 2§ = x;, t; = t; Vi # ¢’ and note that

- - 5,
Ee(@1ins tin) = o€ thin) < SUDR ert, £ l1, <1 (5 i1 (G — Dme(@a) folw:)

n 5t’.t
- %Zi:l(m — D)ym(af) fo ()

Sty 5t’_,t
= %Supﬂtent,ﬂftﬂlctSl((tpft(mt/) l)ﬂt(xi/)ft(xi/) — (ﬁzi/) — 1)71}(1';/)]%(1';/)) S %O{F

By McDiarmid’s inequality, P (Z; (X1, Trin) = E[E4(X1im, Thin)] + 1) < e~ "T7%/2 et
&i(me, fr) = ( 5(Txt) — D)m(X;) f:(X;) and note that for all 7, f; we have E[&;(m, f)] =

E[(E[d7,:/0:(X;) | Xi] — D)e(X;) f:(X;)] = 0 and that & (-, ), & (-, ),... are iid. Therefore,
letting &1 (-, ), &4 (-, -), . . . be iid replicates of &1 (-, ), &a(+, +), . . . (ghost sample) and letting p; be iid
Rademacher random variables independent of all else, we have

ElE:(X1n, Tin)] = E[supn, e, 11,1, <1 LS L (BIE (me, f1)] — &ilme, f2))]
[SUPr, ett, £, <1 7 2oiet (€1 (Tes fo) — Ei(me, fo))]
[s

<E
= E[Supr, cnt, i1, <1 1 2oiet Pi(E1(Te, fo) = Eilme, f2))]
< Q]E[Supmeﬂt,\lft\ltctﬁl % Z?:l pi&i(me, ft)]

Note that by bounded kernel we have ||KC;(x, -)||x, = v/Ki(z,2) <T and therefore
SUD| £, e, <twer o () = SUPY 1, <t e (fo Ko(@,0)) <UDy 1)1, <11, <1 (fer9) =T

Asbefore, (|61 — &Ik, + 161 + &Ik, = 2ll&llk, +2ll&llk, +2 (€, &) —2 (&, &) = 2)&lIk, +
2||§2H2,Ct implies by induction that Zl)iE{—17+1}" 1> i pi§i||,2@ =2">., ||£z||)2c, Hence,

E[”%Z?:l Pi ] S(E[”%Zz 1 Pi Kt])l/Q (nlz Z?:l E[ it])1/2 <T'/v/n.

Note that | — 1| < a, that 2% is 2b-Lipschitz on [—b, b], and that ab = 3((a + b)? — a® — b?).
Therefore, by the Rademacher comparison lemma [28, Thm. 4.12], we have

E[Z¢( X1, T1:n)] SQ@E[SUPmem,HftHth n Zi:l pime(Xi) fr(Xi)]
<aE[supr,cm, |if )k, <1 IS pi(m(Xs) + (X))
+ aE[sup,, cp, % Sicy pim(Xi)?] + O‘E[SUPHftH,Ctgl % Sy pife(Xi)?]
<ATQE[Sup,, e, | £, <1 LS pi(m(Xs) + fo(X0))]
+ 20E[sup,, cr, 5 Yoimy PiTe(Xi)] + 2DaB[supy 1, <1 iy Pife(Xi)]
<6Ta(%R,(IT,) + T/ /7).

NeXt, let wti(m) = ((STit/@Tit — 1)7Tt(X2) and Qt(Xlzny Tl:n) = Supment % Z?:l wti(m). Note
that sup, e (Z(m) — 1) < 31t Qu(Xiin, Thin)- FIX &1, t1:0, .0, ], such that 2 = z;,t] =
t; Vi # i’ and note that

Ot ., 6t/_,t
Ut trn) ~ Q. ) < 50y, et (ot — D) — (s — Dm(a)) < 2a
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By McDiarmid’s inequality, P (Qy(X1., Th.n) > E[Q( X1, Th0)] + 1) < e~ 2"*/2 Note that
E[wei ()] = 0 for all 7, and that wyq (), wea(+), ... are iid. Using the same argument as before,
letting p; be iid Rademacher random variables independent of all else, we have

E[Q(X1n, Thn)] < 2E[sUp, crr, 7 2oy piwei ()] < 209y (I1).
With a symmetric argument, letting § = 3muv/(3m + 2), with probability at least 1 — 26/3, we have
suprcr |1 — Z(m)| < 2aR,,(II) + ay/210g(3m/0) /n < 2aR, (1) + ay/2log(dm/v)/n < 1/2.
Since | W ||2 < v/na/Z (), we get that, with probability at least 1— 8, both sup .17 [|[W |2 < 2a+/n
and for all t € [m
supren Be(W, s || - lxc,) <al(12R,,(I1;) + 2R, (IT) + 120 /+/n + 31/21log(3m/5)/n).

Therefore, with probability at least 1 — ¢, using twice that ¢; is the biggest p-norm,

€= supren EWa, i [ - llpkrm v ims An) < P €W (-l 2 )
< S e supren Be(Womes | - llc,) + 5 super W]l

< 80&].—‘7771%” (H) + 2aE+12aF2Vm+Sj£§m\/2log(3m/6) )
Consider case (a). Note that sup,.cy >y | Be(W,, mes )| < ||l € and supcpy [|[Wi 2 < £71E.
Since E[}_1", Wi€; | X1.0, Thin] = 0, ¢ € [— B ,B] and W;e, — W;e! < 2BW, for €, €] €
[— B, B], by McDiarmid’s inequality (conditional on X7.,,, Tl.n) we have that with probability at
least 1 — &', | Y0 Wihiei| < ||[Wi|l2By/21og(2/4). Therefore, letting &' = 2v//(3m + 2) so that
3m/6 =2/§ = (3m +2)/v < 4m/v, with probability at least 1 — v, we have

sup,cp [Tw: — SAPE(m)| < 8alym(||ul| + V/2log(4m/v)s~t B)R,, (IT)

20F || || +12a0 2 7m || )|+ (20FE ~ B+12al?Fme ™ B+3alym||u|)\/2 log(4m/v)+6alFme "' Blog(4m/v)
NG .

This gives the first result in case (a). The second is given by noting that, by McDiarmid’s inequality,

with probability at least 1 — v/ (4m), R, (I;) < R, (I1;) + 41/21og(4m/v). Case (b) is given by

following a similar argument as in the proof of Thm. 3(b). O

+

Proof of Cor. 7. These results follow directly from the proof of Thm. 6, the convergence in partic-
ular of ¢2(W*(r), ;|| - ||, A), the decomposition of the DR estimator in Thm. 1, and a standard
Rademacher complexity argument concentrating SAPE(7) uniformly around PAPE(7). O

B IPW and DR weight SVM details

To reduce training a deterministic linear policy using IPW evaluation to weighted SVM classification,
we add multiples of Y., 71, (X;)/ér, (X;) (1 in expectation) and note that

s (X> Y;=C \ _ N7 c-Y;
%( IPW( ) CZZ 1 qﬁ; Z?:l ‘lgTz(XJ) - Zi;l Bd;T (X)(l - ﬂ-Ti(Xi))
Cc-Y; 7
= Zz 1 B¢T X )H[E 7& TT"(Xq)]

Choosing C sufficiently large so that all coefficients are nonnegative and choosing B so that all

coefficients are in [0, 1], we replace the indicators I[T; # T,r( x,)] with their convex envelope hinges
to come up with a weighted version of Crammer and Singer [12]’s multiclass SVM.

For the DR version, we replace m:(X;) with [[t = Nﬂ( x,)] and we do the above with but using ¢; and

also add multiples of 74rect(1(-)) = > S~ | 11,(X;) to make all indicators be 0-1 loss and have
nonnegative coefficients. Replacing indicators with hinge functions, we get a weighted multiclass
SVM with different weights for each observation and each error type.
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