
Online Structure Learning for Feed-Forward and
Recurrent Sum-Product Networks: Supplementary

Material

Agastya Kalra∗, Abdullah Rashwan∗, Wilson Hsu, Pascal Poupart
Cheriton School of Computer Science, Waterloo AI Institute, University of Waterloo, Canada

Vector Institute, Toronto, Canada
agastya.kalra@gmail.com,{arashwan,wwhsu,ppoupart}@uwaterloo.ca

Prashant Doshi
Department of Computer Science

University of Georgia, USA
pdoshi@cs.uga.edu

George Trimponias
Huawei Noah’s Ark Lab, Hong Kong

g.trimponias@huawei.com

1 Pseudocode

We include the pseudocode of the algorithms described in the paper:

• Algorithm 1: parameter update

• Algorithm 2: oSLRAU

• Algorithm 3: creating a factored distribution

• Algorithm 4: creating a multivariate Gaussian

• Algorithm 5: creating a mixture

Algorithm 1 parameterUpdate(root(SPN),data)

Input: SPN and m data points
Output: SPN with updated parameters
nroot ← nroot +m
if isProduct(root) then

for each child of root do
parameterUpdate(child, data)

end for
else if isSum(root) then

for each child of root do
subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
parameterUpdate(child, subset)
wroot,child ← nchild

nroot

end for
else if isLeaf(root) then

update mean µ(root) based on Eq. 2
update covariance matrix Σ(root) based on Eq. 3

end if

∗Equal contribution, first author was selected based on a coin flip

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Algorithm 2 oSLRAU(root(SPN), data)

Input: SPN and m data points
Output: SPN with updated parameters
nroot ← nroot +m
if isProduct(root) then

update covariance matrix Σ(root)

highestCorrelation← 0
for each c, c′ ∈ children(root) where c 6= c′ do

correlationc,c′ ← maxi∈scope(c),j∈scope(c′)
|Σ(root)

ij |√
Σ

(root)
ii Σ

(root)
jj

if correlationc,c′ > highestCorrelation then
highestCorrelation← correlationc,c′

child1 ← c
child2 ← c′

end if
end for
if highest ≥ threshold then

if |scope(child1) ∪ scope(child2)| ≥ nV ars then
createMixture(root, child1, child2)

else
createMultivariateGaussian(root, child1, child2)

end if
end if
for each child of root do
oSLRAU(child, data)

end for
else if isSum(root) then

for each child of root do
subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
oSLRAU(child, subset)
wroot,child ← nchild+1

nroot+#children

end for
if #points seen modulo f equals 0 then

for each child of root do
if nchild ≤ 1 then
RemoveChild(child)

end if
end for
nroot ← 1
for each child of root do
nchild ← nchild+1

nroot+#children

end for
end if

else if isLeaf(root) then
update mean µ(root)

update covariance matrix Σ(root)

end if

2

Algorithm 3 createFactoredModel(scope)

Input: scope (set of variables)
Output: fully factored SPN
factoredModel← create product node
for each i ∈ scope do

add Ni(µ=0, σ=Σ
(root)
i,i) as child of factoredModel

end for
Σ(factoredModel) ← 0
nfactoredModel ← 0
return factoredModel

Algorithm 4 createMultiV arGaussian(root, child1, child2)

Input: SPN, two children to be merged and data
Output: new multivariate Gaussian

create multiV arGaussian
jointScope← {scope(child1) ∪ scope(child2)}
µ(multiV arGaussian) ← µ

(root)
jointScope

Σ(multiV arGaussian) ← Σ
(root)
jointScope,jointScope

nmultiV arGaussian ← nroot
return multiV arGaussian

Algorithm 5 createMixture(root, child1, child2)

Input: SPN and two children to be merged
Output: new mixture model

remove child1 and child2 from root
component1 ← create product node
add child1 and child2 as children of component1
ncomponent1 ← nroot
jointScope← scope(child1) ∪ scope(child2)

Σ(component1) ← Σ
(root)
jointScope,jointScope

component2 ← createFactoredModel(jointScope)
ncomponent2 ← 0
mixture← create sum node
add component1 and component2 as children of mixture
nmixture ← nroot
wmixture,component1 ←

ncomponent1+1

nmixture+2

wmixture,component2 ←
ncomponent2

+1

nmixture+2

add mixture as child of root
return root

2 Parameter Learning technique

Alg. 1 does a single pass through the data. The complexity of updating the parameters after each data
point is linear in the size of the network (i.e., # of edges) since it takes one bottom up pass to compute
the likelihood of the data point at each node and one top-down pass to update the sufficient statistics
and the weights.

3

3 Experiments

3.1 Size of Datasets

Table 1: Information for each large dataset
Dataset Datapoints Variables
Voxforge 3,603,643 39
Power 2,049,280 4
Network 434,873 3
GasSen 8,386,765 16
MSD 515,344 90
GasSenH 928,991 10

3.2 Comparison to other Algorithms

In a second experiment, we compare our algorithm to several alternatives on the same datasets used
by [2]. We use 0.1 as the correlation threshold in all experiments, and we use mini-batch sizes of 1
for the three datasets with fewest instances (Quake, Banknote, Abalone), 8 for the two slightly larger
ones (Kinematics, CA), and 256 for the two datasets with most instances (Flow Size, Sensorless).

The experimental results for our algorithm called online structure learning with running average
update (oSLRAU) are listed in Table ?? along with results reproduced from [2]. The table reports
the average test log likelihoods with standard error on 10-fold cross validation. oSLRAU achieved
better log likelihoods than online Bayesian moment matching (oBMM) [2] and online expectation
maximization (oEM) [1] with network structures generated at random or corresponding to Gaussian
mixture models (GMMs). This highlights the main advantage of oSLRAU: learning a structure that
models the data. Stacked Restricted Boltzmann Machines (SRBMs) [4] and Generative Moment
Matching Networks (GenMMNs) [3] are other types of deep generative models. Since it is not
possible to compute the likelihood of data points with GenMMNs, the model is augmented with
Parzen windows. More specifically, 10,000 samples are generated using the resulting GenMMNs and
a Gaussian kernel is estimated for each sample by adjusting its parameters to maximize the likelihood
of a validation set. However, as pointed out by [5] this method only provides an approximate estimate
of the log-likelihood and therefore the log-likelihood reported for GenMMNs in Table ?? may not be
directly comparable to the log-likelihood of other models.

The network structures for GenMMNs and SRBMs are fully connected while ensuring that the
number of parameters is comparable to those of the SPNs. oSLRAU outperforms these models on 5
datasets while SRBMs and GenMMNs each outperform oSLRAU on one dataset. Although SRBMs
and GenMMNs are more expressive than SPNs since they allow other types of nodes beyond sums
and products, training GenMMNs and SRBMs is notoriously difficult. In contrast, oSLRAU provides
a simple and effective way of optimizing the structure and parameters of SPNs that captures well the
correlations between variables and therefore yields good results.

3.3 Hyperparameter Search

To understand the impact that the maximum number of variables per leaf node has on the resulting
SPN, we performed experiments where the minibatch size and correlation threshold were held
constant for a given dataset while the maximum number of variables per leaf node varies. We report
the log likelihood with standard error after ten-fold cross validation, as well as average size and
average time in Tables 3, 4 and 5. As expected, the number of nodes in an SPN decreases as the leaf
node cap increases, since there will be less branching. What’s interesting is that depending on the
type of correlations in the datasets, different sizes perform better or worse. For example in Power, we
notice that univariate leaf nodes are the best, but in GasSenH, slightly larger leaf nodes tend to do
well. We show that too many variables in a leaf node leads to worse performance and underfitting,
and in some cases too few variables per leaf node leads to overfitting. These results show that in
general, the largest decrease in size and time while maintaining good performance occurs with a
maximum of 3 variables per leaf node. Therefore in practice, 3 variables per leaf node works well,
except when there are only a few variables in the dataset, then 1 is a good choice.

4

Table 3: Log likelihoods with standard error as we vary the threshold for the maximum # of variables
in a multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables is
greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power -1.71 ± 0.18 -3.02 ± 0.24 -3.74 ± 0.28 -4.52 ± 0.1 ——
Network -4.27 ± 0.09 -4.53 ± 0.09 -4.75 ± 0.02 —— ——
GasSen -105 ± 2.5 -103 ± 2.8 -102 ± 4.1 -104 ± 3.8 -103 ± 3.8
MSD -532 ± 0.32 -531 ± 0.32 -531 ± 0.28 -531 ± 0.31 -532 ± 0.34
GasSenH -17.2 ± 1.04 -16.8 ± 1.23 -15.6 ± 1.13 -15.9 ± 1.3 -

¯
16.1 ± 1.47

Table 4: Average times (seconds) as we vary the threshold for the maximum # of variables in a
multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables is
greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power 133 41.5 13.8 9.9 ——
Network 14.1 4.01 1.92 —— ——
GasSen 783.78 450.34 350.52 148.89 145.759
MSD 80.47 64.44 44.9 43.65 41.44
GasSenH 16.59 13.35 11.76 11.04 10.16

Tables 6, 7 and 8 show respectively how the log-likelihood, time and size changes as we vary the
correlation threshold from 0.05 to 0.7. A very small correlation threshold tends to detect spurious
correlations and lead to overfitting while a large correlation threshold tends to miss some correlations
and lead to underfitting. The results in Table 6 generally support this tendency subject to noise due to
sample effects. Since the highest log-likelihood was achieved in three of the datasets with a correlation
threshold of 0.1, this explains why we used 0.1 as the threshold in the previous experiments. Tables 7
and 8 also show that the average time and size of the resulting SPNs generally decrease (subject to
noise) as the correlation threshold increases since fewer correlations tend to be detected.

References

[1] Cappé, Olivier and Moulines, Eric. On-line expectation–maximization algorithm for latent data
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):
593–613, 2009.

[2] Jaini, Priyank, Rashwan, Abdullah, Zhao, Han, Liu, Yue, Banijamali, Ershad, Chen, Zhitang,
and Poupart, Pascal. Online algorithms for sum-product networks with continuous variables. In
Conference on Probabilistic Graphical Models, pp. 228–239, 2016.

[3] Li, Yujia, Swersky, Kevin, and Zemel, Rich. Generative moment matching networks. In ICML,
pp. 1718–1727, 2015.

Table 5: Average SPN sizes (# of nodes) as we vary the threshold for the maximum # of variables in
a multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables is
greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power 14269 2813 427 8 ——
Network 7214 1033 7 —— ——
GasSen 13874 6879 5057 772 738
MSD 6547 3114 802 672 582
GasSenH 1901 1203 920 798 664

5

Table 6: Log Likelihoods for different correlation thresholds.

Correlation Threshold
Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power -2.37 ± 0.13 -2.46 ± 0.11 -2.20 ± 0.18 -3.02 ± 0.24 -4.65 ± 0.11 -4.68 ± 0.09
Network -3.98 ± 0.09 -4.27 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02
GasSen -104 ± 5 -102 ± 4 -102 ± 3 -102 ± 3 -103 ± 3 -110 ± 3
MSD -531.4 ± 0.3 -531.4 ± 0.3 -531.4 ± 0.3 -531.4 ± 0.3 -532.0 ± 0.3 -536.2 ± 0.1
GasSenH -15.6 ± 1.2 -15.6 ± 1.2 -15.8 ± 1.1 -16.2 ± 1.4 -16.1 ± 1.4 -17.2 ± 1.4

Table 7: Average times (seconds) as we vary the correlation threshold.
Correlation Threshold

Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power 197 183 130 39 10 9
Network 20 14 1.9 1.9 1.9 1.9
GasSen 370 351 349 366 423 142
MSD 44.3 43.7 44.3 44.0 43.0 30.3
GasSenH 11.8 11.7 11.9 13.0 12.0 15.1

[4] Salakhutdinov, Ruslan and Hinton, Geoffrey E. Deep boltzmann machines. In AISTATS, pp.
448–455, 2009.

[5] Theis, Lucas, Oord, Aäron, and Bethge, Matthias. A note on the evaluation of generative models.
arXiv:1511.01844, 2015.

Table 8: Average SPN sizes (# of nodes) as the correlation threshold changes.
Correlation Threshold

Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power 24914 23360 16006 2813 11 11
Network 11233 7214 9 9 9 9
GasSen 5315 5057 5041 5035 4581 490
MSD 672 672 674 674 660 448
GasSenH 920 920 887 877 1275 796

6

	Pseudocode
	Parameter Learning technique
	Experiments
	Size of Datasets
	Comparison to other Algorithms
	Hyperparameter Search

