A Implementation details

Structure generator The structure generator takes the semantic label maps as input and produces
both foreground object and background context in two separate streams. Overall, the structure
generator consists of 3 convolutional downsampling layers, followed by 6 residual convolutional
blocks, and finally 3 convolutional upsampling layers. The downsampling convolutional layers have
64, 96, 128 channels with filter size of 7 x 7,4 x 4 and 4 X 4, respectively. All residual convolutional
blocks have 256 channels with the filter size of 4 x 4. The upsampling convolutional layers have a
symmetric structure as the downsampling convolutional layers.

Image generator Our image generator follows the similar architecture used in high-resolution
image synthesis [3]. It is composed of 3 convoultional downsampling layers followed by 9 residual
blocks and 3 upsampling layers with transposed convolution. All convolutional blocks are imple-
mented by 3 x 3 convolutional filters. For discriminator, we used Patch-GAN [1] style network.
Similar to [3], we used two discriminators in multiple scales that generate predictions on real or fake
over 70 x 70 and 140 x 140 local image patches, respectively.

B More quantitative results

Ablation study using the predicted layout Table S.1 presents an additional ablation study of
our method, which corresponds to the extension of Table 1 in the main paper. In this experiment,
we compare the manipulation performance of various image generators using the predicted layout.
We observe the same trend shown in Table 1, where our method using the two encoder streams
(TwoStream) consistently outperforms other variants in all measures.

Layout SSIM Segmentation (%) Human eval. (%)
SingleStream-Image - 0.285 59.6 20.0
SingleStream-Layout Predicted 0.268 69.4 10.4
SingleStream-Concat Predicted 0.296 76.3 29.9
TwoStream Predicted 0.299 77.8 40.0

Table S.1: Comparisons between variants of the proposed method.

Hierarchical manipulation vs. Drag-and-drop In this paper, we ar-
gue that hierarchical manipulation of objects is more appropriate than
copy-and-paste of objects in training data, since the manipulation task
requires to adapt both shape and appearance of objects based on its
surrounding context in a reference image. To clarify this point, we im-
plement drag-and-drop baseline and compare it against ours through
human evaluation. Specifically, we sample bounding boxes from testing
images, and obtain the nearest neighbor object from a training set using
the algorithm presented in the data-driven image editing experiment in
Section 4.3. Then we copy and paste the object after applying auto-
matic color adjustment [2]. We compare it against ours using AMT by
asking 300 annotators to rank two methods over 100 samples, where
our method was favored over the baseline in 76.33%. As presented
in Figure S.1, simple drag-and-drop of the objects sometimes leads to
the objects mismatching with the context. For instance, it has to adjust
shapes considering the occlusion with other objects (first row) or align
its orientation with others (second row). On the other hand, our method Figure S.1: Examples of
generates the appropriate shapes and appearances aligned with other ours vs. drag-and-drop.
parts of the scene, which leads to plausible manipulation results.

Drag-and-drop Ours

C More qualitative results

Qualitative comparison to other methods Figure S.2 presents qualitative comparison to the
existing image manipulation methods presented in Table 2. As it shows, results from both
ContextEncoder and ContextEncoder++ are not visually appealing as the generations are usually
in a low-quality. Pix2PixHD produces high-quality synthesis results but they are easily distinguish-
able from the surroundings as the generation is only based on semantic layout. Due to this property,
the segmentation performance of Pix2PixHD is higher than ours (Table 2), but human tends to prefer
our results over Pix2PixHD because our method produces visually more natural manipulation results.



ContextEncoder ContextEncoder++ Pix2PixHD

Context Layout

Figure S.2: Qualitative comparisons to the existing manipulation methods presented in Table 2.

Semantic object manipulation Figure S.3 illustrates semantic object manipulation results, which
corresponds to Figure 6 of the main paper. As shown in the figure, the proposed method generates
structure and style of the objects adaptively depending on the context. For instance, the model
generates the shape of the vehicles (car, truck, and bus) in such a way that its orientations are aligned
with surrounding geometric environments (e.g. sidewalks and road). Beyond geometric constraints,
the model also learns biases in the scene and generates shapes based on it (e.g. a person standing
on a sidewalk vs. a person walking on a crosswalk). Also, when there are objects overlapped with
the user-defined bounding box, the model internally figures out the order and generates shapes
considering the occlusion between objects (e.g. car behind person and pole).

Figure S.3: Generation results in diverse context.



Interactive and data-driven image manipulation We present more examples on interactive image
editing, which correspond to Figure 8 in the main paper. Figure S.4 and S.5 illustrate the editing
results obtained by iteratively adding, moving and removing the object bounding boxes. For better
understanding, we also visualize the manipulation results at each step. More examples on interactive
image editing are illustrated in Figure S.6. We can see that the proposed method generates reasonable
manipulation in various scenes.

Figure S.7 illustrates more examples on data-driven image editing, which correspond to Figure 9 of
the main paper.

Object-level Manipulation (green: before; red: after)

Input Image Manipulated Image

Figure S.4: Interactive image manipulation. Given an input image, the user performs interactive
image manipulation by adding or removing one object at a time. The top part demonstrates the
object-level manipulation while the bottom part shows the original input image and the manipulation
result in the end. The bounding box style indicates manipulation operation (solid: addition, doted:
deletion) and the color of bounding box indicates the object class.



Object-level Manipulation (green: before; red: after)

Input Image Manipulated Image

Figure S.5: Interactive image manipulation. Given an input image, the user performs interactive
image manipulation by adding or removing one object at a time. The top part demonstrates the
object-level manipulation while the bottom part shows the original input image and the manipulation
result in the end. The bounding box style indicates manipulation operation (solid: addition, doted:
deletion) and the color of bounding box indicates the object class.



Figure S.6: More examples on interactive image editing.



Source Image Target Image Manipulated Image

Figure S.7: Example of data-driven image manipulation. We manipulate the target image by
transferring bounding boxes from source image (blue boxes).



Results on indoor scene dataset. Figure S.8 illustrates more interactive image editing results on
ADE20K bedroom dataset, which corresponds to Figure 10 of the main paper. Compared to Cityscape
dataset, the indoor images are composed of much more densly populated objects from various
categories exhibiting diverse appearances. Despite of such challenges, the proposed method generates
visually plausible objects aligned with surrounding context in many examples (e.g. alignement of the
manipulated objects with orientation of room layout or other furniture).

OPicture @Pillow @Curtain @Cushion @Chair @Cabinet @Dresser @Mirror @Sconce @TV @Blinds @Bed @Table

@Door @Carpet @Vase @Armchair @Plant @Flower @Book OShelf @Flowerpot @Sofa @Window @Lamp

Figure S.8: Example of interactive image editing on ADE20K indoor scene datset [4]. Manipulated
parts of the images are indicated by arrows.



References

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional
adversarial networks. In CVPR, 2017.

[2] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color transfer between images. IEEE
Computer graphics and applications, 21(5):34—41, 2001.

[3] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans. In ICCV, 2017.

[4] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k
dataset. In CVPR, 2017.



