
Supplementary Material

A Scene Parser Details

Data. Our scene parser is trained on 4,000 CLEVR-style images rendered by Blender with object
masks and ground-truth attributes including color, material, shape, size, and 3D coordinates. Because
the original CLEVR dataset does not include object masks, we generate these 4,000 training images
ourselves using the CLEVR dataset generation tool∗. For the CLEVR-CoGenT experiment, we
generate another set of images that satisfy the attribute composition restrictions, using the same
software.

Training. We first train the Mask-RCNN object detector on the rendered images and masks. For the
CLEVR dataset, the bounding-box classifier contains 48 classes, each representing one composition
of object intrinsic attributes of three shapes, two materials, and eight colors (i.e. “blue rubber cube").
Then we run the detector on the same training images to obtain object segmentation proposals, and
pair each segment to a labeled object. The segment-label pairs are then used for training the feature
extraction CNN. Before entering the CNN, the object segment is concatenated with the original image
to provide contextual information.

B Program Executor Details

Our program executor is implemented as a collection of functional modules in Python, each executing
a designated logic operation on a abstract scene representation. Given a program sequence, the
modules are executed one by one; The output of a module is iteratively passed to the next. The input
and output types of the modules include the following: object, a dictionary containing the full abstract
representation of a single object; scene, a list of objects; entry, an indicator of any object attribute
values (color, material, shape, size); number; boolean. All program modules are summarized in the
following tables.

Module Input type Output type Description

scene - scene Return a list of all objects
unique scene object Return the only object in the scene
union scene scene Return the union of two scenes
intersect scene scene Return the intersection of two scenes
count scene number Return the number of objects in a scene

Table 1: Set operation modules of the program executor.

Module Input type Output type Description

equal_color (entry, entry) Boolean Return whether input colors are the same
equal_material (entry, entry) Boolean Return whether input materials are the same
equal_shape (entry, entry) Boolean Return whether input shapes are the same
equal_size (entry, entry) Boolean Return whether input sizes are the same
equal_integer (number, number) Boolean Return whether input numbers equal
greater_than (number, number) Boolean Return whether the first number is greater than the second
less_than (number, number) Boolean Return whether the first number is less than the second
exist scene Boolean Return whether the input scene includes any object

Table 2: Boolean operation modules of the program executor.

∗https://github.com/facebookresearch/clevr-dataset-gen

1

https://github.com/facebookresearch/clevr-dataset-gen


Module Input type Output type Description

query_color object entry Return the color of the input object
query_material object entry Return the material of the input object
query_size object entry Return the size of the input object
query_shape object entry Return the shape of the input object

Table 3: Query modules of the program executor.

Module Input type Output type Description

relate_front object scene Return all objects in front
relate_behind object scene Return all objects behind
relate_left object scene Return all objects to the left
relate_right object scene Return all objects to the right
same_color object scene Return all objects of the same color
same_material object scene Return all objects of the same material
same_shape object scene Return all objects of the same shape
same_size object scene Return all objects of the same size

Table 4: Relation modules of the program executor.

Module Input type Output type Description

filter_color[blue] scene scene Select all blue objects from the input scene
filter_color[brown] scene scene Select all brown objects from the input scene
filter_color[cyan] scene scene Select all cyan objects from the input scene
filter_color[gray] scene scene Select all gray objects from the input scene
filter_color[green] scene scene Select all green objects from the input scene
filter_color[purple] scene scene Select all purple objects from the input scene
filter_color[red] scene scene Select all red objects from the input scene
filter_color[yellow] scene scene Select all yellow objects from the input scene
filter_material[metal] scene scene Select all metal objects from the input scene
filter_material[rubber] scene scene Select all rubber objects from the input scene
filter_shape[cube] scene scene Select all cubes from the input scene
filter_shape[cylinder] scene scene Select all cylinders from the input scene
filter_shape[sphere] scene scene Select all spheres from the input scene
filter_size[large] scene scene Select all large objects from the input scene
filter_size[small] scene scene Select all small objects from the input scene

Table 5: Filter modules of the program executor.

2



C Running Examples

ID Size Shape Material Color x y z

1 Large Sphere Rubber Gray -2.07 0.93 0.69

2 Small Cube Metal Gray -0.39 -3.19 0.34

3 Large Cylinder Rubber Gray 0.88 -2.51 0.70

4 Large Sphere Metal Red -0.82 -1.23 0.70

5 Small Sphere Metal Red -3.12 -0.30 0.34

6 Small Cube Rubber Yellow -1.41 2.57 0.34

Program

scene

filter_shape[cylinder]

unique

same_size

filter_color[gray]

filter_shape[sphere]

unique

query_material

Output

[1,	2,	3,	4,	5,	6]	(list	of	object	 indices)

[3]

3	(single	object)

[1,	4]

[1]

[1]

1

rubber

Image Scene

Question: There	is	a	gray	ball	that	is	the	same	size	as	the	cylinder;	what	is	it	made	of?

Answer: rubber

Objects

Figure 1: Running example of NS-VQA. Intermediate outputs from the program execution trace can
be a scene (a list of objects), a single object, or an entry of certain attribute (i.e. “blue", “rubber").

3



ID Size Shape Material Color x y z

1 Large Cylinder Rubber Brown -2.48 0.18 0.69

2 Large Cube Rubber Gray -0.52 2.56 0.70

3 Small Cube Metal Gray 1.88 2.02 0.35

4 Small Cylinder Rubber Green -1.95 -1.40 0.34

5 Large Sphere Metal Purple 0.97 -1.82 0.70

Program

scene

filter_size[large]

filter_color[gray]

filter_material[rubber]

unique

query_shape

scene

filter_color[purple]

unique

query_shape

equal_shape

Output

[1,	2,	3,	4,	5]	

[1,	2,	5]

[2]

[2]

2

cube

[1,	2,	3,	4,	5]

[5]

5

sphere					cube

no

Image Scene

Question: Is the purple thing the same shape as the large gray rubber thing?

Answer: no

Objects

Figure 2: Running example of NS-VQA. Dashed arrow indicates joining outputs from previous
program modules, which are sent to the next module.

4



Program

scene

filter_color[cyan]

filter_material[metal]

scene

filter_color[purple]

filter_shape[cylinder]

union

filter_size[large]

count

Output

[1,	2,	3,	4,	5,	6]	

[]

[]

[1,	2,	3,	4,	5,	6]

[5]

[5]				[]

[5]

[5]

1

Image Scene

Question: How many large things are either purple cylinders or cyan metal objects?

Answer: 1

ID Size Shape Material Color x y z

1 Large Cube Metal Cube -3.24 0.55 0.69

2 Small Cube Rubber Brown -0.52 3.88 0.34

3 Large Sphere Rubber Gray 2.20 -0.25 0.70

4 Large Cube Metal Gray 0.69 1.93 0.70

5 Large Cylinder Metal Purple 0.23 -2.55 0.70

6 Small Cylinder Metal Yellow -2.21 -0.74 0.34

Objects

Figure 3: Running example of NS-VQA.

5



Program (Ours)

scene

scene

filter_color[brown]

unique

relate[front]

intersect

unique

query_color

Output

[1,	2,	3,	4,	5,	6]	

[1,	2,	3,	4,	5,	6]

[1]

1

[2]				[1,	2,	3,	4,	5,	6]

[2]

2

cyan

Image Scene

Question: There is a thing that is in front of the brown thing; what is its color?

Answer (Ours): cyan

ID Size Shape Material Color x y z

1 Small Cube Metal Brown 0.95 0.18 0.35

2 Large Cylinder Rubber Cyan -0.70 2.39 0.70

3 Large Cube Metal Green 0.04 -3.50 0.70

4 Large Cube Metal Yellow -2.86 -0.58 0.70

Objects

Program (Ground truth)

scene

filter_color[brown]

unique

relate[front]

unique

query_color

Output

[1,	2,	3,	4,	5,	6]	

[1]

1

[2]

2

cyan

Answer (Ground truth): cyan

Figure 4: Running example of NS-VQA. Fail case: a spurious program leads to the correct answer.
As compared to the ground truth, the spurious program predicted by our model does not significantly
deviate from the underlying logic, but adds extra degenerate structures.

6



D Scene Parsing on Real Images

Input Image Parsed Scene

Figure 5: Scene parsing results on real images. We handcraft real world CLEVR objects with paper
boxes and rolls that are not well aligned with the synthetic scenes. We apply scene-parsing on the real
objects without fine-tuning. Our model detects and extracts attributes from most objects correctly; in
some cases, it mistakenly treats shadows as objects.

7


	Scene Parser Details
	Program Executor Details
	Running Examples
	Scene Parsing on Real Images

