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Abstract

Stochastic convex optimization algorithms are the most popular way to train ma-
chine learning models on large-scale data. Scaling up the training process of these
models is crucial, but the most popular algorithm, Stochastic Gradient Descent
(SGD), is a serial method that is surprisingly hard to parallelize. In this paper,
we propose an efficient distributed stochastic optimization method by combining
adaptivity with variance reduction techniques. Our analysis yields a linear speedup
in the number of machines, constant memory footprint, and only a logarithmic
number of communication rounds. Critically, our approach is a black-box reduction
that parallelizes any serial online learning algorithm, streamlining prior analysis
and allowing us to leverage the significant progress that has been made in designing
adaptive algorithms. In particular, we achieve optimal convergence rates without
any prior knowledge of smoothness parameters, yielding a more robust algorithm
that reduces the need for hyperparameter tuning. We implement our algorithm
in the Spark distributed framework and exhibit dramatic performance gains on
large-scale logistic regression problems.

1 Setup

We consider a fundamental problem in machine learning, stochastic convex optimization:

min
w∈W

F (w) := E
f∼D

[f(w)] (1)

Here, W is a convex subset of Rd and D is a distribution over L-smooth convex functions W → R.
We do not have direct access to F , and the distribution D is unknown, but we do have the ability
to generate i.i.d. samples f ∼ D through some kind of stream or oracle. In practice, each function
f ∼ D corresponds to a new datapoint in some learning problem. Algorithms for this problem are
widely applicable: for example, in logistic regression the goal is to optimize F (w) = E[f(w)] =
E[log(1 + exp(−ywTx))] when the (x, y) pairs are the (feature vector, label) pairs coming from a
fixed data distribution. Given a budget of N oracle calls (e.g. a dataset of size N ), we wish to find a
ŵ such that F (ŵ)− F (w?) (called the suboptimality) is as small as possible as fast as possible using
as little memory as possible, where w? ∈ argminF .

The most popular algorithm for solving (1) is Stochastic Gradient Descent (SGD), which achieves
statistically optimal O(1/

√
N) suboptimality in O(N) time and constant memory. However, in

modern large-scale machine learning problems the number of data points N is often gigantic, and so
even the linear time-complexity of SGD becomes onerous. We need a parallel algorithm that runs in
only O(N/m) time using m machines. We address this problem in this paper, evaluating solutions on
three metrics: time complexity, space complexity, and communication complexity. Time complexity
is the total time taken to process the data points. Space complexity is the amount of space required per
∗now at Google

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



machine. Note that in our streaming model, an algorithm that keeps only the most recently seen data
point in memory is considered to run in constant memory. Communication complexity is measured
in terms of the number of “rounds” of communication in which all the machines synchronize. In
measuring these quantities we often suppress all constants other than those depending on N and m
and all logarithmic factors.

In this paper we achieve the ideal parallelization complexity (up to a logarithmic factor) of Õ(N/m)

time, O(1) space and Õ(1) rounds of communication, so long as m <
√
N . Further, in contrast to

much prior work, our algorithm is a reduction that enables us to generically parallelize any serial
online learning algorithm that obtains a sufficiently adaptive convergence guarantee (e.g. [8, 14, 6])
in a black-box way. This significantly simplifies our analysis by decoupling the learning rates or other
internal variables of the serial algorithm from the parallelization procedure. This technique allows
our algorithm to adapt to an unknown smoothness parameter L in the problem, resulting in optimal
convergence guarantees without requiring tuning of learning rates. This is an important aspect of the
algorithm: even prior analyses that meet the same time, space and communication costs [9, 12, 13]
require the user to input the smoothness parameter to tune a learning rate. Incorrect values for this
parameter can result in failure to converge, not just slower convergence. In contrast, our algorithm
automatically adapts to the true value of L with no tuning. Empirically, we find that the parallelized
implementation of a serial algorithm matches the performance of the serial algorithm in terms of
sample-complexity, while bestowing significant runtime savings.

2 Prior Work

One popular strategy for parallelized stochastic optimization is minibatch-SGD [7], in which one
computes m gradients at a fixed point in parallel and then averages these gradients to produce a single
SGD step. When m is not too large compared to the variance in D, this procedure gives a linear
speedup in theory and uses constant memory. Unfortunately, minibatch-SGD obtains a communication
complexity that scales as

√
N (or N1/4 for accelerated variants). In modern problems when N is

extremely large, this overhead is prohibitively large. We achieve a communication complexity that is
logarithmic in N , allowing our algorithm to be run as a near-constant number of map-reduce jobs
even for very large N . We summarize the state of the art for some prior algorithms algorithms in
Table 1.

Many prior approaches to reducing communication complexity can be broadly categorized into those
that rely on Newton’s method and those that rely on the variance-reduction techniques introduced
in the SVRG algorithm [11]. Algorithms that use Newton’s method typically make the assumption
that D is a distribution over quadratic losses [20, 22, 16, 21], and leverage the fact that the expected
Hessian is constant to compute a Newton step in parallel. Although quadratic losses are an excellent
starting point, it is not clear how to generalize these approaches to arbitrary non-quadratic smooth
losses such as encountered in logistic regression.

Alternative strategies stemming from SVRG work by alternating between a “batch phase” in which
one computes a very accurate gradient estimate using a large batch of examples and an “SGD phase”
in which one runs SGD, using the batch gradient to reduce the variance in the updates [9, 12, 18, 10].
Our approach also follows this overall strategy (see Section 3 for a more detailed discussion of this
procedure). However, all prior algorithms in this category make use of carefully specified learning
rates in the SGD phase, while our approach makes use of any adaptive serial optimization algorithm,
even ones that do not resemble SGD at all, such as [6, 14]. This results in a streamlined analysis and
a more general final algorithm. Not only do we recover prior results, we can leverage the adaptivity
of our base algorithm to obtain better results on sparse losses and to avoid any dependencies on the
smoothness parameter L, resulting in a much more robust procedure.

The rest of this paper is organized as follows. In Section 3 we provide a high-level overview of our
strategy. In Section 4 we introduce some basic facts about the analysis of adaptive algorithms using
online learning, in Section 5 we sketch our intuition for combining SVRG and the online learning
analysis, and in Section 6 we describe and analyze our algorithm. In Section 7 we show that the
convergence rate is statistically optimal and show that a parallelized implementation achieves the
stated complexities. Finally in Section 9 we give some experimental results.
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Table 1: Comparison of distributed optimization algorithms with a dataset of size N and m machines.
Logarithmic factors and all constants not depending on N or m have been dropped.

Method Quadratic Loss Space Communication Adapts to L

Newton inspired [20, 22, 16, 21] Needed N/m 1 No
accel. minibatch-SGD [5] Not Needed 1 N1/4 No
prior SVRG-like [9, 12, 18, 10] Not Needed 1 1 No
This work Not Needed 1 1 Yes

3 Overview of Approach

Our overall strategy for parallelizing a serial SGD algorithm is based upon the stochastic variance-
reduced gradient (SVRG) algorithm [11]. SVRG is a technique for improving the sample complexity
of SGD given access to a stream of i.i.d. samples f ∼ D (as in our setting), as well as the ability to
compute exact gradients ∇F (v) in a potentially expensive operation. The basic intuition is to use an
exact gradient ∇F (v) at some “anchor point” v ∈W as a kind of “hint” for what the exact gradient
is at nearby points w. Specifically, SVRG leverages the theorem that∇f(w)−∇f(v) +∇F (v) is
an unbiased estimate of∇F (w) with variance approximately bounded by L(F (v)− F (w?)) (see (8)
in [11]). Using this fact, the SVRG strategy is:

1. Choose an “anchor point” v = w0.

2. Compute an exact gradient∇F (v) (this is an expensive operation).

3. Perform T SGD updates: wt+1 = wt − η(∇f(wt)−∇f(v) +∇F (v)) for T i.i.d. samples
f ∼ D using the fixed anchor v.

4. Choose a new anchor point v by averaging the T SGD iterates, set w0 = v and repeat 2-4.

By reducing the suboptimality of the anchor point v, the variance in the gradients also decreases,
producing a virtuous cycle in which optimization progress reduces noise, which allows faster opti-
mization progress. This approach has two drawbacks that we will address. First, it requires computing
the exact gradient∇F (v), which is impossible in our stochastic optimization setup. Second, prior
analyses require specific settings for η that incorporate L and fail to converge with incorrect settings,
requiring the user to manually tune η to obtain the desired performance. To deal with the first issue,
we can approximate∇F (v) by averaging gradients over a mini-batch, which allows us to approximate
SVRG’s variance-reduced gradient estimate, similar to [9, 12]. This requires us to keep track of
the errors introduced by this approximation. To deal with the second issue, we incorporate analysis
techniques from online learning which allow us replace the constant step-size SGD with any adaptive
stochastic optimization algorithm in a black-box manner. This second step forms the core of our
theoretical contribution, as it both simplifies analysis and allows us to adapt to L.

The overall roadmap for our analysis has five steps:

1. We model the errors introduced by approximating the anchor-point gradient ∇F (v) by a
minibatch-average as a “bias”, so that we think of our algorithm as operating on slightly
biased but low-variance gradient estimates.

2. Focusing first only the bias aspect, we analyze the performance of online learning algorithms
with biased gradient estimates and show that so long as the bias is sufficiently small, the
algorithm will still converge quickly (Section 4).

3. Next focusing on the variance-reduction aspect, we show that any online learning algorithm
which enjoys a sufficiently adaptive convergence guarantee produces a similar “virtuous
cycle” as observed with constant-step-size SGD in the analysis of SVRG, resulting in fast
convergence (sketched in Section 5, proved in Appendices C and D).

4. Combine the previous three steps to show that applying SVRG using these approximate
variance-reduced gradients and an adaptive serial SGD algorithm achieves O(L/

√
N)

suboptimality using only O(
√
N) serial SGD updates (Sections 6 and 7).
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5. Observe that the batch processing in step 3 can be done in parallel, that this step consumes
the vast majority of the computation, and that it only needs to be repeated logarithmically
many times (Section 7).

4 Biased Online Learning

A popular way to analyze stochastic gradient descent and related algorithms is through online
learning [19]. In this framework, an algorithm repeatedly outputs vectors wt for t = 1, 2, . . . in some
convex space W , and receives gradients gt such that E[gt] = ∇F (wt) for some convex objective
function F .2 Typically one attempts to bound the linearized regret:

RT (w?) =

T∑
t=1

gt · (wt − w?)

Where w? = argminF . We can apply online learning algorithms to stochastic optimization via
online-to-batch conversion [3], which tells us that

E[F (w)− F (w?)] ≤ E[RT (w?)]
T

where w = 1
T

∑T
t=1 wt.

Thus, an algorithm that guarantees small regret immediately guarantees convergence in stochastic
optimization. Online learning algorithms typically obtain some sort of (deterministic!) guarantee like

RT (w?) ≤ R(w?, ‖g1‖, . . . , ‖gT ‖)
where R is increasing in each ‖gt‖. For example, when the convex space W has diameter D,

AdaGrad [8] obtains RT (w?) ≤ D
√

2
∑T
t=1 ‖gt‖2.

As foreshadowed in Section 3, we will need to consider the case of biased gradients. That is,
E[gt] = ∇F (wt) + bt for some unknown bias vector bt. Given these biased gradients, a natural
question is: to what extent does controlling the regret RT (w?) =

∑T
t=1 gt · (wt − w?) affect our

ability to control the suboptimality E[
∑T
t=1 F (wt) − F (w?)]? We answer this question with the

following simple result:

Proposition 1. Define RT (w?) =
∑T
t=1 gt · (wt − w?) and w = 1

T

∑T
t=1 wt where E[gt] =

∇F (wt) + bt. Then

E[F (w)− F (w?)] ≤ E[RT (w?)]
T + 1

T

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

If the domain V has diameter D, then E[F (w)− F (w?)] ≤ E[RT (w?)]
T + D

T

∑T
t=1 E[‖bt‖]

Our main convergence results will require algorithms with regret bounds of the form R(w?) ≤
ψ(w?)

√∑T
t=1 ‖gt‖2 or R(w?) ≤ ψ(w?)

√∑T
t=1 ‖gt‖ for various ψ. This is an acceptable restric-

tion because there are many examples of such algorithms, including AdaGrad [8], SOLO [15],
PiSTOL [14] and FreeRex [6]. Further, in Proposition 3 we show a simple trick to remove the
dependence on ‖wt − w?‖, allowing our results to extend to unbounded domains.

5 Variance-Reduced Online Learning

In this section we sketch an argument that using variance reduction in conjunction with a online learn-

ing algorithm guaranteeing regret R(w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2 results in a very fast convergence

of
∑T
t=1 E[F (wt)− F (w?)] = O(1) up to log factors. A similar result holds for regret guarantees

like R(w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖ via a similar argument, which we leave to Appendix D. To do

2The online learning literature often allows for adversarially generated gt, but we consider only stochastically
generated gt here.
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this we make use of a critical lemma of variance reduction which asserts that a variance-reduced
gradient estimate gt of ∇F (wt) with anchor point vt has E[‖gt‖2] ≤ L(F (wt) + F (vt)− 2F (w?))
up to constants. This gives us the following informal result:
Proposition 2. [Informal statement of Proposition 8] Given a point wt ∈W , let gt be an unbiased
estimate of ∇F (wt) such that E[‖gt‖2] ≤ L(F (wt) + F (vt)− 2F (w?)). Suppose w1, . . . , wT are

generated by an online learning algorithm with regret at most R(w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2. Then

E

[
T∑
t=1

F (wt)− F (w?)

]
= O

Lψ(w?)
2 + ψ(w?)

√√√√ T∑
t=1

LE[F (vt)− F (w?)]

 (2)

Proof. The proof is remarkably simple, and we sketch it in one line here. The full statement and
proof can be found in Appendix D.

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ ψ(w?)E


√√√√ T∑

t=1

‖gt‖2


≤ ψ(w?)

√√√√ T∑
t=1

LE[F (wt)− F (w?) + F (vt)− F (w?)]

Now square both sides and use the quadratic formula to solve for E
[∑T

t=1 F (wt)− F (w?)
]
.

Notice that in Proposition 2, the online learning algorithm’s regret guarantee ψ(w?)
√∑T

t=1 ‖gt‖2
does not involve the smoothness parameter L, and yet nevertheless L shows up in equation (2). It is
this property that will allow us to adapt to L without requiring any user-supplied information.

Algorithm 1 SVRG OL (SVRG with Online Learning)

1: Initialize: Online learning algorithm A; Batch size N̂ ; epoch lengths 0 = T0, . . . , TK ; Set
Ta:b =

∑b
i=a Ti.

2: Get initial vector w1 from A, set vt ← w1.
3: for k = 1 to K do
4: Sample N̂ functions f1, . . . , fN̂ ∼ D
5: ∇F̂ (vk)← 1

N̂

∑N̂
i=1∇fi(vk)

6: (this step can be done in parallel).
7: for t = T0:k−1 + 1 to T0:k do
8: Sample f ∼ D.
9: Give gt = ∇f(wt)−∇f(vk) +∇F̂ (vk) to A.

10: Get updated vector wt+1 from A.
11: end for
12: vk+1 ← 1

Tk

∑T0:k

t=T0:k−1+1 wt.
13: end for

Variance reduction allows us to generate estimates gt satisfying the hypothesis of Proposition 2, so
that we can control our convergence rate by picking appropriate vts. We want to change vt very few
times because changing anchor points requires us to compute a high-accuracy estimate of ∇F (vt).
Thus we change vt only when t is a power of 2 and set v2n to be the average of the last 2n−1 iterates
wt. By Jensen, this allows us to bound

∑T
t=1 E[F (vt)− F (w?) by

∑T
t=1 E[F (wt)− F (w?)], and

so applying Proposition 2 we can conclude
∑T
t=1 E[F (wt)− F (w?)] = O(1).

6 SVRG with Online Learning

With the machinery of the previous sections, we are now in a position to derive and analyze our main
algorithm, presented in SVRG OL.
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SVRG OL implements the procedure described in Section 3. For each of a series of K rounds, we
compute a batch gradient estimate∇F̂ (vk) for some “anchor point” vk. Then we run Tk iterations of
an online learning algorithm. To compute the tth gradient gt given to the online learning algorithm
in response to an output point wt, SVRG OL approximates the variance-reduction trick of SVRG,
setting gt = ∇f(wt) − ∇f(vk) + ∇F̂ (vk) for some new sample f ∼ D. After the Tk iterations
have elapsed, a new anchor point vk+1 is chosen and the process repeats.

In this section we characterize SVRG OL’s performance when the base algorithm A has a regret

guarantee of ψ(w?)
√∑T

t=1 ‖gt‖2. We can also perform essentially similar analysis for regret

guarantees like ψ(w?)
√∑T

t=1 ‖gt‖, but we postpone this to Appendix E.

In order to analyze SVRG OL, we need to bound the error ‖∇F̂ (vk)−∇F (vk)‖ uniformly for all
k ≤ K. This can be accomplished through an application of Hoeffding’s inequality:
Lemma 1. Suppose that D is a distribution over G-Lipschitz functions. Then with probability at

least 1− δ, maxk ‖∇F̂ (vk)−∇F (vk)‖ ≤
√

2G2 log(K/δ)+G2

N̂
.

The proof of Lemma 1 is deferred to Appendix A. The following Theorem is now an immediate
consequences of the concentration bound Lemma 1 and Propositions 8 and 9 (see Appendix).
Theorem 1. Suppose the online learning algorithm A guarantees regret RT (w?) ≤
ψ(w?)

√∑T
t=1 ‖gt‖2. Set bt = ‖∇F̂ (vk) − ∇F (vk)‖ for t ∈ [T0:k−1 + 1, T1:k] (where Ta:b :=∑b

i=a Ti). Suppose that Tk/Tk−1 ≤ ρ for all k. Then for w = 1
T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
32(1 + ρ)ψ(w?)

2L

T
+

2
∑T
t=1 E[‖bt‖(‖wt − w?‖)]

T

+
2ψ(w?)

√
8LT1 E[F (v1)− F (w?)] + 2

∑T
t=1 E[‖bt‖2]

T

In particular, if D is a distribution over G-Lipschitz functions, then with probability at least 1− 1
T

we have ‖bt‖ ≤
√

2G2 log(KT )+G2

N̂
for all t. Further, if N̂ > T 2 and V has diameter D, then this

implies

E[F (w)− F (w?)] ≤
32(1 + ρ)ψ(w?)

2L

T
+

4ψ(w?)σ
√

log(KT )

T
√
T

+
8ψ(w?)

√
LT1 E[F (v1)− F (w?)]

T
+
GD

T
+ 2

G
√

2 log(KT ) + 1D

T

=O

(√
log(KT )

T

)

We note that although this theorem requires a finite diameter for the second result, we present a
simple technique to deal with unbounded domains and retain the same result in Appendix D

7 Statistical and Computational Complexity

In this section we describe how to choose the batch size N̂ and epoch sizes Tk in order to obtain
optimal statistical complexity and computational complexity. The total amount of data used by SVRG
OL is N = KN̂ + T0:K = KN̂ + T . If we choose N̂ = T 2, this is O(KN̂). Set Tk = 2Tk−1, with
some T1 > 0 so that ρ = maxTk/Tk−1 = 2 and O(K = log(N)). Then our Theorem 1 guarantees

suboptimality O(
√

log(TK)/T ), which is O(
√
K log(TK)/

√
KN̂) = O(

√
K log(TK)/

√
N).

This matches the optimal O(1/
√
N) up to logarithmic factors and constants.

The parallelization step is simple: we parallelize the computation of∇F̂ (vk) by having m machines
compute and sum gradients for N̂/m new examples each, and then averaging these m sums together
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on one machine. Notice that this can be done with constant memory footprint by streaming the
examples in - the algorithm will not make any further use of these examples so it’s safe to forget
them. Then we run the Tk steps of the inner loop in serial, which again can be done in constant
memory footprint. This results in a total runtime of O(KN̂/m+ T ) - a linear speedup so long as
m < KN/T . For algorithms with regret bounds matching the conditions of Theorem 1, we get
optimal convergence rates by setting N̂ = T 2, in which case our total data usage is N = O(KN̂).
This yields the following calculation:
Theorem 2. Set Tk = 2Tk−1. Suppose the base optimizer A in SVRG OL guarantees regret

RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2, and the domain W has finite diameter D. Let N̂ = Θ(T 2) and

N = KN̂ + T be the total number of data points observed. Suppose we compute the batch gradients
∇F̂ (vk) in parallel on m machines with m <

√
N . Then for w = 1

T

∑T
t=1 wt we obtain

E[F (w)− F (w?)] = Õ

(
1√
N

)
in time Õ(N/m), and space O(1), and K = Õ(1) communication rounds.

8 Implementation

8.1 Linear Losses and Dense Batch Gradients

Many losses of practical interest take the form f(w) = `(w · x, y) for some label y and feature
vector x ∈ Rd where d is extremely large, but x is s-sparse. These losses have the property
that ∇f(w) = `′(w · x, y)x is also s-sparse. Since d can often be very large, it is extremely
desirable to perform all parameter updates in O(s) time rather than O(d) time. This is relatively
easy to accomplish for most SGD algorithms, but our strategy involves correcting the variance
in ∇f(w) using a dense batch gradient ∇F̂ (vk) and so we are in danger of losing the significant
computational speedup that comes from taking advantage of sparsity. We address this problem
through an importance-sampling scheme.

Suppose the ith coordinate of x is non-zero with probability pi. Given a vector v, let I(v) be the
vector whose ith component is 0 if wi = 0, or 1/pi is wi 6= 0. Then E[I(∇f(w))] is equal to the
all-ones vector. Using this notation, we replace the variance-reduced gradient estimate ∇f(w) −
∇f(vk) +∇F̂ (vk) with∇f(w)−∇f(vk) +∇F̂ (vk)� I(∇f(w)), where � indicates component-
wise multiplication. Since E[I(∇f(w))] is the all-ones vector, E[∇F̂ (vk)� I(∇f(w))] = ∇F̂ (vk)
and so the expected value of this estimate has not changed. However, it is clear that the sparsity of the
estimate is now equal to the sparsity of∇f(w). Performing this transformation introduces additional
variance into the estimate, and could slow down our convergence by a constant factor. However, we
find that even with this extra variance we still see impressive speedups (see Section 9).

8.2 Spark implementation

Implementing our algorithm in the Spark environment is fairly straightforward. SVRG OL switches
between two phases: a batch gradient computation phase and a serial phase in whicn we run the
online learning algorithm. The serial phase is carried out by the driver while the batch gradient is
computed by executors. We initially divide the training data into C approximately 100M chunks,
and we use min(1000, C) executors. Tree aggregation with depth of 5 is used to gather the gradient
from the executors, which is similar to the operation implemented by Vowpal Wabbing (VW) [1]. We
use asynchronous collects to move the instances used in the next serial SGD phase of SVRG OL to
the driver while the batch gradient is being computed. We used feature hashing with 23 bits to limit
memory consumption.

8.3 Batch sizes

Our theoretical analysis asks for exponentially increasing serial phase lengths Tk and a batch size
of of N̂ = T 2. In practice we use slightly different settings. We have a constant serial phase length
Tk = T0 for all k, and an increasing batch size N̂k = kC for some constant C. We usually set
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C = T0. The constant Tk is motivated by observing that the requirement for exponentially increasing
Tk comes from a desire to offset potential poor performance in the first serial phase (which gives the
dependence on T1 in Theorem 1). In practice we do not expect this to be an issue. The increasing
batch size is motivated by the empirical observation that earlier serial phases (when we are farther
from the optimum) typically do not require as accurate a batch gradient in order to make fast progress.

Table 2: Statistics of the datasets. The compressed size of the data is reported. B=Billion, M=Million

Data # Instance Data size (Gb) # Features Avg # feat % positives
– Train Test Train Test

KDD10 19.2M 0.74M 0.5 0.02 29 890 095 29.34 86.06%
KDD12 119.7M 29.9M 1.6 0.5 54 686 452 11.0 4.44%
ADS SMALL 1.216B 0.356B 155.0 40.3 2 970 211 92.96 8.55%
ADS LARGE 5.613B 1.097B 1049.1 486.1 12 133 899 95.72 9.42%
EMAIL 1.236B 0.994B 637.4 57.6 37 091 273 132.12 18.74%

9 Experiments

To verify our theoretical results, we carried out experiments on large-scale (order 100 million
datapoints) public datasets, such as KDD10 and KDD12 3 and on proprietary data (order 1 billion
datapoints), such as click-prediction for ads [4] and email click-prediction datasets [2]. The main
statistics of the datasets are shown in Table 2. All of these are large datasets with sparse features,
and heavily imbalanced in terms of class distribution. We solved these binary classification tasks
with logistic regression. We tested two well-know scalable logistic regression implementation: Spark
ML 2.2.0 and Vowpal Wabbit 7.10.0 (VW) 4. To optimize the logistic loss we used the L-BFGS
algorithm implemented by both packages. We also tested minibatch SGD and non-adaptive SVRG
implementations. However, we observe that the relationship between non-adaptive SVRG updates and
the updates in our algorithm are analogous to the relationship between the updates in constant-step-
size SGD and (for example) AdaGrad. Since our experiments involved sparse high-dimensional data,
adaptive step sizes are very important and one should not expect these algorithms to be competitive
(and indeed they were not).
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Free Rex (lr=0.1)
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Figure 1: Test loss of three SGD algorithms (PiSTOL [14], Vowpal Wabbit (labeled as SGD VW)
[17] and FreeRex [6]) and SVRG OL (labeled as SVRG OL, using FreeRex as the base optimizer)
on the benchmark datasets.

First we compared SVRG OL to several non-parallelized baseline SGD optimizers on the different
datasets. We plot the loss a function of the number of datapoints processed, as well as the total
runtime (Figure 1). Measuring the number of datapoints processed gives us a sense of the statistical
efficiency of the algorithm and gives a metric that is independent of implementation quality details.
We see that, remarkably, SVRG OL’s actually performs well as a function of number of datapoints

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
4 https://github.com/JohnLangford/vowpal_wabbit/releases/tag/7.10
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processed and so is a competitive serial algorithm before even any parallelization. Thus it is no
surprise that we see significant speedups when the batch computation is parallelized.

0 2 4 6 8 10 12 14 16
Time (in hours)

1

2

3

4

5

6

7

8

Ra
tio

EMAIL
ADS LARGE
ADS

Figure 2: The speed-up ratio of
SVRG OL versus FreeRex on
various datasets.

To assess the trend of the speed-up with the size of the
training data, we plotted the relative speed-up of SVRG
OL versus FreeRex which is used as base optimizer in
SVRG OL. Figure 2 shows the fraction of running time
of non-parallel and parallel algorithms needed to achieve
the same performance in terms of test loss. The x-axis
scales with the running time of the parallel SVRG OL
algorithm. The speed-up increases with training time, and
thus the number of training instances processed. This
result suggests that our method will indeed match with
the theoretical guarantees in case of large enough datasets,
although this trend is hard to verify rigorously in our test
regime.

In our second experiment, we proceed to compare SVRG
OL to Spark ML and VW in Table 4. These two LBFGS-based algorithms were superior in all
metrics to minibatch SGD and non-adaptive SVRG algorithms and so we report only the comparison
to Spark ML and VW (see Section F for full results). We measure the number of communication
rounds, the total training error, the error on a held-out test set, the Area Under the Curve (AUC),
and total runtime in minutes. Table 4 illustrates that SVRG OL compares well to both Spark ML
and VW. Notably, SVRG OL uses dramatically fewer communication rounds. On the smaller KDD
datasets, we also see much faster runtimes, possibly due to overhead costs associated with the other
algorithms. It is important to note that our SVRG OL makes only one pass over the dataset, while
the competition makes one pass per communication round, resulting in 100s of passes. Nevertheless,
we obtain competitive final error due to SVRG OL’s high statistical efficiency.

Table 3: Average loss and AUC achieved by Logistic regression implemented in Spark ML, VW and
SVRG OL. “Com.” refers to number of communication rounds and time is measured in minutes.The
results on KDD10, ADS LARGE and EMAIL data is presented in App. F due to lack of space.
Dataset KDD12 ADS SMALL

Com. Train Test AUC Time Com. Train Test AUC Time

Spark ML 100 0.15756 0.15589 75.485 36 100 0.23372 0.22288 83.356 42
Spark ML 550 0.15755 0.15570 75.453 180 500 0.23365 0.22286 83.365 245
VW 100 0.15398 0.15725 77.871 44 100 0.23381 0.22347 83.214 114
VW 500 0.14866 0.15550 78.881 150 500 0.23157 0.22251 83.499 396
SVRG OL 4 0.152740 0.154985 78.431 8 14 0.23147 0.22244 83.479 94

10 Conclusion

We have presented SVRG OL, a generic stochastic optimization framework which combines adaptive
online learning algorithms with variance reduction to obtain communication efficiency in parallel
architectures. Our analysis significantly streamlines previous work by making black-box use of
any adaptive online learning algorithm, thus disentangling the variance-reduction and serial phases
of SVRG algorithms. We require only a logarithmic number of communication rounds, and we
automatically adapt to an unknown smoothness parameter, yielding both fast performance and
robustness to hyperparameter tuning. We developed a Spark implementation of SVRG OL and solved
real large scale sparse learning problems with competitive performance to L-BFGS implemented by
VW and Spark ML.
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Supplementary material for “Distributed Stochastic
Optimization via Adaptive SGD”

The appendix starts with the proof of Lemma 1 in Appendix A. Next, in Section B we provide the proofs from
Section 4. In Section C we review prior results about the properties of smooth convex functions as variance
reduction. In Section D we then combine the previous two sections’ results to prove the convergence of our
SVRG OL. Finally, in Section F we provide additional information about our experiments, including statistics
of the various datasets as well as a complete reporting of the performance of all tested algorithms.

A Proof of Lemma 1

Proof. The assumption on D implies that ‖∇f(vk)‖ is bounded by G and so ∇f(vk) is G2-subgaussian.
Therefore we can apply the Hoeffding and union bounds to obtain tail bounds on∇f(vk):

Prob

∥∥∥∥∥∥ 1

N̂

N̂∑
i=1

∇fi(vk)− E[∇f(vk)]

∥∥∥∥∥∥ ≥ ε for all k


≤ K exp

[
−
(
N̂ε−G

√
N̂
)2
/(2N̂G2)

]
rearranging, with probability at least 1− δ, for all k we have∥∥∥∥∥ 1

N̂

N∑
i=1

∇fi(vk)− E[∇f(vk)]

∥∥∥∥∥ ≤
√

2G2 log(K/δ) +G2

N̂

as desired.

B Proofs from Section 4

Proposition 1. Define RT (w?) =
∑T
t=1 gt · (wt − w?) and w = 1

T

∑T
t=1 wt where E[gt] = ∇F (wt) + bt.

Then

E[F (w)− F (w?)] ≤ E[RT (w?)]
T

+ 1
T

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

If the domain V has diameter D, then E[F (w)− F (w?)] ≤ E[RT (w?)]
T

+ D
T

∑T
t=1 E[‖bt‖]

Proof. The proof follows from Cauchy-Schwarz, triangle inequality, and convexity of F :

E[RT ] = E

[
T∑
t=1

gt(wt − w?)

]

= E

[
T∑
t=1

∇F (wt) · (wt − w?) + bt · (wt − w?)

]

≥ E

[
T∑
t=1

F (wt)− F (w?)− ‖bt‖‖wt − w?‖

]
Now rearrange and apply Jensen’s inequality to recover the first line of the Proposition. The second statement
follows from observing that ‖wt − w?‖ ≤ D.

Proposition 1 shows that the suboptimality increases when both ‖bt‖ and ‖wt‖ becomes large. Although the
online learning algorithm does not have the ability to control ‖bt‖, it does have the ability to control ‖wt‖,
and so we can design a reduction to compensate for ‖bt‖. The reduction is simple: instead of gt, provide the
algorithm with gt +B wt

‖wt‖ , where B is a bound such that B ≥ ‖bt‖ for all t, and by abuse of notation we take
wt/‖wt‖ = 0 when wt = 0. Proposition 3 below, tells us that, so long as we know the bound B, we can obtain
an increase in suboptimality that depends only on B and not wt.
Proposition 3. Suppose an online learning algorithmA guarantees regret RT (w?) ≤ R(w?, ‖g1‖, . . . , ‖gT ‖),
where R is an increasing function of each ‖gt‖. Then if we run A on gradients gt +B wt

‖wt‖ , we obtain:

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ R(w?, ‖g1‖+B, . . . , ‖gT ‖+B) + 2TB

and, thus E[F (w)− F (w?)] ≤ 1
T
R(w?, ‖g1‖+B, . . . , ‖gT ‖+B) + 2B.
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Proof. Observe that B wt
‖wt‖ = ∇h(wt) where h(x) = B‖x‖, so that by convexity we have

E

[
T∑
t=1

F (wt)− F (w?) + bt(wt − w?) +B‖wt‖ −B‖w?‖

]

≤ R
(
w?,

∥∥∥∥g1 +B
wt
‖wt‖

∥∥∥∥ , · · ·)
≤ R(w?, ‖g1‖+B, . . . , ‖gT ‖+B)

Now observe that bt(wt − w?) +B‖wt‖ −B‖w?‖ ≥ −2B‖w?‖ to obtain:

E

[
T∑
t=1

F (wt)− F (w?)

]
− 2TB‖w?‖

≤ R(w?, ‖g1‖+B, . . . , ‖gT ‖+B)

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ R(w?, ‖g1‖+B, . . . , ‖gT ‖+B) + 2TB

Finally, use Jensen’s inequality to concude the Proposition

C Smooth Losses

In the following sections we consider applying an online learning algorithm to gradients gt of the form
gt = ∇ft(wt)−∇ft(x̂) +∇F (x̂) + bt where each ft is an i.i.d. smooth convex function with E[ft] = F and
x̂ is some fixed vector. In order to leverage the structure of this kind of gt, we’ll need two lemmas from the
literature about smooth convex functions (which can be found, for example, in [11]):

Lemma 2. If f is an L-smooth convex function and x, y are fixed vectors, then

‖∇f(x)−∇f(y)‖2 ≤ 2L(f(x)− f(y)−∇f(y)(x− y))

Proof. Set f̃(w) = f(w)− f(y)−∇f(y) · (w − y). Then f̃ is still convex and L-smooth and∇f̃(y) = 0 so
that f̃(y) ≤ f̃(q) for all q. Therefore We have

0 = f̃(y) ≤ inf
z
f̃(x− z∇f̃(x))

≤ inf
z
f̃(x)− z‖∇f̃(x)‖2 +

L

2
z2‖∇f̃(x)‖2

= f̃(x)− 1

2L
‖∇f̃(x)‖2

= f(x)− f(y)−∇f(y) · (x− y)− 1

2L
‖∇f(x)−∇f(y)‖2

from which the Lemma follows.

We can use Lemma 2 to show the following useful fact:

Lemma 3. Suppose D is a distribution over L-smooth convex functions f and F = E[f ]. Let w? ∈ argminF .
Then for all x we have E[‖∇f(x)−∇f(w?)‖2] ≤ 2L[F (x)− F (w?)].

Proof. From Lemma 2 we have

E[‖∇f(x)−∇f(w?)‖2] ≤ 2LE[f(x)− f(w?)−∇f(w?) · (x− w?)]

and now the result follows since E[∇f(w?)] = ∇f(w?) = 0.

With these in hand, we can prove

Proposition 4. With gt = ∇f(wt) −∇f(vk) +∇F (vk) + bt for some points wt, vk ∈ W and bt ∈ R, we
have

E[‖gt‖2] ≤ 8LE[F (wt)− F (w?)] + 8LE[F (vk)− F (w?)] + 2E[‖bt‖2]
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Proof. Observe that E[∇f(w?)−∇f(vk)] = ∇F (w?)−∇F (vk), so that by Lemma 3

E[‖∇f(w?)−∇f(vk) +∇F (vk)−∇F (w?)‖2 ≤ E[‖∇f(w?)−∇ft(vk)‖2]

≤ 2L(F (vk)− F (w?))

Using this we have

E[‖gt‖2] ≤ E[‖∇f(wt)−∇f(vk) +∇F (vk) + bt‖2]

≤ E[2‖∇f(wt)−∇f(vk) +∇F (vk)‖2 + 2‖bt‖2]

≤ E[4‖∇f(wt)−∇f(w?)‖2 + 4‖∇f(w?)−∇f(vk) +∇F (vk)−∇F (w?)‖2 + 2‖bt‖2]

≤ 8LE[F (wt)− F (w?)] + 4E[‖∇f(w?)−∇f(vk)‖2] + 2E[‖bt‖2]

≤ 8LE[F (wt)− F (w?)] + 8LE[F (vk)− F (w?)] + 2E[‖bt‖2]

D Biased Online Learning with SVRG updates

In this section are finally prepared to analyze SVRG OL. In order to do so, we restate the algorithm as
Algorithm 2. This algorithm is identical to SVRG OL, but we have introduced the additional notation bt =

∇F̂ (vk)−∇F (vk) so that we can write gt = ∇f(wt)−∇f(vk) +∇F (vk) + bt instead of gt = ∇f(wt)−
∇f(vk) +∇F̂ (vk). Factoring out the term bt and writing gt in this way makes clearer how we are able to apply
the analysis of biased gradients to the analysis of online learning in the previous section. We analyze Algorithm 2

for online learning algorithms A that obtain second-order regret guarantees, RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2

as well as ones that obtain first-order regret guarantees RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖. Algorithm in these
families include the well-known AdaGrad [8] algorithm and its unconstrained variant SOLO [15] (second order,
ψ(w?) = O(‖w?‖2)) as well as FreeRex [6] and PiSTOL [14] (first order, ψ(w?) = Õ(‖w?‖)). We will show
that for sufficiently small bt, such algorithms result inw = 1

T

∑T
t=1 wt such that E[F (w)−F (w?)] = O(1/T ).

Algorithm 2 Online Learning with Biased Variance-Reduced Gradients

Initialize: initial point w1, epoch lengths 0 = T0, T1, . . . , TK online learning algorithm A.
Get initial vector w1 from A.
for k = 1 to K do

for t = T0:k−1 + 1 to T0:k do
Sample f ∼ D.
gt ← ∇f(wt)−∇f(vk) +∇F (vk) + bt.
Send gt to the online learning algorithm A.
Get updated vector wt+1 from A.

end for
vk+1 ← 1

Tk

∑T1:k

t=T1:k−1+1 wt.
end for

Proposition 5. If Tk/Tk−1 ≤ ρ for all k, then

K∑
k=1

Tk E[F (vk)− F (w?)] ≤ T1 E[F (v1)− F (w?)] + ρ

T∑
t=1

E[F (wt)− F (w?)]

Proof. First we show that for all k > 1,

Tk E[F (vk)− F (w?)] ≤ ρ
T0:k−1∑

t=T0:k−2+1

E[F (wt)− F (w?)]
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This follows from Jensen’s inequality by convexity of F :

E[F (vk)− F (w?)] = E

F
 1

Tk−1

T0:k−1∑
t=T0:k−2+1

wt

− F (w?)


≤ 1

Tk−1
E

 T0:k−1∑
t=T0:k−2+1

F (wt)− E[F (w?)


≤ ρ

Tk

T0:k−1∑
t=T0:k−2+1

E[F (wt)− F (w?)]

Now the result of the proposition is immediate:

K∑
k=1

Tk E[F (vk)− F (w?)] ≤ T1 E[F (v1)− F (w?)] +

K∑
k=2

ρ

T0:k−1∑
t=T0:k−2

E[F (wt)− F (w?)]

≤ T1 E[F (v1)− F (w?)] +

K∑
k=0

ρ

T0:k∑
t=T0:k

E[F (wt)− F (w?)]

= T1 E[F (v1)− F (w?)] + ρ

T∑
t=1

E[F (wt)− F (w?)]

Proposition 6. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2,
and Tk/Tk−1 ≤ ρ for some constant ρ. Then

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ ψ(w?)

√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

Proof. The proof follows by applying, in order, Propositions 1, 4, and 5:

E[

T∑
t=1

F (wt)− F (w?)] ≤ E[RT (w?)] +

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√ T∑
t=1

‖gt‖2 +

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√8L

T∑
t=1

E[F (wt)− F (w?)] + 8L

K∑
k=1

Tk E[F (vk)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (v1)− F (w?)] + 2
T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

In order to use the above Proposition 6, we need a small technical result:
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Proposition 7. If a, b, c and d are non-negative constants such that

x ≤ a
√
bx+ c+ d

Then

x ≤ 4a2b+ 2a
√
c+ 2d

Proof. Suppose x ≥ 2d. Then we have

x

2
≤ x− d ≤ a

√
bx+ c

x2 ≤ 4a2bx+ 4a2c

Now we use the quadratic formula to obtain

x ≤ 4a2b

2
+

√
16a4b2 + 16a2c

2

≤ 4a2b+ 2a
√
c

Since we assumed x ≥ 2d to obtain this bound, we conclude that x is at most the maximum of 4a2b+ 2a
√
c

and 2d, which is bounded by their sum.

Now we apply this result to obtain the formal statement of Proposition 2:

Proposition 8. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2.

Then for w = 1
T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
32(1 + ρ)ψ(w?)

2L

T
+

2ψ(w?)
√

8LT1 E[F (v1)− F (w?)] + 2
∑T
t=1 E[‖bt‖2]

T

+
2
∑T
t=1 E[‖bt‖(‖wt − w?‖)]

T

In particular, if ‖bt‖ ≤ σ
T

for all t for some σ, and V has diameter D, then

E[F (w)− F (w?)] ≤
32(1 + ρ)ψ(w?)

2L

T
+

4ψ(w?)σ

T
√
T

+
8ψ(x)

√
T1 E[F (v1)− F (w?)]

T
+ 2

σD

T

Proof. Applying Propositions 5 to the result of Proposition 6, we have

E[

T∑
t=1

F (wt)− F (w?)] ≤ 32(1 + ρ)ψ(w?)
2L+ 2ψ(w?)

√√√√8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+ 2
T∑
t=1

E[‖bt‖(‖wt − w?‖)]

Now divide by T and use Jensen’s inequality to conclude the first result. The second follows since
√
a+ b ≤√

2(
√
a+
√
b) for all positive a, b.

Now let’s prove bounds using the regularization trick from Proposition 3 that allows us to avoid assuming a
finite-diameter domain.

Proposition 9. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2.

Let B be a uniform upper bound on ‖bt‖. Run A on the gradients ‖gt‖+B wt
‖wt‖ . Then for w = 1

T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
64(1 + ρ)ψ(w?)

2L

T
+

2ψ(w?)
√

16LT1 E[F (v1)− F (w?)] + 6TB2]

T
+ 2B‖w?‖

In particular, if B ≤ σ
T

, we have

E[F (w)− F (w?)] ≤
64(1 + ρ)ψ(w?)

2L

T
+

2ψ(w?)
√

16LT1 E[F (v1)− F (w?)] + 6σ/T ]

T
+ 2

σ‖w?‖
T
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Proof.

E[

T∑
t=1

F (wt)− F (w?)] ≤ E[RT (w?)] +

T∑
t=1

E[bt · (w? − wt)] +B‖w?‖ −B‖wt‖

≤ E[RT (w?)] + 2TB‖w?‖

≤ ψ(w?)

√√√√ T∑
t=1

2E[‖gt‖2] + 2TB2 + 2TB‖w?‖

≤ ψ(w?)

√√√√16L

T∑
t=1

E[F (wt)− F (w?)] + 16L

K∑
k=1

Tk E[F (vk)− F (w?)] + 4

T∑
t=1

E[‖bt‖2] + 2TB2

+ 2TB‖w?‖

≤ ψ(w?)

√√√√16(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 16LT1 E[F (v1)− F (w?)] + 4

T∑
t=1

E[‖bt‖2] + 2TB2

+ 2TB‖w?‖

≤ ψ(w?)

√√√√16(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 16LT1 E[F (v1)− F (w?)] + 6TB2

+ 2TB‖w?‖

Now use Proposition 7:

E[

T∑
t=1

F (wt)− F (w?)] ≤ 64(1 + ρ)ψ(w?)
2L+ 2ψ(w?)

√
16LT1 E[F (v1)− F (w?)] + 6TB2] + 2TB‖w?‖

We can use Proposition 9 to prove an analogue of Theorem 1:

Theorem 3. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2.

Set bt = ‖∇F̂ (vk)−∇F (vk)‖ for t ∈ [T0:k−1 + 1, T1:k]. Suppose that Tk/Tk−1 ≤ ρ for all k. Let B be a
uniform upper bound on ‖bt‖. Run A on the gradients gt +B wt

‖wt‖ . Then for w = 1
T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤ 2B‖w?‖+ 64(1+ρ)ψ(w?)
2L

T
+

2ψ(w?)
√

16LT1 E[F (v1)−F (w?)]+6TB2]

T

E Other Types of Regret Bounds

The above Theorems 1 and 3 postulate a regret bound of the form RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2. This
bound is achieved by, e.g. the AdaGrad [8] or SOLO [15] algorithms, both of which have ψ(w?) = O(‖w?‖2).
However, there also exist algorithms (e.g. PiSTOL [14] or FreeRex [6]) that improve ψ to O(‖x‖) up to log

factors, but in return achieve only a first-order regret bound of RT (w?) ≤ ψ(w?)
√
G
∑T
t=1 ‖gt‖, where

G is a uniform bound on ‖gt‖. Such algorithms are sometimes called parameter-free algorithms because
they achieve the minimax optimal regret bound of ‖w?‖G

√
T in an unconstrained setting without requiring

any hyperparameter tuning. In this section we show similar convergence guarantees for these parameter-free
algorithms.

We start with a simple LaGrange multipliers argument:
Proposition 10. Suppose a1, . . . , at are non-negative real numbers. Then

T∑
t=1

at ≤
√
T

√√√√ T∑
t=1

a2t

Proof. Let S =
∑T
t=1 a

2
t . We want to maximize

∑T
t=1 at subject to

∑T
t=1 a

2
t ≤ S. Then applying the method

of LaGrange multipliers, we see that for the optimizing values of at, there is some multiplier λ such that for all

t, either λ = 2at or at = 0. Therefore at ≤
√
S/T and so

∑T
t=1 at ≤

√
TS =

√
T
√∑T

t=1 a
2
t .
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Using Proposition 10, we can prove an analogue of Proposition 6:

Proposition 11. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖,
and Tk/Tk−1 ≤ ρ for some constant ρ. Then

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ ψ(w?)

√√√√√√T
√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

Proof. The proof is nearly identical to that of Proposition 6:

E[

T∑
t=1

F (wt)− F (w?)] ≤ E[RT (w?)] +

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√ T∑
t=1

‖gt‖+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√√√T
√√√√ T∑

t=1

‖gt‖2 +

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√√√T
√√√√8L

T∑
t=1

E[F (wt)− F (w?)] + 8L

K∑
k=1

Tk E[F (vk)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

≤ ψ(w?)

√√√√√√T
√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

Now in order to use Proposition 11 we need a slightly different technical result than Proposition 7:
Proposition 12. If a, b, c, d and e, and f are non-negative constants such that

x ≤ a
√
b
√
cx+ d+ e+ f

then

x ≤ 27/3a4/3b2/3c1/3 + 2a

√
2b
√

2d+ 2e+ 2f

Proof. Since
√
x+ y ≤

√
2x+

√
2y for all non-negative x and y, we have

x ≤ a
√
b
√

2cx+ b
√

2d+ e+ f

≤ a
√

2b
√

2cx+ a

√
2b
√

2d+ 2e+ f

Now suppose x ≥ 2a
√

2b
√

2d+ 2e+ 2f . Then

x

2
≤ a

√
2b
√

2cx

x4 ≤ 27a4b2cx

x ≤ 27/3a4/3b2/3c1/3

17



So that taking into account our condition x ≥ 2a
√

2b
√

2d+ 2e+ 2f , we have

x ≤ 27/3a4/3b2/3c1/3 + 2a

√
2b
√

2d+ 2e+ 2f

as desired.

With this in hand, we can prove an analogue of Proposition 8:

Proposition 13. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖.
Then for w = 1

T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
210/3ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3

+
27/4ψ(x∗)

√
8LT1 E[F (v1)− F (w?)] + 2

∑T
t=1 E[‖bt‖2]

T 3/4
+ 2

∑T
t=1 E[‖bt‖(‖wt − w?‖)]

T

In particular, if ‖bt‖ ≤ σ

T2/3 for all t for some σ, and V has diameter D, then

E[F (w)− F (w?)] ≤
210/3ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3

+
211/4σ

T 13/12
+

215/4ψ(x∗)
√
LT1 E[F (v1)− F (w?)]

T 3/4
+ 2

σD

T

Proof. The proof is directly analogous to the proof of Proposition 8; we simply apply Proposition 12 to
Proposition 11:

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ ψ(w?)

√√√√√√T
√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (w1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

E

[
T∑
t=1

F (wt)− F (w?)

]
≤ 210/3ψ(x∗)4/3T 1/3(1 + ρ)1/3L1/3

+ 27/4ψ(x∗)T 1/4

√√√√8LT1 E[F (w1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2] + 2

T∑
t=1

E[‖bt‖(‖wt − w?‖)]

Now divide by T to obtain the result.

Finally, we prove the analogue of Proposition 9:

Proposition 14. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖2.

Let B be a uniform upper bound on ‖bt‖. Run A on the gradients ‖gt‖+B wt
‖wt‖ . Then for w = 1

T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤ 24ψ(x∗)4/3T 1/3(1 + ρ)1/3L1/3

+ 29/4ψ(x∗)T 1/4
√

8LT1 E[F (v1)− F (w?)] + 2TB2 + 2ψ(w?)
√

2TB + 4TB‖w?‖

In particular, if B ≤ σ

T2/3 , we have

E[F (w)− F (w?)] ≤
24ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3

+
217/4ψ(x∗)

√
LT1 E[F (v1)− F (w?)]

T 3/4
+

213/4ψ(x∗)σ

T 11/12
+

2ψ(w?)
√

2σ

T 5/6
+

4‖w?‖
T 2/3

18



Proof.

E[

T∑
t=1

F (wt)− F (w?)] ≤ E[RT (w?)] +

T∑
t=1

E[bt · (w? − wt)] +B‖w?‖ −B‖wt‖

≤ E[RT (w?)] + 2TB‖w?‖

≤ ψ(w?)

√√√√ T∑
t=1

E[‖gt‖] + TB + 2TB‖w?‖

≤ ψ(w?)

√√√√2

T∑
t=1

E[‖gt‖] + ψ(w?)
√

2TB + 2TB‖w?‖

≤ ψ(w?)

√√√√√2
√
T

√√√√8L

T∑
t=1

E[F (wt)− F (w?)] + 8L

K∑
k=1

Tk E[F (vk)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+ ψ(w?)
√

2TB + 2TB‖w?‖

≤ ψ(w?)

√√√√√2
√
T

√√√√8(1 + ρ)L

T∑
t=1

E[F (wt)− F (w?)] + 8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2]

+ ψ(w?)
√

2TB + 2TB‖w?‖

Now we apply Proposition 12:

E[

T∑
t=1

F (wt)− F (w?)] ≤ 24ψ(x∗)4/3T 1/3(1 + ρ)1/3L1/3

+ 29/4ψ(x∗)T 1/4

√√√√8LT1 E[F (v1)− F (w?)] + 2

T∑
t=1

E[‖bt‖2] + 2ψ(w?)
√

2TB + 4TB‖w?‖

≤ 24ψ(x∗)4/3T 1/3(1 + ρ)1/3L1/3

+ 29/4ψ(x∗)T 1/4
√

8LT1 E[F (v1)− F (w?)] + 2TB2 + 2ψ(w?)
√

2TB + 4TB‖w?‖

Combining all these together, we can prove analogues of Theorems 1 and 3:

Theorem 4. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖.
Set bt = ‖∇F̂ (vk) − ∇F (vk)‖ for t ∈ [T0:k−1 + 1, T1:k]. Suppose that Tk/Tk−1 ≤ ρ for all k. Then for
w = 1

T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
210/3ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3
+

27/4ψ(x∗)
√

8LT1 E[F (v1)− F (w?)] + 2
∑T
t=1 E[‖bt‖2]

T 3/4

+ 2

∑T
t=1 E[‖bt‖(‖wt − w?‖)]

T

In particular, with probability at least 1− 1
T

we have ‖bt‖ ≤
σ
√

log(KT )√
N̂

for some σ, and if N̂ > T 4/3 and V

has diameter D, then

E[F (w)− F (w?)] ≤
210/3ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3
+

211/4σ
√

log(KT )

T 13/12

+
215/4ψ(x∗)

√
LT1 E[F (v1)− F (w?)]

T 3/4
+ 2

σ
√

log(KT )D

T
+
GD

T

=O

(√
log(KT )

T
+

1

T 2/3

)

19



Theorem 5. Suppose the online learning algorithm A guarantees regret RT (w?) ≤ ψ(w?)
√∑T

t=1 ‖gt‖. Set

bt = ‖∇F̂ (vk) − ∇F (vk)‖ for t ∈ [T0:k−1 + 1, T1:k]. Suppose that Tk/Tk−1 ≤ ρ for all k. Let B be a
uniform upper bound on ‖bt‖. Run A on the gradients gt +B wt

‖wt‖ . Then for w = 1
T

∑T
t=1 wt,

E[F (w)− F (w?)] ≤
24ψ(x∗)4/3(1 + ρ)1/3L1/3

T 2/3
+

29/4ψ(x∗)
√

8LT1 E[F (v1)− F (w?)] + 2TB2

T 3/4

+
2ψ(w?)

√
2B√

T
+ 4B‖w?‖

We also have an analogue of Theorem 2 using essentially the same argument, but using the setting N̂ = Θ(T 4/3)

rather than N̂ = Θ(T 2):

Theorem 6. Set Tk = 2Tk−1. Suppose the base optimizer A in SVRG OLguarantees regret RT (w?) ≤
ψ(w?)

√∑T
t=1 ‖gt‖, and the domain W has finite diameter D. Let N̂ = Θ(T 4/3) and N = KN̂ + T be

the total number of data points observed. Suppose we compute the batch gradients∇F̂ (vk) in parallel on m
machines with m < N1/4. Then for w = 1

T

∑T
t=1 wt we obtain

E[F (w)− F (w?)] = Õ

(
1√
N

)
in time Õ(N/m) and space O(1)

F Benchmark results
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Table 4: Average loss and AUC achieved by Logistic regression implemented in Spark ML, VW and
SVRG OL. “Comm.” refers to number of communication rounds and time is measured in minutes.
In case of MiniBatch SGD and SVRG, we computed the full batch gradient in each iteration based
on the whole training data.

Data Comm. Train Test AUC Time
KDD10

Spark ML 100 0.25380 0.26317 84.778 52
Spark ML 500 0.25303 0.26234 84.880 101
VW 100 0.24462 0.26849 84.525 38
VW 500 0.18879 0.27817 83.967 96
MiniBatch SGD 100 0.36051 0.36711 80.603 33
MiniBatch SGD 500 0.35292 0.359483 80.932 121
SVRG 100 0.31743 0.32981 81.121 35
SVRG 500 0.31354 0.32346 81.928 102
SVRG OL 4 0.26085 0.26525 84.459 6

KDD12
Spark ML 100 0.15756 0.15589 75.485 36
Spark ML 500 0.15755 0.15570 75.453 180
VW 100 0.15398 0.15725 77.871 44
VW 500 0.14866 0.15550 78.881 150
MiniBatch SGD 100 0.27689 0.27420 70.207 43
MiniBatch SGD 500 0.27420 0.27689 70.207 225
SVRG 100 0.24325 0.23754 72.543 54
SVRG 500 0.22784 0.22397 73.764 202
SVRG OL 4 0.152740 0.154985 78.431 8

ADS SMALL
Spark ML 100 0.23372 0.22288 83.356 42
Spark ML 500 0.23365 0.22286 83.365 245
VW 100 0.23381 0.22347 83.214 114
VW 500 0.23157 0.22251 83.499 396
SVRG OL 14 0.23147 0.22244 83.479 94
Data ADS LARGE
Spark ML 100 0.23965 0.23263 82.646 216
Spark ML 500 0.23958 0.23256 82.655 1214
VW 100 FAIL
SVRG OL 31 0.23753 0.23197 82.830 334
Data EMAIL
Spark ML 100 0.27837 0.29598 88.852 117
Spark ML 500 0.27773 0.28887 88.863 601
VW 100 0.35812 0.33919 84.414 74
VW 500 0.33094 0.33010 85.854 358
SVRG OL 14 0.30567 0.29889 88.321 110
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