Randomized Prior Functions
for Deep Reinforcement Learning

Ian Osband John Aslanides Albin Cassirer
DeepMind DeepMind DeepMind
iosband@google.com jaslanides@google.com cassirer@google.com
Abstract

Dealing with uncertainty is essential for efficient reinforcement learning.
There is a growing literature on uncertainty estimation for deep learning
from fixed datasets, but many of the most popular approaches are poorly-
suited to sequential decision problems. Other methods, such as bootstrap
sampling, have no mechanism for uncertainty that does not come from the
observed data. We highlight why this can be a crucial shortcoming and
propose a simple remedy through addition of a randomized untrainable
‘prior’ network to each ensemble member. We prove that this approach
is efficient with linear representations, provide simple illustrations of its
efficacy with nonlinear representations and show that this approach scales
to large-scale problems far better than previous attempts.

1 Introduction

Deep learning methods have emerged as the state of the art approach for many challenging
problems [30} [70]. This is due to the statistical flexibility and computational scalability
of large and deep neural networks, which allows them to harness the information in large
and rich datasets. Deep reinforcement learning combines deep learning with sequential
decision making under uncertainty. Here an agent takes actions inside an environment in
order to maximize some cumulative reward [63]. This combination of deep learning with
reinforcement learning (RL) has proved remarkably successful [67] [42] [60].

At the same time, elementary decision theory shows that the only admissible decision rules
are Bayesian [12] [71]. Colloquially, this means that any decision rule that is not Bayesian
can be improved (or even exploited) by some Bayesian alternative [14]. Despite this fact,
the majority of deep learning research has evolved outside of Bayesian (or even statistical)
analysis [55] 32]. This disconnect extends to deep RL, where the majority of state of the art
algorithms have no concept of uncertainty [42] [41] and can fail spectacularly even in simple
problems where success requires its consideration [40), 45].

There is a long history of research in Bayesian neural networks that never quite became
mainstream practice [37) [43]. Recently, Bayesian deep learning has experienced a resurgence
of interest with a myriad of approaches for uncertainty quantification in fixed datasets and
also sequential decision problems [29] [11} 20} [47]. In this paper we highlight the surprising
fact that many of these well-cited and popular methods for uncertainty estimation in deep
learning can be poor choices for sequential decision problems. We show that this disconnect
is more than a technical detail, but a serious shortcoming that can lead to arbitrarily poor
performance. We support our claims by a series of simple lemmas for simple environments,
together with experimental evidence in more complex settings.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Our approach builds on an alternative method for uncertainty in deep RL inspired by the
statistical bootstrap [15]. This approach trains an ensemble of models, each on perturbed
versions of the data. The resulting distribution of the ensemble is used to approximate
the uncertainty in the estimate [47]. Although typically regarded as a frequentist method,
bootstrapping gives near-optimal convergence rates when used as an approximate Bayesian
posterior [19] [18]. However, these ensemble-based approaches to uncertainty quantification
approximate a ‘posterior’ without an effective methodology to inject a ‘prior’. This can be a
crucial shortcoming in sequential decision problems.

In this paper, we present a simple modification where each member of the ensemble is
initialized together with a random but fixed prior function. Predictions in each ensemble
member are then taken as the sum of the trainable neural network and its prior function.
Learning/optimization is performed so that this sum (network plus prior) minimizes training
loss. Therefore, with sufficient network capacity and optimization, the ensemble members
will agree at observed data. However, in regions of the space with little or no training
data, their predictions will be determined by the generalization of their networks and priors.
Surprisingly, we show that this approach is equivalent to exact Bayesian inference for the
special case of Gaussian linear models. Following on from this ‘sanity check’, we present a
series of simple experiments designed to extend this intuition to deep learning. We show
that many of the most popular approaches for uncertainty estimation in deep RL do not
pass these sanity checks, and crystallize these shortcomings in a series of lemmas and small
examples. We demonstrate that our simple modification can facilitate aspiration in difficult
tasks where previous approaches for deep RL fail. We believe that this work presents a
simple and practical approach to encoding prior knowledge with deep reinforcement learning.

2 Why do we need a ‘prior’ mechanism for deep RL?

We model the environment as a Markov decision process M = (S, A, R, P) [10]. Here S is
the state space and A is the action space. At each time step ¢, the agent observes state
st € S, takes action a; € A, receives reward ry ~ R(s¢, a;) and transitions to siy1 ~ P(st, at).
A policy 7 : § —+ A maps states to actions and let H; denote the history of observations
before time ¢. An RL algorithm maps H; to a distribution over policies; we assess its
quality through the cumulative reward over unknown environments. To perform well, an RL
algorithm must learn to optimize its actions, combining both learning and control [63]. A
‘deep’ RL algorithm uses neural networks for nonlinear function approximation [32] [42].

The scale and scope of problems that might be approached through deep RL is vast, but
there are three key aspects an efficient (and general) agent must address [63]:

1. Generalization: be able to learn from data it collects.
2. Exploration: prioritize the best experiences to learn from.
3. Long-term consequences: consider external effects beyond a single time step.

In this paper we focus on the importance of some form of ‘prior’ mechanism for efficient
exploration. As a motivating example we consider a sparse reward task where random actions
are very unlikely to ever see a reward. If an agent has never seen a reward then it is essential
that some other form of aspiration, motivation, drive or curiosity direct its learning. We
call this type of drive a ‘prior’ effect, since it does not come from the observed data, but are
ambivalent as to whether this effect is philosophically ‘Bayesian’ Agents that do not have
this prior drive will be left floundering aimlessly and thus may require exponentially large
amounts of data in order to learn even simple problems [27].

To solve a specific task, it can be possible to attain superhuman performance without
significant prior mechanism [42] [41]. However, if our goal is artificial general intelligence,
then it is disconcerting that our best agents can perform very poorly even in simple problems
[33, 139]. One potentially general approach to decision making is given by the Thompson
sampling heuristidﬂ ‘randomly take action according to the probability you believe it is the
optimal action’ [68]. In recent years there have been several attempts to apply this heuristic

1This heuristic is general in the sense that Thompson sampling can be theoretically justified in
many of the domains where these other approaches fail [I] 48, [34] [58].

to deep reinforcement learning, each attaining significant outperformance over deep RL
baselines on certain tasks [20] [47] [35] [11], [17]. In this section we outline crucial shortcomings
for the most popular existing approaches to posterior approximation; these outlines will be
brief, but more detail can be found in Appendix [C. These shortcomings set the scene for
Section [3, where we introduce a simple and practical alternative that passes each of our
simple sanity checks: bootstrapped ensembles with randomized prior functions. In Section
we demonstrate that this approach scales gracefully to complex domains with deep RL.

2.1 Dropout as posterior approximation

One of the most popular modern approaches to regularization in deep learning is dropout
sampling [61]. During training, dropout applies an independent random Bernoulli mask to
the activations and thus guards against excessive co-adaptation of weights. Recent work
has sought to understand dropout through a Bayesian lens, highlighting the connection to
variational inference and arguing that the resultant dropout distribution approximates a
Bayesian posterior [20]. This narrative has proved popular despite the fact that dropout
distribution can be a poor approximation to most reasonable Bayesian posteriors [22] |46]:

Lemma 1 (Dropout distribution does not concentrate with observed data).
Consider any loss function L, reqularizer R and data D={(z,y)}. Let 0 be parameters of
any neural network architecture f trained with dropout rate p€(0,1) and dropout masks W,

9; € arggmin EW~Ber(p),(m,y)~D [L(z,y] 0, W)+ R(O). (1)
Then the dropout distribution f@;’w 1s invariant to duplicates of the dataset D.

Lemma (1] is somewhat contrived, but highlights a clear shortcoming of dropout as posterior
sampling: the dropout rate does not depend on the data. Lemma[I]means no agent employing
dropout for posterior approximation can tell the difference between observing a set of data
once and observing it N > 1 times. This can lead to arbitrarily poor decision making, even
when combined with an efficient strategy for exploration [45].

2.2 Variational inference and Bellman error

Dropout as posterior is motivated by its connection to variational inference (VI) [20], and
recent work to address Lemma [I improves the quality of this variational approximation
by tuning the dropout rate from data [21] However, there is a deeper problem to this
line of research that is common across many works in this field: even given access to an
oracle method for ezact inference, applying independent inference to the Bellman error does
not propagate uncertainty correctly for the value function as a whole [44]. To estimate
the uncertainty in @ from the Bellman equation Q(s;,a;)=E[ri+1+ymax,Q(si+1,a)] it is
crucial that the two sides of this equation are not independent random variables. Ignoring
this dependence can lead to very bad estimates, even with exact inference.

Lemma 2 (Independent VI on Bellman error does not propagate uncertainty).
Let Y ~N(py,0%) be a target value. If we train X ~N(u,0?) according to the squared error

p*, ot €argminE [(X —Y)?] for X,Yindependent, (2)
n,o

then the solution p* = py,o* = 0 propagates zero uncertainty from'Y to X.

To understand the significance of Lemma [2] imagine a deterministic system that transitions
from s; to sy without reward. Suppose an agent is able to correctly quantify their posterior
uncertainty for the value V(s2)=Y ~N(uy,0%). Training V(s1)=X according to will
lead to zero uncertainty estimates at s;, when in fact V(s1)~N(uy,0%). This observation
may appear simplistic, and may not say much more than ‘do not use the squared loss’ for
VI in this setting. However, despite this clear failing is precisely the loss used by the
majority of approaches to VI for RL [17, 35| [65] [69, [20]. Note that this failure occurs even
without decision making, function approximation and even when the true posterior lies
within the variational class.

2Concrete dropout assymptotically improves the quality of the variational approximation, but
provides no guarantees on its rate of convergence or error relative to exact Bayesian inference [21].

2.3 ‘Distributional reinforcement learning’

The key ingredient for a Bayesian formulation for sequential decision making is to consider
beliefs not simply as a point estimate, but as a distribution. Recently an approach called
‘distributional RL’ has shown great success in improving stability and performance in
deep RL benchmark algorithms [§]. Despite the name, these two ideas are quite distinct.
‘Distributional RL’ replaces a scalar estimate for the value function by a distribution that is
trained to minimize a loss against the distribution of data it observes. This distribution of
observed data is an orthogonal concept to that of Bayesian uncertainty.

0.175 -
44 n n
— 0 0.150 —o0
34
— 1 = 1
8 S J
O 5 = 0.125 5
4
14 4 0.100 1
) NN \ =
0 . ‘ , !
v ' v ' ' 0 0.25 0.50 0.75
0 025 050 075 1
xr
x
(a) Posterior beliefs concentrate around p = 0.5. (b) ‘Distributional’ tends to mass at 0 and 1.

Figure 1: Output distribution after observing n heads and n tails of a coin.

Figure [1] presents an illustration of these two distributions after observing flips of a coin.
As more data is gathered the posterior distribution concentrates around the mean whereas
the ‘distributional RL’ estimate approaches that of the generating Bernoulli. Although
both approaches might reasonably claim a ‘distributional perspective’ on RL, these two
distributions have orthogonal natures and behave quite differently. Conflating one for the
other can lead to arbitrarily poor decisions; it is the uncertainty in beliefs (‘epistemic’), not
the distributional noise (‘aleatoric’) that is important for exploration [27].

2.4 Count-based uncertainty estimates

Another popular method for incentivizing exploration is with a density model or ‘pseudocount’
[6]. Inspired by the analysis of tabular systems, these models assign a bonus to states and
actions that have been visited infrequently according to a density model. This method can
perform well, but only when the generalization of the density model is aligned with the task
objective. Crucially, this generalization is not learned from the task [53].

Even with an optimal state representation and density, a count-based bonus on states can be
poorly suited for efficient exploration. Consider a linear bandit with reward ry(z;) = 27 0* +¢;
for some 6* € R? and ¢; ~ N(0,1) [56]. Figure [2| compares the uncertainty in the expected
reward E[zT0*] with that obtained by density estimation on the observed x;. A bonus based
upon the state density does not correlate with the uncertainty over the unknown optimal
action. This disconnect can lead to arbitrarily poor decisions [49].

UCB

(a) Uncertainty bonus from posterior over x79*. (b) Bonus from Gaussian pseudocount p(x).

Figure 2: Count-based uncertainty leads to a poorly aligned bonus even in a linear system.

3 Randomized prior functions for deep ensembles

Section [2 motivates the need for effective uncertainty estimates in deep RL. We note that
crucial failure cases of several popular approaches can arise even with simple linear models.
As a result, we take a moment to review the setting of Bayesian linear regression. Let
6 € R? with prior N (6, A\I) and data D = {(z;, yi)}i, for @; € R? and y; = 6T 2; + ¢; with
€; ~ N(0,0?) iid. Then, conditioned on D, the posterior for # is Gaussian:

1 1\ /1 1 1 1\
(LT 1 o 1 N
E[f|D]= <02X X—l—/\I) <02X y—i—/\@), Cov|[0|D] (02X X+)\I) . (3
Equation relies on Gaussian conjugacy and linear models, which cannot easily be extended
to deep neural networks. The following result shows that we can replace this analytical result
with a simple computational procedure.

Lemma 3 (Computational generation 0f~ posterior samples).
Let fo(x) = 270, §; ~ N(y;,0%) and 0 ~ N(0,\I). Then the either of the following
optimization problems generate a sample 0 | D according to :

n 2
. ~ 975
argmin 3 5 = fo(wo)|3 + 510 = 015, (4)
i=1
7] N 2, 0%
0+ argemlnz 195 = (f5 + fo) (zi)ll2 + - [10]]2- (5)
i=1

Proof. To prove (4) note that the solution is Gaussian and then match moments; equation
then follows by relabeling [49]. O

Lemma [3 is revealing since it allows us to view Bayesian regression through a purely
computational lens: ‘generate posterior samples by training on noisy versions of the data,
together with some random regularization’ Even for nonlinear fy, we can still compute
or . Although the resultant fy will no longer be an exact posterior, at least it passes the
‘sanity check’ in this simple linear setting (unlike the approaches of Section . We argue
this method is quite intuitive: the perturbed data D = {(x4,7:)}1— is generated according
to the estimated noise process €; and the sample 6 is drawn from prior beliefs. Intuitively
says to fit to D and regularize weights to a prior sample of weights 0:; says to generate a
prior function fz and then fit an additive term to noisy data D with regularized complexity.

This paper explores the performance of each of these methods for uncertainty estimation
with deep learning. We find empirical support that method coupled with a randomized
prior function significantly outperforms ensemble-based approaches without prior mechanism.
We also find that significantly outperforms in deep RL. We suggest a major factor in
this comes down to the huge dimensionality of neural network weights, whereas the output
policy or value is typically far smaller. In this case, it makes sense to enforce prior beliefs in
the low dimensional space. Further, the initialization of neural network weights plays an
important role in their generalization properties and optimization via stochastic gradient
descent (SGD) [23]138]. As such, (5) may help to decouple the dual roles of initial weights as
both ‘prior’ and training initializer. Algorithm [1| describes our approach applied to modern
deep learning architectures.

Algorithm 1 Randomized prior functions for ensemble posterior.

Require: Data DC{(z,y)|z€X,y€)}, loss function £, neural model fo: X —Y,
Ensemble size K €N, noise procedure data_noise, distribution over priors PC{P(p)|p: X —V}.
:for k=1,..,K do
initialize 8 ~ Glorot initialization [23].
form Dy = data_noise(D) (e.g. Gaussian noise or bootstrap sampling [50]).
sample prior function py ~ P.
optimize Vgg—g, L(fo + pr; Dx) via ADAM [28].

return ensemble {fo, + J 7 A

4 Deep reinforcement learning

Algorithm [might be applied to model or policy learning approaches, but this paper focuses
on value learning. We apply Algorithm I to deep @ networks (DQN) [42] on a series of tasks
designed to require good uncertainty estimates. We train an ensemble of K networks {Q k}k 1
in parallel, each on a perturbed version of the observed data H; and each with a distinct
random, but fixed, prior function p;. Each episode, the agent selects j ~ Unif([1, .., K])
and follows the greedy policy w.r.t. (); for the duration of the episode. This algorithm
is essentially bootstrapped DQN (BootDQN) except for the addition of the prior function
pr [47]. We use the statistical bootstrap rather than Gaussian noise to implement a
state-specific variance [19].

Let v € [0, 1] be a discount factor that induces a time preference over future rewards. For
a neural network family fp, prior function p, and data D = {(s¢, as, 74, ;) we define the
~-discounted empirical temporal difference (TD) loss,

target Q online Q
/—L ——
Ly(0:07,p,D) =Y | 1+ ymax(fo- +p)(si0") = (fo+p)(s0.01) | - (6)

teD

Using this notation, the learning update for BootDQN with prior functions is a simple
application of Algorithm [I, which we outline below. To complete the RL algorithm we
implement a 50-50 ensemble_buffer, where each transition has a 50% chance of being
included in the replay for model k =1, .., K. For a complete description of BootDQN+prior
agent, see Appendix [A]

Algorithm 2 learn bootstrapped_dgn_with_prior

Agent: 01,..,0K trainable network parameters
D1y s PK fixed prior functions
Ly(0=-;0"=-,p=-,D=-) TD error loss function
ensemble buffer replay buffer of K-parallel perturbed data
Updates: 64,..,0k agent value function estimate
1: for kin (1,...,K) do
2: Data Dy, < ensemble buffer[k|.sample minibatch()

3: optimize Vgg=g, L(0; Ok, pr, Dr) via ADAM [28].

4.1 Does BootDQN+prior address the shortcomings from Section

Algorithm [2]is a simple modification of vanilla Q-learning: rather than maintain a single
point estimate for), we maintain K estimates in parallel, and rather than regularize each
estimate to a single value, each is individually regularized to a distinct random prior function.
We show that that this simple and scalable algorithm overcomes the crucial shortcomings
that afflict existing methods, as outlined in Section

v Posterior concentration (Section[2.1): Prior function + noisy data means the ensemble
is initially diverse, but concentrates as more data is gathered. For linear-gaussian systems
this matches Bayes posterior, bootstrap offers a general, non-parametric approach [16 [18].

v' Multi-step uncertainty (Section : Since each network k trains only on its own
target value, BootDQN+prior propagates a temporally-consistent sample of Q-value [49].

v Epistemic vs aleatoric (Section : BootDQN+prior optimises the mean TD loss (ﬁ)
and does not seek to fit the noise in returns, unlike ‘distributional RL’ [7].

v Task-appropriate generalization (Section : We explore according to our uncer-
tainty in the value @, rather than density on state. As such, our generalization naturally
occurs in the space of features relevant to the task, rather than pixels or noise [6].

v Intrinsic motivation (comparison to BootDQN without prior): In an environment with
zero rewards, a bootstrap ensemble may simply learn to predict zero for all states. The prior
pr can make this generalization unlikely for Q) at unseen states § so E[max,Q(§,a)]>0;
thus BootDQN+prior seeks novelty even with no observed rewards.

Another source of justification comes from the observation that BootDQN+prior is an
instance of randomized least-squares value iteration (RLSVI), with regularization via ‘prior

function’ for an ensemble of neural networks. RLSVI with linear function approximation

and Gaussian noise guarantees a bound on expected regret of O(1/|S||A|T) in the tabular

setting [49] Similarly, analysis for the bandit setting establishes that K = O(].A|) models
trained online can attain similar performance to full resampling each episode [36]. Our work
in this paper pushes beyond the boundaries of these analyses, which are presented as ‘sanity
checks’ that our algorithm is at least sensible in simple settings, rather than a certificate
of correctness for more complex ones. The rest of this paper is dedicated to an empirical
investigation of our algorithm through computational experiments. Encouragingly, we find
that many of the insights born out of simple problems extend to more complex ‘deep RL’
settings and good evidence for the efficacy of our algorithm.

4.2 Computational experiments

Our experiments focus on a series of environments that require deep exploration together
with increasing state complexity [27) [49]. In each of our domains, random actions are very
unlikely to achieve a reward and exploratory actions may even come at a cost. Any algorithm
without prior motivation will have no option but to explore randomly, or worse, eschew
exploratory actions completely in the name of premature and sub-optimal exploitation. In
our experiments we focus on a tabula rasa setting in which the prior function is drawn as
a random neural network. Although our prior distribution P could encode task-specific
knowledge (e.g. through sampling the true @Q*), we leave this investigation to future work.

4.2.1 Chain environments

We begin our experiments with a family of chain-like environments that highlight the need
for deep exploration [62]. The environments are indexed by problem scale N €N and action
mask W ~Ber(0.5)V N with S={0,1}*" and A={0,1}. The agent begins each episode in
the upper left-most state in the grid and deterministically falls one row per time step. The
state encodes the agent’s row and column as a one-hot vector s;€S. The actions {0,1} move
the agent left or right depending on the action mask W at state s;, which remains fixed.
The agent incurs a cost of 0.01/N for moving right in all states except for the right-most, in
which the reward is 1. The reward for action left is always zero. An episode ends after N
time steps so that the optimal policy is to move right each step and receive a total return of
0.99; all other policies receive zero or negative return. Crucially, algorithms without deep
exploration take Q(2V) episodes to learn the optimal policy [52]@

egreedy | BS BSR BSP

500000 4 " pre—— !
£ 400000
5 | | success
< 300000 ! ‘ o all 5 seeds
5)
‘; 200000 4 ! ! i some seeds
g ! s no seeds
& 100000 - = ! L
£ 100000 ’ ‘ g A

0 mtt® co— R ——
20 40 60 20 40 60 20 40 60 20 40 60

Problem scale N
Figure 3: Only bootstrap with additive prior network (BSP) scales gracefully to large problems.
Plotting BSP on a log-log scale suggests an empirical scaling Tiearn = O(N?); see Figure

Figure [3 presents the average time to learn for N = 5,..,60 up to 500K episodes over 5
seeds and ensemble K = 20. We say that an agent has learned the optimal policy when
the average regret per episode drops below 0.9. We compare three variants of BootDQN,
depending on their mechanism for ‘prior’ effects. BS is bootstrap without prior mechanism.
BSR is bootstrap with [5 regularization on weights per . BSP is bootstrap with additive
prior function per . In each case we initialize a random 20-unit MLP; BSR regularizes to
these initial weights and BSP trains an additive network. Although all bootstrap methods
significantly outperform e-greedy, only BSP successfully scales to large problem sizes.

Figure [4 presents a more detailed analysis of the sensitivity of our approach to the tuning
parameters of different regularization approaches. We repeat the experiments of Figure 3

3Regret measures the shortfall in cumulative rewards compared to that of the optimal policy.
4The dashed lines indicate the 2% dithering lower bound. The action mask W means this cannot
be solved easily by evolution or policy search evolution, unlike previous ‘chain’ examples [47, [54].

and examine the size of the largest problem solved before 50K episodes. In each case larger
ensembles lead to better performance, but this effect tends to plateau relatively early. Figure
[a shows that regularization provides little or no benefit to BSR. Figure examines the
effect of scaling the randomly initialized MLP by a scalar hyperparameter f3.

& 60+ g 60
[5) <
=) K = K
[4 =5 2 5
=" =3
E 404 10 g 40 10
= et et 20 = 20
7} = . 7]
220 ‘\ 40 220 40
S 3 o 80 g i 80
g g
e
LI = 5 '
le6 le5 le4 le3 le2 0.1 1 10 100 0.1 1 10 100
I, regularization Prior scale 3
(a) I regularization has a very limited effect. (b) Additive prior greatly improves performance.

Figure 4: Comparing effects of different styles of prior regularization in Bootstrapped DQN.

How does BSP solve this exponentially-difficult problem?

At first glance this ‘chain’ problem may seem like an impossible task. Finding the single
rewarding policy out of 2% is not simply a needle-in-a-haystack, but more akin to looking for
a piece of hay in a needle-stack! Since every policy apart from the rewarding one is painful,
it’s very tempting for an agent to give up and receive reward zero. We now provide some
intuition for how BSP is able to consistently and scalably solve such a difficult task.

One way to interpret this result is through analysing BSP with linear function approximation
via Lemma [3] As outlined in Section BSP with linear function approximation satisfies a
polynomial regret bound [49]. Further, this empirical scaling matches that predicted by the
regret bound tabular domain [51] (see Figure . Here, the prior function plays a crucial
role - it provides motivation for the agent to explore even when the observed data has low
(or no) reward. Note that it is not necessary the sampled prior function leads to a good
policy itself; in fact this is exponentially unlikely according to our initialization scheme. The
crucial element is that when a new state s’ is reached there is some ensemble member that
estimates max, Qg (s’,a’) is sufficiently positive to warrant visiting, even if it causes some
negative reward along the way. In that case, when network k is active it will seek out the
potentially-informative s’ even if it is multiple timesteps away; this effect is sometimes called
deep exploration. We present an accompanying visualization at http://bit.ly/rpf_nips.

However, this connection to linear RLSVI does not inform why BSP should outperform BSR.
To account for this, we appeal to the functional dynamics of deep learning architectures (see
Section ‘ In large networks weight decay (per BSR) may be an ineffective mechanism on
the output Q-values. Instead, training an additive network via SGD (per BSP) may provide a
more effective regularization on the output function |73} 38| [5]. We expand on this hypothesis
and further details of these experiments in Appendix [B.I. This includes investigation of
NoisyNets [17] and dropout [20], which both perform poorly, and a comparison to UCB-based
algorithms, which scale much worse than BSP, even with oracle access to state visit counts.

4.2.2 Cartpole swing-up

The experiments of Section [4.2.1]show that the choice of prior mechanism can be absolutely
essential for efficient exploration via randomized value functions. However, since the under-
lying system is a small finite MDP we might observe similar performance through a tabular
algorithm. In this section we investigate a classic benchmark problem that necessitates
nonlinear function approximation: cartpole [63]. We modify the classic formulation so
that the pole begins hanging down and the agent only receives a reward when the pole
is upright, balanced, and centeredﬂ We also add a cost of 0.1 for moving the cart. This
problem embodies many of the same aspects of [4.2.1] but since the agent interacts with the
environment through state s,=(cos(6;),sin(6;),0:,x+,2), the agent must also learn nonlinear
generalization. Tabular approaches are not practical due to the curse of dimensionality.

5We use the DeepMind control suite [66] with reward +1 only when cos(#)>0.95, |z|<0.1, || <1,
and || <1. Each episode lasts 1,000 time steps, simulating 10 seconds of interaction.

http://bit.ly/rpf_nips

1204

600 4 Algorithm 801 Algorithm

e —— e-greedy ® = e-greedy
£ 400+ BS g 40 BS
2 BSP 2 BSP
2004 = D4PG o = D4PG
04
—40 T T T T T
0 500 1000 1500 2000 2500 0 100 200 300 400 500
Episode Episode
(a) Only BSP learns a performant policy. (b) Inspecting the first 500 episodes.

Figure 5: Learning curves for the modified cartpole swing-up task.

Figure E compares the performance of DQN with e-greedy, bootstrap without prior (BS),
bootstrap with prior networks (BSP) and the state-of-the-art continuous control algorithm
D4PG, itself an application of ‘distributional RL’ [4]. Only BSP learns a performant policy;
no other approach ever attains any positive reward. We push experimental details, including
hyperparameter analysis, to Appendix These results are significant in that they show
that our intuitions translate from simple domains to more complex nonlinear settings,
although the underlying state is relatively low dimensional. Our next experiments investigate
performance in a high dimensional and visually rich domain.

4.2.3 Montezuma’s revenge

Our final experiment comes from the Arcade Learning Environment and the canonical
sparse reward game, Montezuma’s Revenge [9]. The agent interacts directly with the pixel
values and, even under an optimal policy, there can be hundreds of time steps between
rewarding actions. This problem presents a significant exploration challenge in a visually rich
environment; many published algorithms are essentially unable to attain any reward here
[42] [41]. We compare performance against a baseline distributed DQN agent with double
Q-learning, prioritized experience replay and dueling networks [59, [72]. To save
computation we follow previous work and use a shared convnet for the ensemble uncertainty
[3]. Figure @ presents the results for varying prior scale 3 averaged over three seeds. Once
again, we see that the prior network can be absolutely critical to successful exploration.

© egreedy BS BSP (5-1) BSP (3-3) BSP (3—10) BSP (3=30)
5 30001

O

1]

3

S 2000

]

ey

© 10004

=]

©

8 I
> 04

<

0 208 4¢8 68 8¢8 0 208 408 668 8680 208 408 668 868 0 208 4e8 668 8e80 208 4e8 668 8680 268 4e8 668 868
Actor steps
Figure 6: The prior network qualitatively changes behavior on Montezuma’s revenge.

5 Conclusion

This paper highlights the importance of uncertainty estimates in deep RL, the need for
an effective ‘prior’ mechanism, and its potential benefits towards efficient exploration. We
present some alarming shortcomings of existing methods and suggest bootstrapped ensembles
with randomized prior functions as a simple, practical alternative. We support our claims
through an analysis of this method in the linear setting, together with a series of simple
experiments designed to highlight the key issues. Our work leaves several open questions.
What kinds of prior functions are appropriate for deep RL? Can they be optimized or
‘meta-learned’? Can we distill the ensemble process to a single network? We hope this work
helps to inspire solutions to these problems, and also build connections between the theory
of efficient learning and practical algorithms for deep reinforcement learning.

Acknowledgements

We would like to thank many people who made important contributions to this paper.
This paper can be thought of as a specific type of ‘deep exploration via randomized value
functions’, whose line of research has been crucially driven by the contributions of (and
conversations with) Benjamin Van Roy, Daniel Russo and Zheng Wen. Further, we would
like to acknowledge the many helpful comments and support from Mohammad Gheshlaghi
Azar, David Budden, David Silver and Justin Sirignano. Finally, we would like to make
a special mention for Hado Van Hasselt, who coined the term ‘hay in a needle-stack’ to
describe our experiments from Section [£.2.1]

References

1]
2]
3]

[4]

[5]

[6]

[7]

8]

[9]

(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]

(20]

Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, pages 39—1, 2012.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thompson sampling. In
Artificial Intelligence and Statistics, pages 99-107, 2013.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep g-networks. arXiv preprint arXiv:1802.04412, 2018.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy
gradients. arXiv preprint arXiv:1804.08617, 2018.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems 30, pages 6241-6250,
2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi

Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural
Information Processing Systems 29, pages 1471-1479. 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective on Reinforce-
ment Learning. Proceedings of the 84th International Conference on Machine Learning (ICML),
2017.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449-458, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. J. Artif. Intell. Res.(JAIR), 47:253-279,
2013.

Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
September 1996.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424, 2015.

David Roxbee Cox and David Victor Hinkley. Theoretical statistics. CRC Press, 1979.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut
Henri Poincaré, volume 7, pages 1-68, 1937.

Bradley Efron. The jackknife, the bootstrap and other resampling plans, volume 38. SIAM,
1982.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Tan Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. In Proc. of ICLR, 2018.

Tadayoshi Fushiki. Bootstrap prediction and bayesian prediction under misspecified models.
Bernoulli, pages 747-758, 2005.

Tadayoshi Fushiki, Fumiyasu Komaki, Kazuyuki Aihara, et al. Nonparametric bootstrap
prediction. Bernoulli, 11(2):293-307, 2005.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, 2016.

10

(21]
(22]

23]

24]

(25]

[26]
27]
(28]
29]
(30]
(31]
32]
(33]
(34]

(35]

(36]
(37]
(38]
(39]
(40]

(41]

42]

(43]

(44]

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in Neural Information
Processing Systems, pages 3584-3593, 2017.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving pilco with bayesian
neural network dynamics models. In Data-Efficient Machine Learning workshop, ICML, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the 13th international conference on artificial intelligence
and statistics, pages 249-256, 2010.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
g-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’'16,
pages 2094-2100. AAAI Press, 2016.

Daniel Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van
Hasselt, and David Silver. Distributed prioritized experience replay. In 6th International
Conference on Learning Represenations, 2018.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563-1600, 2010.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49, 2002.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. Proceedings
of the International Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Conference
on Learning Representations, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25, pages
1097-1105, 2012.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6405-6416, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436, 2015.

Shane Legg, Marcus Hutter, et al. A collection of definitions of intelligence. Frontiers in
Artificial Intelligence and applications, 157:17, 2007.

Jan Leike, Tor Lattimore, Laurent Orseau, and Marcus Hutter. Thompson sampling is
asymptotically optimal in general environments. Uncertainty in Artificial Intelligence, 2016.

Zachary C Lipton, Jianfeng Gao, Lihong Li, Xiujun Li, Faisal Ahmed, and Li Deng. Efficient
exploration for dialogue policy learning with bbq networks & replay buffer spiking. arXiv
preprint arXiv:1608.05081, 2016.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In Advances in Neural Information
Processing Systems, pages 3260-3268, 2017.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448-472, 1992.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes ReLU
network features. arXiv preprint arXiv:1808.08367, 2018.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Machine learning,
49(2-3):267-290, 2002.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Proc. of ICML, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty
bellman equation and exploration. arXiv preprint arXiv:1709.05380, 2017.

11

(45]
(46]

(47]

(48]

(49]
[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57)
/58]
[59]

(60]

(61]

(62]
(63]

(64]

(65]

(66]

Tan Osband. Deep Exploration via Randomized Value Functions. PhD thesis, Stanford University,
2016.

Tan Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. 2016.

Tan Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped DQN. In Advances In Neural Information Processing Systems 29, pages
4026-4034, 2016.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems 26, pages 3003-3011.
2013.

Tan Osband, Daniel Russo, Zheng Wen, and Benjamin Van Roy. Deep exploration via randomized
value functions. arXiv preprint arXiv:1703.07608, 2017.

Tan Osband and Benjamin Van Roy. Bootstrapped Thompson sampling and deep exploration.
arXiv preprint arXiv:1507.00300, 2015.

JTan Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In Proceedings of the 34th International Conference on Machine
Learning, pages 2701-2710, 2017.

Tan Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In Proceedings of The 33rd International Conference on Machine Learning,
pages 2377-2386, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based
exploration with neural density models. In Proc. of ICML, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiw:1706.01905, 2017.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representa-
tions by error propagation. Technical report, DTIC Document, 1985.

Paat Rusmevichientong and John N. Tsitsiklis. Linearly parameterized bandits. Math. Oper.
Res., 35(2):395-411, 2010.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 39(4):1221-1243, 2014.

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, and Ian Osband. A tutorial on Thompson
sampling. arXiv preprint arXiv:1707.02038, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489,
2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

Malcolm Strens. A Bayesian framework for reinforcement learning. In International Conference
on Machine Learning, pages 943-950, 2000.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press,
2017.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam
White, and Doina Precup. Horde: A scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction. In The 10th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, pages 761-768. International Foundation
for Autonomous Agents and Multiagent Systems, 2011.

Yunhao Tang and Alp Kucukelbir. Variational deep q network. arXiv preprint arXiv:1711.11225,
2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

12

(67]
(68]
(69]

[70]

(71]
[72]

(73]

Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the ACM,
38(3):58-68, 1995.

William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, and Pascal Vincent. Randomized
value functions via multiplicative normalizing flows. arXiv preprint arXiv:1806.02315, 2018.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Abraham Wald. Statistical decision functions. In Breakthroughs in Statistics, pages 342-357.
Springer, 1992.

Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep
reinforcement learning. CoRR, abs/1511.06581, 2015.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016.

13

