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A Proof of Theorem 1

We repeat the statement of the theorem as follows:

Theorem. Under Al and A2, we denote by (6*,{w;}N.|) the primal-dual optimal solution
to the optimization problem in (10). Set the step sizes as 7y By1 with 8 = 8(p +
Amax(ATC71A)) /Amin(C). Define 6(t) = + vazl 0! as the average of parameters. If the

primal step size 71 is sufficiently small, then there exists a constant 0 < o < 1 that
H@(t) -0 H + (1/BN) 21:1 wa - w; H = O(Ut)a (1/N) 2121 Hezt - B(t)H = O(Ut) .

If N, M >> 1 and the graph is geometric with A\ = 1—c/N for ¢ > 0, a sufficient condition for conver-
genceis to sety = O(1/ max{N? M?}) and the resultant rate is o = 1 —O(1/ max{MN? M3}).

Notation We first define a set of notations pertaining to the proof. For any 5 > 0, observe that the
primal-dual optimal solution, (8*, {w}}¥,), to the optimization problem (10) can be written as

pI  \JEAT ... JEZAT 0+ oﬁ
~\JEA e o TR Wi —\/ b1
) = : , (A
: 0 0 : :
1 *
R A T W _ ﬁb
— %A BC VBN \/ NON
=G

where we denote the matrix on the left hand side as G. This equation can be obtained by checking
the first-order optimality condition. In addition, for any p € {1,..., M}, we define the G, as

oI \/%A; \/§AT
G, _\/.EAP BC, - .. | a2
o . o

*\/%AP - BC,
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By definition, G is the sample average of {G,}Z,. Define 0(t) := (1/N) SN
of the local parameters at iteration ¢. Furthermore, we define

t
;1 0; as the average

N N M
— 0 1 AT w! ! T ATy
ho(t) = pb(t) + ;A w,  go(t) = 77 ;; (00" + AJw.") (A.3)
1 M t t
hew,(t) := AB(t) — Cw! —b;, G, (t) := i D (A0 — Cow.” —by;) . (Ad)
p=1
where hg(t) and ho, (t) := [Ray, (), - - -, By (t)] represent the gradients evaluated by a centralized

and batch algorithm. Note that gg(t) defined in (A.3) coincides with that in (16). Using Lemma 1,
it can be checked that (¢ + 1) = 0(t) — v1ge(t) and w!™" = w! — y2g.,, (t) for all t > 1. That
is, @(t + 1) and w!™" can be viewed as primal-dual updates using ge(t) and g, (t), which are
decentralized counterparts of gradients hg(t) and h,,, (t) defined in (A.3) (A.4).

To simplify the notation, hereafter, we define vectors h(t), g(¢), and v(¢) by

go(t) o(t) — 6"
—/Lhn () _ /ﬁg () L(wt_,w*)
N w1 N Jw1 VBN 1 1
ht) = : Lglt) = ; () = :
1 t. A%
/B (1) /£ gun(0) 7w (wiy —wi)
(A.S)
Using (A.1), it can be verified that (see the detailed derivation in Section A.2)
h(t) = Gu(t) . (A.6)

By adopting the analysis in [15] and under Assumption 2, it can be shown that with
8(p + Amax(ATC~1 A))
)\min (C’)

then G is full rank with its eigenvalues satisfying

8=

)

oo

Amax(pI + ATCTTA),  Anin(G) > §Amm<ATé—1A) >0. (A7)

Amax(C)

)\max(G) < /\min(C)

Moreover, let G := UAU ! . be the eigen-decomposition of G, where A is a diagonal matrix
consists of the eigenvalues of G, and the columns of U are the eigenvectors. Then, U is full rank
with

Amax(€)
)\min (é)

1
. Tt < —————— . (AS9)
p+ )\max(ATC_lA)

IU| < 8(p + Amax(ATC L A))

Furthermore, we also define the following upper bounds on the spectral norms

G=lGl, G= max [Gpl, A:= max [Afl, C:= max [Cpf. (A9

Lastly, we define the following two Lyapunov functions

_ 1 | X
Z (6 =82 &) = > st —ge(®)]? - (A.10)
1=1

Note that we have the following inequalities:

ZH@t o), leet 0(t)| < VNE.(t), (A.11)

which follows from the norm equivalence ||z||2 < ||z||; < VN ||| for any & € RY.



Convergence Analysis We denote that v; = « and 2 = 3~y. To study the linear convergence of
the PD-DistlAG method, our first step is to establish a bound on the difference from the primal-dual
optimal solution, v(t). Observe with the choice of our step size ratio,

v(t+1) =T —yG)v(t) +v(h(t) — g(t)) . (A.12)

Consider the difference vector h(t) — g(t). Its first block can be evaluated as

N M . .
(h(t) ~ g(0)], = 57 )3 (p(6() — 67) + AT (w! — "))
] NooM o N M (A.13)
:W;;(p(é(”—éﬁb)+A2(wf—w )+ ]&4;;(9@_

Meanwhile, for any ¢ € {1,..., N}, the (i 4+ 1)-th block is

t

[h(t) ~ 9], = Jiﬂgz(w? 6(1)) + Cy(w! —w]"))

M
B 1 A A T 81 A
=\ w77 2 (4n(00r) = 01) + Gy (w! —w”) )+ w77 D A, (6] — 0(r}))
p=1 p=1
(A.14)
For ease of presentation, we stack up and denote the residual terms (related to consensus er-
ror) in (A.13) and (A. 14) as the vector £,(t). That is, the first block of £_(t) is p/(NM)

ZZ L Ep L (6(rt) — 6] ) and the remaining blocks are given by \/3/N - 1/M - Z (02’” -
o(r, 1)), Vi € {1,..., N}. Then by the definition of G, in (A.2), we obtain the followmg simplifica-
tion:

h(t) - g(t) - £.(1) MZG( i Av(i) ). (A15)

where we have defined
6(j +1) - 0(j)

b (wi ™ —wi)
Aw(y= | VP Y] (A.16)
\/éw(wﬁvﬂ wy)

Clearly, we can express Av(j) as Av(j) = v(j + 1) — v(j) with v(¢) defined in (A.5). Combining
(A.6) and (A.12), we can also write Awv(j) in (A.16) as

Av(j) = v[h() — g()] — 7h(5) - (A17)
Denoting 3 (t) := U ~'v(t), multiplying U ~! on both sides of (A.12) yields
B(t+1) = (I —yA)p(t) +y U ' (h(t) — g(1)) - (A.18)

Combining (A.15), (A.17), and (A.18), by triangle inequality, we have

2+ D < (A.19)
*M t—1
|2~ AR + T~ 1||{||s WO G+ 1AG) - g<j>||]},
p=1j=r}



where G appears in (A.9) and £ (t) is the residue term of the consensus. Furthermore, simplifying
the right-hand side of (A.19) yields

60+ D)) < | - ~A|[B(0)] + AU 1||{||5()||+7G 3 [||h<j>+||h<j>—g<j>||]}

J=(t—M)4

<[ =~Afllo®)] + U~ 1II<“3()II

t—1 j—1
+1G Y {Ilgc(j)ll+G||U||||5(J')I|+G|U|| > [II@(€+1)II+||5(5)||]}>o
J=({t—M)4 1=(j—M)
(A.20)
Moreover, using the definition and (A.11), we can upper bound ||€_.(t)]|| by
M
1 — _
l€0 = 3722 | (P+AVEN) Zue”— DIl < VN(p+4v/BN) Ee(0):
Mp:1 (t— 1\/I)+<q<t
(A21)
Thus, combining (A.20) and (A.21), we bound [T (¢t + 1)|| by
<
e+ DIl < [T A RO+ o) ) max B0+ Calr) | max _ Eula)
(A.22)

where constants C () and Cs () are given by

Ci(7) =7 |U|UYGM (G +2GM), Ca(y) :=~|U (1 +1GM)VN(p + Ay/BN).

Notice that since U ! is full rank, the squared norm ||5(t)|| is proportional to ||@(t) — 6*||% +

(1/BN) ZA; 2, i.e., the optimality gap at the ¢-th iteration.
We next upper bound &(t + 1) as defined in (A.10). Notice that NE.(t + 1) can be written as
Frobenius norm of the matrix @'+ — 16(¢ + 1) T, where ©'! = ((9{t1)T;... . (841 T). Also,

we denote S* = ((s%)T;---(s)"). By the update in (15) and using the trlangle mequallty, we have

1 — 1 —
Et+1) =[O0 =10(t +1)"|[r = < [[W(O' —16(t)") = (S —1ge(t) ")
N N
) - (A23)
< (1071 =16 Tlr +v]S" — 1g0(t)"[|)-
Notice that we have A 1= Amax(W — (1/N)117) < 1 as the graph is connected. Using the fact that
NE,(t) = ||S* — 1gg(t) T || . the right-hand side of (A.23) can be bounded by
Ec(t+1) S XNE(t) +v&(1), (A.24)
where the Lyapunov function &,(t) is defined in (A.10).
To conclude the proof, we need to further upper bound &,(t + 1). To simplify the notation, let us

define G, = (Vo J1,(0%;wh) ;- -+ ; Vo (8% wh) ") and observe that

Egt+1) = Hst“ 1ge(t+1)" HF = HWSt B (G — Git) — 1ge(t + 1)THF
(A.25)

where we have used (13). Furthermore, we observe

Ey(t+1) “ S = 10007 + (G - Gritt) — 1golt+1) — go) T

< (W (8" =190 lle + (G412, — Gritt') = 1golt + 1) — go(t) T 1)
! o
<N (1) + 147 (GoEL = Grit?) = gt + 1) — ga (1) e

(A.26)



We observe G, = ((w})" Ap;

)TA,) + p@t and go(t + 1) — go(t) = M~ (pO(t +

1) —pO(r),,)+ N~ 1A;t+l val (th — w, ““)). Adopting the notations
(w755 (why) ") andw' = N1 Z¢:1 w!, we observe that

MG = Gp) = 1ge(t +1)
19(t+1)7 — @en

Lot
+M(Q

 (wy

—g0(t)"
—10(7! )T)

Pt+1

_ P t+1
_M(@

1(ﬁt+l) Q pt+1 +]_( p,_H)T)A
Using the triangular inequality, the norm of the above can be bounded as

Pt+1-°
2 (10 18+ )T || + @7
_|_ ||Apt+1||

o <||Qt+1 —1@ttY)T

(A.27)

_-1§@;H4)Tnp)

(A.28)
- 1@ ) T
t
From the norm equivalence ||z||> < ||z, we recognize that [|Q!T! — 1(w'™!)T — QTrerr +
t
1@ )T | p < N JJwt —wtt! —w, """ + 7 7+ ). It holds for all #/ < ¢ that

t M
w! = fBLM ZZ {AP(G P—
{=t’ p=1

t+1
w; —

We thus obtain

A L
7“ g/}“ H (Hﬂt'H — 1(ﬁt+1)—r Q're+1 4 1(@ pt+1)T||F)
||A

t+1

t

N
t+1 — w, Pt+1 - z : p¢+1
N —

S0~ 0) — Gyl )]
N t

72 Z |: max

a2, 2

(ZHGg—B*H +6ng —wl*”)} (A.29)
(6~M) 4 <q<t
i=14=(t—M)4+
Thus, combining (A.24), (A.29), and the definition of £, in (A.10), we have
St
wliar (G5 - Gp”itl) L(go(t +1) ~ 90(1)" 1 (A30)
p
< 37 e +Eclt +1)]
2y AM + 1) - B
A 0(1 — 0" 9 _ g%
BNM ; (o2 ( 167 — 6*[| + Cllwf — w ||)
P
< 7 [Ee(rh )+ AE() + 7 & (1)]
2yA(M +1) _ o ) )
AT e (AVNEL) + A0 - 0]+ Z ! — wi]).
Combining (A.26) and (A.30), we obtain that
—2
P 29A (M +1)VN | 2(1+))
< R
E(t+1) < (A—l- M) Eq(t) + [ i i (t_2ﬁ)a+x<q<t(€c(q
2vAM +1
4 AM+1)

max
BM

(A.31)
o (A0 -0+ an —w]



To bound the last term on the right-hand side of (A.31), For all ¢, we observe that:
(A16@ - 0711+ 5 Zuw —w*n)
— N
C\2 1
* (12 ~ a2
< OV D 1000~ 01+ () g D et i1

< (¥ +1) [0 max { (A2, )} (@)1,
which further implies that

—2
vp 29A" (M + 1)VN  2(1+4 )
t+1)< R t ;
Et+1) < </\+ M) Eq(t) + ( BM + M ) (tfzz\I?ngqgtg‘(Q)
29vAVN +1(M + 1) .
- S U max{A /GO max ()]
(A.32)
Finally, combining (A.22), (A.24), (A.32) shows:
o(t +1) max(i—2n), <q<t [[0(9)|
gc(t + 1) < Q max¢—2nm), <q<t gc(q) 3 (A33)
E(t+1) max(;_an), <q<t £g(q)

where the inequality sign is applied element-wisely, and @ is a non-negative 3 x 3 matrix, defined
by:

0(7) + VIIUNUHIGM(G +2GM) A/ N|U||(1 +1GM)(p+ AVBN) 0
0 A vy ,
2‘{A\/7 M+l) ||U||maX{A \/70} \/72’}/14 M+1) + (1+>\) )\_’_’YM
(A34)

where 0(7) := ||[I —yA| = ||I —yG/||. Note that the upper bounds for ||U]|| and |U ~*|| are provided
in (A.8). Furthermore, also note that the eigenvalues of G are bounded in (A.7). We could set the
stepsize 7 to be sufficiently small such that such that () := ||I — G| < 1.

Finally, we apply Lemmas 2 and 3 presented in Section A.1 to the recursive inequality in (A.32),
which shows that each of ||v(t)]], E:(t), &, (t) converges linearly with ¢. Therefore, we conclude the
proof of Theorem 1.

A.1 Two Useful Lemmas

In this section, we present two auxiliary lemmas that are used in the proof of Theorem 1. Our first
lemma establish the linear convergence of vectors satisfying recursive relations similar to (A.32),
provided the spectral radius of @ is less than one. In addition, the second lemma verifies this condition
for Q defined in in (A.34).

Lemma 2. Consider a sequence of non-negative vectors {e(t)}1>1 C R™ whose evolution is
characterized by e(t + 1) < Qe([(t — M + 1)4,t]) for all t > 1 and some fixed integer M > 0,
where Q € R™ ™ is a matrix whose entries are nonnegative, and we define

maxges e1(q)
e(S) = € R™  forany subsetS C N .
maxges en(q)
Moreover, if Q irreducible in the sense that there exists an integer m such that the entries of Q™ are

all positive, and the spectral radius of Q, denoted by p(Q), is strictly less than one, then for any
t > 1, we have

e(t) < p(Q)17 1Cruy (A.35)
where uy € R is the top right eigenvector of Q and C is a constant that depends on the
initialization.



Proof. We shall prove the lemma using induction. By the Perron-Frobenius theorem, the eigenvector
uy associated with p(Q) is unique and is an all-positive vector. Therefore, there exists C; such that

e(l) <Ciuy . (A.36)

Let us first consider the base case with t = 2,..., M + 1, i.e., [(t —1)/M]| = 1. When t = 2, by
(A.36) we have,

6(2) S Qe(l) S Ol QU1 = p(Q) Cl up , (A37)

which is valid as Q, e(1), u; are all non-negative. Furthermore, we observe that e(2) < Cju;. Next
when t = 3, we have

e(3) < Qe(11,2) € €1 Qu1 = p(@)Crus |

where (a) is due to the non-negativity of vectors/matrix and the fact e(1), e(2) < Cyu; as shown in
(A.37). Telescoping using similar steps, one can show e(t) < p(Q)Ciu, forany t = 2,..., M + 1.

For the induction step, let us assume that (A.35) holds true for any ¢ up to ¢ = pM + 1. That is, we
assume that the result holds for all ¢ such that [(¢t — 1) /M| < p. We shall show that it also holds for
anyt =pM +2,...,(p+1)M + 1,ie, [(t —1)/M| = p+ 1. Observe that

e(pM +2) < Qe([(p— )M +2,pM +1]) < C1 p(Q)PQur = p(Q)P ' Chruy ,  (A38)

where we have used the induction hypothesis. It is clear that (A.38) is equivalent to (A.35) with
t = pM + 2. Similar upper bound can be obtained for e(pM + 3) as well. Repeating the same steps,
we show that (A.35) is true for any ¢ = pM + 2, ..., (p + 1) M + 1. Therefore, we conclude the proof
of this lemma. Q.E.D.

The following Lemma shows that @ defined in (A.34) satisfies the conditions required in the previous
lemma. Combining these two lemmas yields the final step of the proof of Theorem 1.

Lemma 3. Consider the matrix Q defined in (A.34), it can be shown that (a) Q is an irreducible ma-
trix in R3*3; (b) there exists a sufficiently small ~ such that p(Q) < 1; and (c) as N, M > 1 and the
graph is geometric, we can set v = O(1/ max{N?, M?}) and p(Q) <1 — O(1/ max{N?, M?}).

Proof. Our proof is divided into three parts. The first part shows the straightforward irreducibility
of Q; the second part gives an upper bound to the spectral radius of @; and the last part derives an
asymptotic bound on p(Q) when N, M > 1.

Irreducibility of Q To see that Q is irreducible, notice that Q? is a positive matrix, which could
be verified by direct computation.

Spectral Radius of Q In the sequel, we compute an upper bound to the spectral radius of @, and
show that if y is sufficiently small, then its spectral radius will be strictly less than one. First we note
that 6(y) = 1 — vy« for some o > 0 and the network connectivity satisfies A < 1. Also note that
p > 0. For notational simplicity let us define the following

a1 = |U[|UMGM(G +2GM), az = |U||VN(p + AV/BN), as = GM|[U||VN(p +Ay/BN)

9AVN +1(M + 1 L 9A° (M + 1)WN 21+ A
a4 = ;]\4( +1) ||U||max{A,\/BC}, CLSZW’ 6:%.

With the above shorthand definitions, the characteristic polynomial for @, denoted by g: R — R, is
given by

o—(1—rya+~%a1) —yaz —~%a3 0
g(o) = det 0 o= -
—vay —yas —ag O — ()\ + %)

By direct computation, we have

9(0) = (0 — (1 —ya ++2a1)) go(0) — ¥ (a2 + vaz)as (A.39)



where

90(0) = (0 = A)” = 1£(0 = 1) = (a5 + ag) . (A.40)
Notice that the two roots of the above polynomial can be upper bounded by:
VN
A+ 2’3(2 + (ngM ) +v(yas +ag) <T:= A+ % + V(vas + ag) (A.41)
In particular, for all o > &, we have
golo) > (0 —3)?. (A42)
Now, let us define
4
o* :—max{vf+1fya+72al,a+’y W} (A.43)
«

Observe that for all o > o*, it holds that

9(0) = (0 = (1 = ya+7%a1))(0 = 7)* = 7 (a2 + Ya3)as

a ,4(az +7as)a (A44)
%72 v 07 2Jad —7°(ag +~a3)as = 0.

Lastly, observe that g(o) is strictly increasing for all o > ¢*. Combining with the Perron Frobenius
theorem shows that p(Q) < o*. Moreover, as A < 1 and o > 0, there exists a sufficiently small
such that * < 1. We conclude that p(Q) < 1 in the latter case.

v

Asymptotic Rate when M, N > 1 We evaluate a sufficient condition on ~ for the proposed
algorithm to converge, i.e., when o* < 1. Let us consider (A.43) and the first operand in the max{-}.
The first operand is guaranteed to be less than one if:

a
yin:T+1—'ya+ya1<1—% (A45)

Moreover, from the definition of a1, we note that this requires v = O(1/M?) if M > 1.

Next, we notice that for geometric graphs, we have A = 1 — ¢/N for some positive c. Substituting
this into the second operand in (A.43) gives

az + va
1_++¢<Wﬁ%4ﬂ¢273><1, (A46)

Therefore, (A.45) and (A.46) together give a sufficient condition for o* < 1.

To obtain an asymptotic rate when M, N >> 1. Observe that a; = O(N), a3 = O(NM), ay =
O(VN), as = O(VN), ag = ©(1/M). Moreover, the condition (A.45) gives v = O(1/M?),
therefore the left hand side of Eq. (A.46) can be approximated by

1 % +~0 (N%) +/70(1/vVM) (A47)

Setting the above to 1 — ¢/(2N) requires one to have v = O(1/N?).
Finally, the above discussions show that setting v = O(1/ max{N?, M?}) guarantees that 0* < 1.
In particular, we have o* < max{1 —y%,1—¢/(2N)} =1 — O(1/ max{N?, M?}) Q.E.D.

A.2 Derivation of Equation (A.6)

We we establish (A.6) with details. Recall that h(¢) and v(t) are defined in (A.5). We verify this
equation for each block of h(t). To begin with, for the first block, for hg(t) defined in (A.3), we
have

he(t) = Z (6(t) — 6" + 6%) Z ATw



Recall from (A.1) that p* = —+ SN | ATaw?, which implies that

N
_ 2} _ p* ﬁ AT 1 S N
where [Gv(t)]; denotes the first block of Gu(t).

It remains to establish the equation for the remaining blocks. For any ¢ € {1,..., N}, let us focus on
the 7 + 1-th block. By the definition of h.,, (¢) in (A.4), we have

Ry = 2 (4600 - Gt~ ) = [ L (A0 - 0%) + b — Cut ).

Again from (A.1), it holds that AO* = b, + C’wf. Therefore,

—\/E(Aé(t) ~Cuwl - b)) = —\/EA(G‘(::) —0) + /3@“’1‘/;73’3 = [Gu(t)]i41 . (A49)

where [Gv(t)];+1 denotes the ¢ + 1-th block of Gu(t). Combining (A.48) and (A.49) gives the
desired equality.

B Additional Experiments

An interesting observation from Theorem 1 is that the convergence rate of PD-DistlAG depends on
M and the topology of the graph. The following experiments will demonstrate the effects of these on
the algorithm, along with the effects of regularization parameter p.

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure B.1: Illustrating the graph topologies in the additional experiments. (Left) ER graph with
connectivity probability of 1.01 log N/N. (Right) Ring graph.
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Figure B.2: Experiment with mountaincar dataset. For this problem, we only have d = 300,

M = 500 samples, but yet there are N = 500 agents. (Left) We set p = 0.01. (Right) We set
p=0.1

To demonstrate the dependence of PD-DistIAG on the graph topology, we fix the number of agents
at N = 500 and compare the performances on the ring and the ER graph set with probability of



connection of p = 1.01log N/N, as illustrated in Fig. B.1. Notice that the ring graph is not a
geometric graph and its connectivity parameter, defined as A := Apax (W — (1/N)117) from the
previous section can be much closer to 1 than the ER graph. Therefore, we expect the PD-DistlIAG
algorithm to converge slower on the ring graph. This is corroborated by Fig. B.2. Furthermore, from
the figure, we observe that with a larger regularization p, the disadvantage for using the ring graph
has exacerbated. We suspect that this is due to the fact that the convergence speed is limited by the
graph connectivity, as seen in (A.34); while in the case of ER graph, the algorithm is able to exploit
the improved problem’s condition number.

Next, we consider the same set of experiment but increase the number of samples to M = 5000.

—SAGA
—PD-DistlAG (ER)
— PD-DistlAG (Ring)

—SAGA
—PD-DistIAG (ER)
— PD-DistlAG (Ring)

Optimality Gap of MSPBE
3
(4]

Optimality Gap of MSPBE

1 -10
0 100 200 300 400 500 0 0 100 200 300 400 500

Epoch Epoch
Figure B.3: Experiment with mountaincar dataset. For this problem, we have d = 300, M = 5000
samples, but yet there are NV = 500 agents. (Left) We set p = 0.01. (Right) We set p = 0.1.

Interestingly, for this example, the performances of the ring graph and the ER graph settings are
almost identical in this setting with large sample size M. This is possible as we recall from Theorem 1
that the algorithm converges at a rate of O(c') where 0 = 1 — O(1/ max{MN?, M3}). As we
have M > N, the impact from the sample size M becomes dominant, and is thus insensitive to the
graph’s connectivity.
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