Posterior Concentration for Sparse Deep Learning

Nicholas G. Polson and Veronika Ročková Booth School of Business University of Chicago Chicago, IL 60637

1 Supplemental Materials

1.1 Proof of Theorem 6.1

We prove the theorem by verifying Condition (11) and (12), setting $\mathcal{F}_n = \mathcal{F}(L^*, p^*, s^*)$. First, we need to verify the entropy condition and show that

$$\sup_{\varepsilon > \varepsilon_n} \log \mathcal{E}\left(\frac{\varepsilon}{36}, \{f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^\star, \boldsymbol{p}^\star, s^\star) : \|f - f_0\|_n < \varepsilon\}, \|.\|_n\right) \le n \,\varepsilon_n^2. \tag{1}$$

We can upper-bound the local entropy (1) with the global metric entropy. In addition, because

$$\{f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f\|_{\infty} \leq \varepsilon\} \subset \{f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f\|_{n} \leq \varepsilon\},\$$

we can upper-bound (1) with

$$\log \mathcal{E}\left(\frac{\varepsilon_n}{36}, f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^*, \boldsymbol{p}^*, s^*), \|.\|_{\infty}\right) \le (s^* + 1) \log\left(\frac{72}{\varepsilon_n} (L^* + 1)(12pN + 1)^{2(L^* + 2)}\right)$$
$$\lesssim n^{p/(2\alpha + p)} \log(n) \log\left(n/\log^{\delta}(n)\right) \lesssim n^{p/(2\alpha + p)} \log^2(n) \lesssim n\varepsilon_n^2$$

for $\delta > 1$, where we used Lemma 10 of Schmidt-Hieber (2017) and the fact that $s^* \leq n^{p/(2\alpha+p)}$ and $N \approx n^{p/(2\alpha+p)}/\log(n)$. This verifies the entropy Condition (11).

Next, we want to show that the prior concentrates enough mass around the truth in the sense that

$$\Pi(f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f_{\boldsymbol{B}}^{DL} - f_0\|_n \le \varepsilon_n) \ge e^{-dn \varepsilon_n^2}$$
(2)

for some d > 2. Choosing $N^* = C_N \lfloor n^{p/(2\alpha+p)} / \log(n) \rfloor$ in Lemma 5.1, there exists a neural network $\widehat{f}_{\widehat{B}} \in \mathcal{F}(L^*, p^*, s^*)$ consisting of p^* nodes aligned in $L^* \leq \log(n)$ layers and indexed by $\|\widehat{B}\|_0 = s^* \leq n^{p/(2\alpha+p)} \log(n)$ nonzero parameters such that

$$\|\widehat{f}\widehat{\boldsymbol{B}} - f_0\|_n \le C_{\infty} n^{-\alpha/(2\alpha+p)} \log^{\delta\alpha/p}(n) \lesssim \varepsilon_n/2,$$

where the last inequality follows from $\alpha < p$, absorbing C_{∞} in the concentration rate. The approximation $\widehat{f}_{\widehat{B}}$ sits on a network architecture characterized by a specific pattern $\widehat{\gamma}$ of nonzero links among \widehat{B} , i.e. \widehat{W}_l and \widehat{a}_l for $1 \le l \le L + 1$. We denote by $\mathcal{F}(\widehat{\gamma}, L^*, p^*, s^*) \subset \mathcal{F}(L^*, p^*, s^*)$ all the functions supported on this particular architecture. These functions differ only in the size of the s^* nonzero coefficients among \widehat{B} , denoted by $\mathcal{\beta} \in \mathbb{R}^{s^*}$. With $\widehat{\beta}$, we denote the s^* -vector associated with the nonzero elements in \widehat{B} .

Note that there are $\binom{T}{s^{\star}} \leq (12 \, p \, N)^{(L^{\star}+1) \, s^{\star}}$ combinations to pick s^{\star} the nonzero coefficients and each one, according to prior (9), has an equal prior probability of occurrence $\frac{1}{\binom{T}{s^{\star}}}$.

To continue, we note (from the triangle inequality) that

 $\{f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f_{\boldsymbol{B}}^{DL} - f_0\|_n \le \varepsilon_n\} \supset \{f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(\widehat{\boldsymbol{\gamma}}) : \|f_{\boldsymbol{B}}^{DL} - \widehat{f}_{\widehat{\boldsymbol{B}}}\|_{\infty} \le \varepsilon_n/2\}.$

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Next, we denote with $\{\beta \in \mathbb{R}^{s^*} : \|\beta\|_{\infty} \leq 1$ and $\|\beta - \hat{\beta}\|_{\infty} \leq \varepsilon_n\}$ the set of coefficients that are at most ε -away from the best approximating coefficients $\hat{\beta}$ of the neural network $\hat{f}_{\hat{B}} \in \mathcal{F}(\hat{\gamma}, L^*, p^*, s^*)$. From the proof of Lemma 10 of Schmidt-Hieber (2017), it follows that

$$\begin{split} \left\{ f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(\widehat{\boldsymbol{\gamma}}) : \| f_{\boldsymbol{B}}^{DL} - \widehat{f}_{\widehat{\boldsymbol{B}}} \|_{\infty} \leq \frac{\varepsilon_n}{2} \right\} \supset \\ \left\{ \boldsymbol{\beta} \in \mathbb{R}^{s^{\star}} : \| \boldsymbol{\beta} \|_{\infty} \leq 1 \text{ and } \| \boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \|_{\infty} \leq \frac{\varepsilon_n}{2V(L^{\star} + 1)} \right\}, \end{split}$$

where $V = \prod_{l=0}^{L^*+1} (p_l^* + 1)$. Now we have all the pieces needed to find a lower bound to the probability in (2). We can write, for some suitably large C > 0,

$$\Pi \left(f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \| f_{\boldsymbol{B}}^{DL} - f_{0} \|_{n} \leq \varepsilon_{n} \right) > \frac{\Pi (f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(\widehat{\boldsymbol{\gamma}}, L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \| f_{\boldsymbol{B}} - \widehat{f}_{\widehat{\boldsymbol{B}}} \|_{\infty} \leq \varepsilon_{n}/2)}{\binom{T}{s^{\star}}}$$

$$> \mathrm{e}^{-(L^{\star}+1)s^{\star} \log(12\,p\,N^{\star})} \Pi \left(\boldsymbol{\beta} \in \mathbb{R}^{s^{\star}} : \| \boldsymbol{\beta} \|_{\infty} \leq 1 \text{ and } \| \boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \|_{\infty} \leq \frac{\varepsilon_{n}}{2V(L^{\star}+1)} \right).$$

To continue to lower-bound the expression above, we note that

$$e^{-(L^*+1)s^* \log(12 p N^*)} > e^{-C \log^2(n)n^{p/(2\alpha+p)}}$$

for some C > 0. Under the uniform prior distribution on a cube $[-1, 1]^{s^*}$ we can write

$$\Pi\left(\boldsymbol{\beta} \in \mathbb{R}^{s^{\star}} : \|\boldsymbol{\beta}\|_{\infty} \leq 1 \text{ and } \|\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}\|_{\infty} \leq \frac{\varepsilon_{n}}{2V(L^{\star}+1)}\right) = \left(\frac{\varepsilon_{n}}{2V(L^{\star}+1)}\right)^{s}$$
$$\geq e^{-s^{\star}(L^{\star}+2)\log(12p\,n/\log^{\delta}(n))} \geq e^{-D\,n^{p/(2\alpha+p)}\log^{2}(n)}$$

for some D > 0. We can combine this bound with the preceding expressions to conclude that $e^{-(C+D) n^{p/(2\alpha+p)} \log^2(n)} \ge e^{-d n \varepsilon_n^2}$ for $\delta > 1$ and d > C + D. This concludes the proof of (17).

1.2 Proof of Theorem 6.2

First we show that the sieve \mathcal{F}_n defined in (20) is still reasonably small in the sense that the log covering number can be upper-bounded by a constant multiple of $n^{p/(2\alpha+p)} \log^{2\delta}(n)$. It follows from the proof of Theorem 6.1 that the global metric entropy satisfies

$$\mathcal{E}\left(\frac{\varepsilon_{n}}{36}, \mathcal{F}_{n}, \|.\|_{n}\right) \leq \sum_{N=1}^{N_{n}} \sum_{s=0}^{s_{n}} e^{(s+1)\log\left(\frac{72}{\varepsilon_{n}}(L^{\star}+2)(12pN+1)^{2(L^{\star}+2)}\right)} \\ \lesssim N_{n} s_{n} e^{C(L^{\star}+1)(s_{n}+1)\log(pN_{n}L^{\star}/\varepsilon_{n})}$$

for some C > 0 and thereby

$$\log \mathcal{E}\left(\frac{\varepsilon_n}{36}, \mathcal{F}_n, \|.\|_n\right) \lesssim \log N_n + \log s_n + n \,\varepsilon_n^2 \lesssim n \,\varepsilon_n^2.$$

This verifies Condition (11).

Next, we need to show that the prior charges the sieve in the sense that $\Pi[\mathcal{F}_n^c] = o(e^{(d+2)n\varepsilon_n^2})$ for some d > 2 (determined below). We have

$$\Pi[\mathcal{F}_n^c] < \Pi(N > N_n) + \Pi(s > s_n)$$

We apply the Chernoff bound to find that

$$\Pi(N > N_n) < e^{-t (N_n+1)} \mathbb{E} e^{t N} \propto e^{-t (N_n+1)} \left(e^{e^t \lambda} - 1 \right)$$
(3)

for any t > 0. With our choice $N_n = \lfloor \widetilde{C}_N n^{p/(2\alpha+p)} \log^{2\delta-1} n \rfloor$ and with $t = \log N_n$ we obtain

$$\Pi(N > N_n) \mathrm{e}^{(d+2) n \varepsilon_n^2} \lesssim \mathrm{e}^{-(N_n+1) \log N_n + \lambda N_n + (d+2) n \varepsilon_n^2} \to 0$$

for a large enough constant \widetilde{C}_N . Next, we find that

$$\Pi(s > s_n) \mathrm{e}^{(d+2) n \varepsilon_n^2} \lesssim \mathrm{e}^{-C_s(\lfloor L^* N_n \rfloor + 1) + (d+2) n \varepsilon_n^2} \to 0$$

for some suitably large $\tilde{C}_N > 0$. This verifies Condition (13).

Finally, we verify the prior concentration Condition (12). For $N^{\star} < N_n$ and $s^{\star} < s_n$ we know from the proof of Theorem 6.1 that

$$\Pi(f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f_{\boldsymbol{B}}^{DL} - f_0\|_n \le \varepsilon_n) \ge e^{-D_1 n \varepsilon_n^2}$$

for some $D_1 > 2$. Our priors put enough mass at the "right choices" (N^*, s^*) in the sense that $\pi(N^*) \gtrsim e^{-N_n \log(N_n/\lambda)} \gtrsim e^{-D n \varepsilon_n^2}$ and $\pi(s^*) \gtrsim e^{-D n \varepsilon_n^2}$ for some suitable D > 0. Then we can write

$$\Pi(f_{\boldsymbol{B}}^{DL} \in \mathcal{F}_{n} : \|f_{\boldsymbol{B}}^{DL} - f_{0}\|_{n} \leq \varepsilon_{n})$$

$$\geq \pi(N^{\star})\pi(s^{\star})\Pi(f_{\boldsymbol{B}}^{DL} \in \mathcal{F}(L^{\star}, \boldsymbol{p}^{\star}, s^{\star}) : \|f_{\boldsymbol{B}}^{DL} - f_{0}\|_{n} \leq \varepsilon_{n}) \geq e^{-(2D+D_{1})n\varepsilon_{n}^{2}}.$$

With these considerations, we conclude the proof of Theorem 6.2.