
Single-Agent Policy Tree Search With Guarantees:
Supplementary Material

Laurent Orseau
DeepMind, London, UK
lorseau@google.com

Levi H. S. Lelis∗
Universidade Federal de Viçosa, Brazil

levi.lelis@ufv.br

Tor Lattimore
DeepMind, London, UK
lattimore@google.com

Théophane Weber
DeepMind, London, UK
theophane@google.com

∗This work was carried out while L. H. S. Lelis was at the University of Alberta, Canada.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Figure 4: Learning curves of A3C for the 4 chosen learning rates (4e-4, 2e-4, 1e-4, 5e-5) on the
Sokoban level generator.

A Network architecture and learning protocol

The network takes as input a 10x10x4 grid where the last dimension is for a binary encoding of the
different attributes (wall, man, goal, box), which is passed through 2 convolutional layers (4× 4 with
64 channels, followed by 3 × 3 with 64 channels as well), followed by a fully connected layer of
512 ReLU units. The output layer provides logits for the 4 actions (up, down, left, right). Training is
performed using A3C [Mnih et al., 2016] with a reward function giving a reward of -0.1 per step, +1
per box on a goal and -1 for the converse action, and +10 for solving the level (all boxes on goals),
with a discount factor of 0.99; the optimizer used is RMSProp [Tieleman and Hinton, 2012] (no
momentum, epsilon 0.1, decay 0.99), with entropy regularization of 0.005. During training, at each
episode, the learner performs a single trajectory of length 100 (like multiTS(1, 100)), receives the
corresponding rewards, then moves on to the next episode. A single level is (very likely) never seen
twice during training. Similarly, it is very unlikely that a level of the 1000 test levels was seen during
training. We take the best performing network, which solves around 65% of the levels when sampling
a single sequence of actions. The network is trained for 3.5e9 steps (node expansions), which can
seem to be a lot, however notice that this is equivalent to fully searching a single level of Sokoban
(without state cuts) uniformly with 4 actions up to depth 16 (given that solutions are usually of depth
more than 30). The learning process was repeated for 4 learning rates (4e-4, 2e-4, 1e-4, 5e-5) (see
Fig. 4).

B Another universal restarting strategy for Las Vegas programs

We use the sequence5 of runtimes f(n) := A6519(n):

1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1. . .

For all n ∈ N1 : f(n) :=

{
1 if n is odd,
2f(n/2) o.w.

It has the ‘fractal’ property that f(k2n) = 2nf(k) (since f(k2n) = 2f(k2n−1) = . . . = 2nf(k20)),
for k ∈ N1 and n ∈ N0, and it follows that f(2n) = 2n and f(k2n) ≥ 2n.

At iteration n, the Las Vegas program is run for f(n) steps. For all t > 0, if f(n) ≥ t, then it has
a probability at least q(t) of halting, otherwise it does not halt and is forcibly stopped after f(n)
computations steps. Let t̂ := 2dlog2 te be the smallest power of 2 greater than or equal to t. Then
Lemma 8 below tells us that for c < t̂ we have that f(kt̂ + c) = f(c) ≤ t̂/2 < t, that is, between
two consecutive factors of t̂, f(n) < t.

Let phalt(n) denote the probability that the algorithm halts exactly at the nth run, and take 1 ≤ c < t̂
and k ≥ 0, then the expected number of computation steps L (sum of the lengths of the runs) before

5https://oeis.org/A006519.

2



halting is given by:

Luniv(p) :=

∞∑
n=1

[t phalt(n) + (1− phalt(n))f(n)]

n−1∏
j=1

(1− phalt(j))︸ ︷︷ ︸
probability of

not halting before run n

.

where phalt(n) = 0 when f(n) < t, and phalt(n) = q(t) otherwise.

We restate Theorem 5 more precisely:
Theorem 7. For all distributions p over halting times, the expected runtime of the universal restarting
strategy based on A6519 is bounded by

Luniv(p) ≤ min
t
t+

t

q(t)

(
log2

t

q(t)
+ 6.1

)
,

where q is the cumulative distribution of p.

Proof of Theorems 5 and 7. At step n, if k is the number of past runs where f(m) ≥ t̂ (with m < n),
then

∏n−1
j=1 (1− phalt(j)) = (1− q(t))k then with 1 ≤ c < t̂ and γ := 1− q(t):

Luniv(p) =

∞∑
n=0

{
γkf(n) if n = kt̂+ c (i.e., f(n) < t)

γkpt+ γk+1f(n) if n = kt̂+ t̂ ,

=

∞∑
n=0

{
γkf(c) if n = kt̂+ c

γkpt+ γk+1t̂f(k + 1) if n = kt̂+ t̂ .

where we used f((k + 1)t̂) = t̂f(k + 1) (remembering that t̂ is a power of 2) and Lemma 8 for
f(kt̂ + c) = f(c). Since f(n) = f(c) < t when n = kt̂ + c, we can decompose Luniv(p) into the
steps where f(n) < t and the rest:

Luniv(p) = L< + L≥

L< :=

∞∑
k=0

γk
t̂−1∑
c=1

f(c) =
1

1− γ

t̂−1∑
c=1

f(c) =
t̂

2q(t)
log2 t̂ (Lemma 9)

L≥ :=

∞∑
k=0

γk(1− γ)t+ γk+1t̂f(k + 1) = t+ t̂

∞∑
k=1

γkf(k)

≤ t+ t̂

q(t̂)

(
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

q(t̂)

)
where we used Lemma 13 on the last line with γ = 1− q(t). Finally, since t̂ = 2dlog2 te ≤ 2t and
q(t̂) ≥ q(t) and dlog2 te ≤ log2 t+ 1:

L ≤ t+ t

q(t)

(
log2 t+ 1 +

2

e
+

2

ln 2
+ log2 ln 16 + log2

1

q(t)

)
≤ t+ t

q(t)

(
log2

t

q(t)
+ 6.1

)
which proves the result.

Lemma 8. For f =A6519, with k ∈ N0, n ∈ N0, a ∈ N1, b ∈ N0 and a2b < 2n, and with a odd,
then

f(k2n + a2b) = f(a2b) = 2b .

Proof. Since a is odd, then so is k2n−b+a, and so f(k2n+a2b) = f(2b(k2n−b+a)) = 2bf(k2n−b+
a) = 2b.

3



Hence, for all numbers between two adjacent factors of 2n, f(k2n + c) = f(c) ≤ 2n−1.

Lemma 9. For n ∈ N1 and f =A6519,

2n−1∑
c=1

f(c) = n2n−1.

Proof. If n ≥ 1 and using Lemma 8 again at 2n−1:

2n−1∑
c=1

f(c) =

2n−1−1∑
c=1

f(c) + f(2n−1) +

2n−1∑
c=2n−1+1

f(c)

= 2n−1 + 2

2n−1−1∑
c=1

f(c)

= . . . = 202n−1 + 212n−2 + 222n−3 + . . .+ 2n−120 + 2n
20−1∑
c=1

f(c)

= n2n−1 .

Lemma 10. Let f =A6519, then for k ∈ N1, n ∈ N0, c ∈ N0:

f(k) = 2n ⇔ k = (2c+ 1)2n .

Proof. Since any number k can be uniquely written in the form k = (2c+1)2a, and f((2c+1)2a) =
2af(2c+ 1) = 2a with a ∈ N0, then f(k) = 2n ⇔ a = n.

Lemma 11. For γ ∈ [0, 1),

∞∑
n=0

2nγ2
n

≤ 1

ln 1
γ

(
1

e
+

γ

ln 2

)
.

Proof. Let h(x) := 2xγ2
x

for x ∈ R, then h′(x) = ln(2)2xγ2
x

(2x ln γ + 1) where h′(x0) = 0 for
the unique x0 such that 2x0 = 1

ln 1
γ

and since ln γ < 0, we have that h′(x) is positive for x < x0

and negative for x > x0. Thus h is unimodal, and since furthermore h(x) is positive the sum can be
upper bounded by the integral of the continuous function plus its maximum:

∞∑
n=0

h(n) ≤
∫ ∞
0

h(x)dx+max
x

h(x) ,

max
x

h(x) = h(x0) =
1

ln 1
γ

1

e
,∫ ∞

0

2xγ2
x

dx =
1

ln 2

∫ ∞
0

2x ln 2γ2
x

dx =
1

ln 2

∫ ∞
1

γydy =
γ

ln 2 ln 1
γ

,

where we used integration by substitution. Adding the two terms finishes the proof.

Lemma 12. For γ ∈ [0, 1) and a ≥ 1:

∞∑
n=0

γ2
n

≤ γ

⌈
log2

1

log2
1
γ

⌉
+ 1 ≤ log2

1

ln 1
γ

+ log2 ln 16 .

4



Proof. Let N = min
{
n ∈ N0 : γ2

N ≤ 1
2

}
=
⌈
log2

1
log2

1
γ

⌉
, then

∞∑
n=0

γ2
n

=

N−1∑
n=0

γ2
n

+

∞∑
n=N

γ2
n

≤ Nγ +

∞∑
n=0

(
γ2

N
)2n
≤ Nγ +

∞∑
n=0

2−2
n

≤ Nγ + 1

≤

⌈
log2

1

log2
1
γ

⌉
+ 1

≤ log2
1

log2
1
γ

+ 2 .

Extracting log2 ln 2 finishes the proof.

Lemma 13. Let f =A6519 and γ ∈ [0, 1). Then

∞∑
k=1

γkf(k) ≤ 1

1− γ

(
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

1− γ

)
.

Proof. Since f(n) is a power of 2 for all n ∈ N1, we regroup the runs by powers of 2:

∞∑
k=1

γkf(k) =

∞∑
n=0

2n
∞∑
k=1

γkJf(k) = 2nK

=

∞∑
n=0

2n
∞∑
c=0

γ(2c+1)2n (Lemma 10)

=

∞∑
n=0

2nγ2
n
∞∑
c=0

(
γ2

n+1
)c

=

∞∑
n=0

2nγ2
n 1

1− γ2n+1

≤
∞∑
n=0

2nγ2
n

(
1 +

γ

2n+1(1− γ)

)
(Lemma 14)

=

∞∑
n=0

2nγ2
n

+
1

2

γ

1− γ

∞∑
n=0

γ2
n

≤ 1

1− γ

(
1

e
+

γ

ln 2
+
γ

2
+
γ2

2

(
log2 ln 4 + log2

1

1− γ

))
≤ 1

1− γ

(
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

1− γ

)
where we used Lemma 11 and Lemma 12 on the second to last line together with ln 1

γ ≥ 1− γ.

Lemma 14. For γ ∈ [0, 1) and a ≥ 1:

1

1− γa
≤ 1 +

1

a

γ

1− γ
.

5



Proof. For ε > 0 and a ≥ 1, it can be shown that (1 + ε)a ≥ 1 + aε. Then, taking γ := 1
1+ε :

(1 + ε)a ≥ 1 + aε ⇔ (1 + ε)a − 1 ≥ a((1 + ε)− 1)

⇔ 1

(1 + ε)a − 1
≤ 1

a((1 + ε)− 1)

⇔ 1

γ−a − 1
≤ 1

a(γ−1 − 1)

⇔ γa

1− γa
≤ γ

a(1− γ)

⇔ 1

1− γa
≤ 1 +

1

a

γ

1− γ
,

which proves the result.

6


