Single-Agent Policy Tree Search With Guarantees: Supplementary Material

Laurent Orseau DeepMind, London, UK lorseau@google.com

> Tor Lattimore DeepMind, London, UK lattimore@google.com

Levi H. S. Lelis[∗] Universidade Federal de Viçosa, Brazil levi.lelis@ufv.br

> Théophane Weber DeepMind, London, UK theophane@google.com

[∗]This work was carried out while L. H. S. Lelis was at the University of Alberta, Canada.

Figure 4: Learning curves of A3C for the 4 chosen learning rates (4e-4, 2e-4, 1e-4, 5e-5) on the Sokoban level generator.

A Network architecture and learning protocol

The network takes as input a $10x10x4$ grid where the last dimension is for a binary encoding of the different attributes (wall, man, goal, box), which is passed through 2 convolutional layers (4×4 with 64 channels, followed by 3×3 with 64 channels as well), followed by a fully connected layer of 512 ReLU units. The output layer provides logits for the 4 actions (up, down, left, right). Training is performed using A3C [Mnih et al., 2016] with a reward function giving a reward of -0.1 per step, +1 per box on a goal and -1 for the converse action, and +10 for solving the level (all boxes on goals), with a discount factor of 0.99; the optimizer used is RMSProp [Tieleman and Hinton, 2012] (no momentum, epsilon 0.1, decay 0.99), with entropy regularization of 0.005. During training, at each episode, the learner performs a single trajectory of length 100 (like multiTS(1, 100)), receives the corresponding rewards, then moves on to the next episode. A single level is (very likely) never seen twice during training. Similarly, it is very unlikely that a level of the 1000 test levels was seen during training. We take the best performing network, which solves around 65% of the levels when sampling a single sequence of actions. The network is trained for 3.5e9 steps (node expansions), which can seem to be a lot, however notice that this is equivalent to fully searching a *single* level of Sokoban (without state cuts) uniformly with 4 actions up to depth 16 (given that solutions are usually of depth more than 30). The learning process was repeated for 4 learning rates (4e-4, 2e-4, 1e-4, 5e-5) (see Fig. 4).

B Another universal restarting strategy for Las Vegas programs

We use the sequence⁵ of runtimes $f(n) := A6519(n)$:

$$
1\; 2\; 1\; 4\; 1\; 2\; 1\; 8\; 1\; 2\; 1\; 4\; 1\; 2\; 1\; 16\; 1\; 2\; 1\ldots
$$

For all
$$
n \in \mathbb{N}_1
$$
: $f(n) := \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 2f(n/2) & \text{o.w.} \end{cases}$

It has the 'fractal' property that $f(k2^n) = 2^n f(k)$ (since $f(k2^n) = 2f(k2^{n-1}) = \ldots = 2^n f(k2^0)$), for $k \in \mathbb{N}_1$ and $n \in \mathbb{N}_0$, and it follows that $f(2^n) = 2^n$ and $f(k2^n) \ge 2^n$.

At iteration n, the Las Vegas program is run for $f(n)$ steps. For all $t > 0$, if $f(n) \geq t$, then it has a probability at least $q(t)$ of halting, otherwise it does not halt and is forcibly stopped after $f(n)$ computations steps. Let $\hat{t} := 2^{\lceil \log_2 t \rceil}$ be the smallest power of 2 greater than or equal to t. Then Lemma 8 below tells us that for $c < \hat{t}$ we have that $f(k\hat{t} + c) = f(c) < \hat{t}/2 < t$, that is, between two consecutive factors of \hat{t} , $f(n) < t$.

Let $p_{\text{halt}}(n)$ denote the probability that the algorithm halts exactly at the nth run, and take $1 \leq c < \hat{t}$ and $k \geq 0$, then the expected number of computation steps L (sum of the lengths of the runs) before

 5 https://oeis.org/A006519.

halting is given by:

$$
L_{\text{univ}}(p) := \sum_{n=1}^{\infty} \left[t \, p_{\text{halt}}(n) + (1 - p_{\text{halt}}(n)) f(n) \right] \underbrace{\prod_{j=1}^{n-1} (1 - p_{\text{halt}}(j))}_{\text{probability of}\\ \text{not halting before run } n}.
$$

where $p_{\text{halt}}(n) = 0$ when $f(n) < t$, and $p_{\text{halt}}(n) = q(t)$ otherwise.

We restate Theorem 5 more precisely:

Theorem 7. For all distributions p over halting times, the expected runtime of the universal restarting strategy based on A6519 is bounded by

$$
L_{\text{univ}}(p) \le \min_t t + \frac{t}{q(t)} \left(\log_2 \frac{t}{q(t)} + 6.1 \right),
$$

where q is the cumulative distribution of p .

Proof of Theorems 5 and 7. At step n, if k is the number of past runs where $f(m) \geq \hat{t}$ (with $m < n$), then $\prod_{j=1}^{n-1} (1 - p_{\text{halt}}(j)) = (1 - q(t))^k$ then with $1 \le c < \hat{t}$ and $\gamma := 1 - q(t)$:

$$
L_{\text{univ}}(p) = \sum_{n=0}^{\infty} \begin{cases} \gamma^k f(n) & \text{if } n = k\hat{t} + c \quad (i.e., f(n) < t) \\ \gamma^k pt + \gamma^{k+1} f(n) & \text{if } n = k\hat{t} + \hat{t} \,, \end{cases}
$$
\n
$$
= \sum_{n=0}^{\infty} \begin{cases} \gamma^k f(c) & \text{if } n = k\hat{t} + c \\ \gamma^k pt + \gamma^{k+1} \hat{t} f(k+1) & \text{if } n = k\hat{t} + \hat{t} \,. \end{cases}
$$

where we used $f((k + 1)\hat{t}) = \hat{t}f(k + 1)$ (remembering that \hat{t} is a power of 2) and Lemma 8 for $f(k\hat{t} + c) = f(c)$. Since $f(n) = f(c) < t$ when $n = k\hat{t} + c$, we can decompose $L_{\text{univ}}(p)$ into the steps where $f(n) < t$ and the rest:

$$
L_{\text{univ}}(p) = L^{\leq} + L^{\geq}
$$

\n
$$
L^{\leq} := \sum_{k=0}^{\infty} \gamma^{k} \sum_{c=1}^{\hat{t}-1} f(c) = \frac{1}{1-\gamma} \sum_{c=1}^{\hat{t}-1} f(c) = \frac{\hat{t}}{2q(t)} \log_{2} \hat{t} \quad \text{(Lemma 9)}
$$

\n
$$
L^{\geq} := \sum_{k=0}^{\infty} \gamma^{k} (1-\gamma)t + \gamma^{k+1} \hat{t} f(k+1) = t + \hat{t} \sum_{k=1}^{\infty} \gamma^{k} f(k)
$$

\n
$$
\leq t + \frac{\hat{t}}{q(\hat{t})} \left(\frac{1}{e} + \frac{1}{\ln 2} + \frac{1}{2} \log_{2} \ln 16 + \frac{1}{2} \log_{2} \frac{1}{q(\hat{t})} \right)
$$

where we used Lemma 13 on the last line with $\gamma = 1 - q(t)$. Finally, since $\hat{t} = 2^{\lceil \log_2 t \rceil} \leq 2t$ and $q(\hat{t}) \geq q(t)$ and $\lceil \log_2 t \rceil \leq \log_2 t + 1$:

$$
L \le t + \frac{t}{q(t)} \left(\log_2 t + 1 + \frac{2}{e} + \frac{2}{\ln 2} + \log_2 \ln 16 + \log_2 \frac{1}{q(t)} \right)
$$

$$
\le t + \frac{t}{q(t)} \left(\log_2 \frac{t}{q(t)} + 6.1 \right)
$$

which proves the result.

Lemma 8. For $f = A6519$, with $k \in \mathbb{N}_0, n \in \mathbb{N}_0, a \in \mathbb{N}_1, b \in \mathbb{N}_0$ and $a2^b < 2^n$, and with a odd, then

$$
f(k2^n + a2^b) = f(a2^b) = 2^b.
$$

Proof. Since a is odd, then so is $k2^{n-b}+a$, and so $f(k2^n+a2^b) = f(2^b(k2^{n-b}+a)) = 2^b f(k2^{n-b}+a)$ $a) = 2^b.$ \Box

 \Box

Hence, for all numbers between two adjacent factors of 2^n , $f(k2^n + c) = f(c) \leq 2^{n-1}$. **Lemma 9.** For $n \in \mathbb{N}_1$ and $f = A6519$,

$$
\sum_{c=1}^{2^n - 1} f(c) = n2^{n-1}.
$$

Proof. If $n \geq 1$ and using Lemma 8 again at 2^{n-1} :

$$
\sum_{c=1}^{2^{n}-1} f(c) = \sum_{c=1}^{2^{n-1}-1} f(c) + f(2^{n-1}) + \sum_{c=2^{n-1}+1}^{2^{n}-1} f(c)
$$

= $2^{n-1} + 2 \sum_{c=1}^{2^{n-1}-1} f(c)$
= $... = 2^{0}2^{n-1} + 2^{1}2^{n-2} + 2^{2}2^{n-3} + ... + 2^{n-1}2^{0} + 2^{n} \sum_{c=1}^{2^{0}-1} f(c)$
= $n2^{n-1}$.

 \Box

Lemma 10. Let $f = A6519$, then for $k \in \mathbb{N}_1, n \in \mathbb{N}_0, c \in \mathbb{N}_0$:

$$
f(k) = 2^n \quad \Leftrightarrow \quad k = (2c+1)2^n.
$$

Proof. Since any number k can be uniquely written in the form $k = (2c+1)2^a$, and $f((2c+1)2^a)$ $2^a f(2c+1) = 2^a$ with $a \in \mathbb{N}_0$, then $\dot{f}(k) = 2^n \Leftrightarrow a = n$.

Lemma 11. For $\gamma \in [0, 1)$,

$$
\sum_{n=0}^{\infty} 2^n \gamma^{2^n} \le \frac{1}{\ln \frac{1}{\gamma}} \left(\frac{1}{e} + \frac{\gamma}{\ln 2} \right) .
$$

Proof. Let $h(x) := 2^x \gamma^{2^x}$ for $x \in \mathbb{R}$, then $h'(x) = \ln(2)2^x \gamma^{2^x} (2^x \ln \gamma + 1)$ where $h'(x_0) = 0$ for the unique x_0 such that $2^{x_0} = \frac{1}{\ln \frac{1}{\gamma}}$ and since $\ln \gamma < 0$, we have that $h'(x)$ is positive for $x < x_0$ and negative for $x > x_0$. Thus h is unimodal, and since furthermore $h(x)$ is positive the sum can be upper bounded by the integral of the continuous function plus its maximum:

$$
\sum_{n=0}^{\infty} h(n) \le \int_0^{\infty} h(x) dx + \max_x h(x),
$$

$$
\max_x h(x) = h(x_0) = \frac{1}{\ln \frac{1}{\gamma}} \frac{1}{e},
$$

$$
\int_0^{\infty} 2^x \gamma^{2^x} dx = \frac{1}{\ln 2} \int_0^{\infty} 2^x \ln 2\gamma^{2^x} dx = \frac{1}{\ln 2} \int_1^{\infty} \gamma^y dy = \frac{\gamma}{\ln 2 \ln \frac{1}{\gamma}}
$$

where we used integration by substitution. Adding the two terms finishes the proof.

 \Box

,

Lemma 12. For $\gamma \in [0, 1)$ and $a \geq 1$:

$$
\sum_{n=0}^{\infty} \gamma^{2^n} \le \gamma \left[\log_2 \frac{1}{\log_2 \frac{1}{\gamma}} \right] + 1 \le \log_2 \frac{1}{\ln \frac{1}{\gamma}} + \log_2 \ln 16 \,.
$$

Proof. Let $N = \min \left\{ n \in \mathbb{N}_0 : \gamma^{2^N} \le \frac{1}{2} \right\} = \left\lceil \log_2 \frac{1}{\log_2 \frac{1}{\gamma}} \right\rceil$ $\Big]$, then

$$
\sum_{n=0}^{\infty} \gamma^{2^n} = \sum_{n=0}^{N-1} \gamma^{2^n} + \sum_{n=N}^{\infty} \gamma^{2^n}
$$

\n
$$
\leq N\gamma + \sum_{n=0}^{\infty} (\gamma^{2^N})^{2^n} \leq N\gamma + \sum_{n=0}^{\infty} 2^{-2^n} \leq N\gamma + 1
$$

\n
$$
\leq \left[\log_2 \frac{1}{\log_2 \frac{1}{\gamma}} \right] + 1
$$

\n
$$
\leq \log_2 \frac{1}{\log_2 \frac{1}{\gamma}} + 2.
$$

Extracting $\log_2 \ln 2$ finishes the proof.

 \Box

Lemma 13. Let $f = A6519$ and $\gamma \in [0, 1)$. Then

$$
\sum_{k=1}^{\infty} \gamma^k f(k) \le \frac{1}{1-\gamma} \left(\frac{1}{e} + \frac{1}{\ln 2} + \frac{1}{2} \log_2 \ln 16 + \frac{1}{2} \log_2 \frac{1}{1-\gamma} \right) .
$$

Proof. Since $f(n)$ is a power of 2 for all $n \in \mathbb{N}_1$, we regroup the runs by powers of 2:

$$
\sum_{k=1}^{\infty} \gamma^{k} f(k) = \sum_{n=0}^{\infty} 2^{n} \sum_{k=1}^{\infty} \gamma^{k} [f(k) = 2^{n}]
$$

\n
$$
= \sum_{n=0}^{\infty} 2^{n} \sum_{c=0}^{\infty} \gamma^{(2c+1)2^{n}} \text{ (Lemma 10)}
$$

\n
$$
= \sum_{n=0}^{\infty} 2^{n} \gamma^{2^{n}} \sum_{c=0}^{\infty} (\gamma^{2^{n+1}})^{c} = \sum_{n=0}^{\infty} 2^{n} \gamma^{2^{n}} \frac{1}{1 - \gamma^{2^{n+1}}}
$$

\n
$$
\leq \sum_{n=0}^{\infty} 2^{n} \gamma^{2^{n}} \left(1 + \frac{\gamma}{2^{n+1}(1-\gamma)}\right) \text{ (Lemma 14)}
$$

\n
$$
= \sum_{n=0}^{\infty} 2^{n} \gamma^{2^{n}} + \frac{1}{2} \frac{\gamma}{1 - \gamma} \sum_{n=0}^{\infty} \gamma^{2^{n}}
$$

\n
$$
\leq \frac{1}{1 - \gamma} \left(\frac{1}{e} + \frac{\gamma}{\ln 2} + \frac{\gamma}{2} + \frac{\gamma^{2}}{2} \left(\log_{2} \ln 4 + \log_{2} \frac{1}{1 - \gamma}\right)\right)
$$

\n
$$
\leq \frac{1}{1 - \gamma} \left(\frac{1}{e} + \frac{1}{\ln 2} + \frac{1}{2} \log_{2} \ln 16 + \frac{1}{2} \log_{2} \frac{1}{1 - \gamma}\right)
$$

where we used Lemma 11 and Lemma 12 on the second to last line together with $\ln \frac{1}{\gamma} \geq 1 - \gamma$.

Lemma 14. For $\gamma \in [0, 1)$ and $a \geq 1$:

$$
\frac{1}{1-\gamma^a} \le 1 + \frac{1}{a} \frac{\gamma}{1-\gamma} \, .
$$

Proof. For $\epsilon > 0$ and $a \ge 1$, it can be shown that $(1 + \varepsilon)^a \ge 1 + a\varepsilon$. Then, taking $\gamma := \frac{1}{1+\varepsilon}$:

$$
(1+\varepsilon)^a \ge 1 + a\varepsilon \quad \Leftrightarrow \quad (1+\varepsilon)^a - 1 \ge a((1+\varepsilon) - 1)
$$

$$
\Leftrightarrow \quad \frac{1}{(1+\varepsilon)^a - 1} \le \frac{1}{a((1+\varepsilon) - 1)}
$$

$$
\Leftrightarrow \quad \frac{1}{\gamma^{-a} - 1} \le \frac{1}{a(\gamma^{-1} - 1)}
$$

$$
\Leftrightarrow \quad \frac{\gamma^a}{1 - \gamma^a} \le \frac{\gamma}{a(1 - \gamma)}
$$

$$
\Leftrightarrow \quad \frac{1}{1 - \gamma^a} \le 1 + \frac{1}{a} \frac{\gamma}{1 - \gamma},
$$

which proves the result.