
A Proofs

In this section, we provide proofs for the propositions appeared in the main text.

A.1 Proof to Proposition 1

Proof. For a fixed s, consider A1 = {a ∈ A | π̃(a|s) ≥ π(a|s)}, A2 = {a ∈ A | π̃(a|s) < π(a|s)}. Since
g(·) and h(s, ·) is monotonically increasing, we have

h(s,Aπ(s, a1)) = g(π̃(a1|s))− g(π(a1|s))
≥ g(π̃(a2|s))− g(π(a2|s))
= h(s,Aπ(s, a2)), ∀a1 ∈ A1, a2 ∈ A2

which means that ∃ q(s) ∈ R s.t.
Qπ(s, a1) ≥ q(s) ≥ Qπ(s, a2), ∀a1 ∈ A1, a2 ∈ A2

Thus ∑
a

π̃(a|s)Qπ(s, a)−
∑
a

π(a|s)Qπ(s, a)

=
∑
a∈A1

(π̃(a|s)− π(a|s))Qπ(s, a) +
∑
a∈A2

(π̃(a|s)− π(a|s))Qπ(s, a)

≥
∑
a∈A1

(π̃(a|s)− π(a|s))q(s) +
∑
a∈A2

(π̃(a|s)− π(a|s))q(s)

= q(s)
∑
a

π̃(a|s)− q(s)
∑
a

π(a|s) = 0

Define

Vl(s) =

{
Ea∼π̃(s)

(
Es′,r|s,a(r + γVl−1(s′))

)
, l ≥ 1

V π(s), l = 0

that is, the value of state s if we follow π̃ in the first l steps, and then follow π in subsequent steps. So we have
just proved

V1(s) ≥ V0(s), ∀s ∈ S.
By induction, we assume that Vl(s) ≥ Vl−1(s), ∀s ∈ S, then

Vl+1(s) = Ea∼π̃
(
Es′,r|s,a(r + γVl(s

′))
)

Vl(s) = Ea∼π̃
(
Es′,r|s,a(r + γVl−1(s′))

)
we have Vl+1(s) ≥ Vl(s), ∀s ∈ S. For finite horizon MDP and infinite horizon MDP with γ < 1, we have

V π̃(s) ≥ V π(s), ∀s ∈ S

The proof is for discrete action space only. However it could be generalized to continuous actions and hybrid
actions without much difficulties.

A.2 Proof to Proposition 2

Proof. In [Kakade and Langford, 2002] a useful equation is proved that

η(π′)− η(π) = Ldπ′ ,π(π′) =
1

1− γ
∑
s

dπ′(s)
∑
a

π′(a|s)Aπ(s, a) (14)

From Corollary 1 in [Achiam et al., 2017], we have

η(π′)− η(π) ≥ Ldπ,π(π′)− 2γεπ
′
π

(1− γ)2
Ddπ

TV (π′, π) (15)

where επ
′
π = maxs |Ea∼π′Aπ(s, a)|. Similarly, we also have

|η(π′)− η(π)| =
1

1− γ
∑
s

dπ′(s)

∣∣∣∣∣∑
a

(π′(a|s)− π(a|s))Aπ(s, a)

∣∣∣∣∣ (16)

≤ 1

1− γ
∑
s

dπ′(s)
∑
a

|π′(a|s)− π(a|s)| |Aπ(s, a)| (17)

≤ 2

1− γD
dπ′
TV (π′, π)Mπ (18)

11

where Mπ = maxs,a |Aπ(s, a)| ≤ maxs,a |r(s, a)|/(1− γ). Define

L(π′) = (1− γ)βLdπ,π(π′)−Ddπ
KL (π′||π) (19)

Then
π̃ = arg max

π′∈Π

L(π′) (20)

and L(π̃) ≥ L(π) = 0. Now consider
η(πθ)− η(π) = (η(πθ)− η(π̃)) + (η(π̃)− η(π)) (21)

≥ − 2

1− γD
dπ̃
TV (π̃, πθ)M

πθ + Ldπ,π(π̃)− 2γεπ̃π
(1− γ)2

Ddπ
TV (π̃, π) (22)

≥ − 2

1− γD
dπ̃
TV (π̃, πθ)M

πθ +
1

(1− γ)β
Ddπ

KL (π̃||π)− 2γεπ̃π
(1− γ)2

Ddπ
TV (π̃, π) (23)

From Pinsker’s inequality [Csiszar and Körner, 2011], we have

Dd
TV(π′, π) =

∑
s

d(s)DTV(π′(·|s), π(·|s)) (24)

≤
∑
s

d(s)

√
1

2
DKL(π′(·|s)||π(·|s)) ≤

√
1

2
Dd

KL(π′||π) (25)

where the last inequality comes from Jensen’s inequality. Denote δ1 = min(Ddπ̃
KL (πθ||π̃), Ddπ̃

KL (π̃||πθ)) and
δ2 = Ddπ

KL (π̃||π), we have

η(πθ)− η(π) ≥ −
√

2

1− γ δ
1
2
1 M

πθ +
1

(1− γ)β
δ2 −

√
2γεπ̃π

(1− γ)2
δ

1
2
2 (26)

B Discussion

B.1 Connection with regularized policy optimization

In this subsection, we show in a general form, the proposed procedure of Algorithm 1 can recover many interesting
algorithms, which are related to previous works. We consider a general regularized policy optimization problem
(RPO) as

max
θ∈Θ

(
(1− γ)Ldπ,π(πθ)−

1

β
Dapp(π, πθ)

)
(27)

whereDapp is a divergence use for approximation (e.g. KL divergenceDKL, Bregman divergenceDψ). A closely
related formulation of Algorithm 1 is

min
θ∈Θ

Dapp(O(π), πθ), where O(π) = arg max
π′∈Π

(
(1− γ)Ldπ,π(π′)− 1

β
DKL(π′||π)

)
(28)

We call this generalized method as imitating a better policy (IBP).

B.1.1 RPO, with Dapp(π, πθ) = Ddπ
KL(π||πθ)

When Dapp(π, πθ) is realized with Ddπ
KL (π, πθ), the RPO problem is equivalent to the constrained policy

optimization problem considered in [Schulman et al., 2015]. The optimization objective is

arg max
θ∈Θ

(1− γ)βLdπ,π(πθ)−Ddπ
KL (π||πθ) = arg max

θ∈Θ
Eπ(

πθ(a|s)
π(a|s) βA

π(a|s) + log πθ(a|s)) (29)

B.1.2 RPO, with Dapp(π, πθ) = Ddπ
KL(πθ||π)

When Dapp(π, πθ) in RPO is set to the forward KL divergence Ddπ
KL (πθ, π), the optimization objective becomes

arg max
θ∈Θ

(1− γ)βLdπ,π(πθ)−Ddπ
KL (πθ||π) = arg max

θ∈Θ
Eπ(

πθ(a|s)
π(a|s) (βAπ(a|s)− log

πθ(a|s)
π(a|s))) (30)

B.1.3 IBP, with Dapp(π, πθ) = Dd
KL(π||πθ)

For IBP as in (28), when Dapp(π, πθ) = Dd
KL(π||πθ), the optimization objective becomes

arg max
θ∈Θ

−Dd
KL(O(π)||πθ) = arg max

θ∈Θ
Es∼d(s),a∼π(a|s) exp(βAπ(s, a) + C(s)) log(πθ(a|s)) (31)

This is the main algorithm 12 discussed in our work.

12

Table 2: Connection between the proposed imitating a better policy (IBP) procedure and previous
policy optimization methods

Method Dapp = DKL(π||πθ) Dapp = DKL(πθ||π)

RPO ≈ TRPO (29) IBP with KL (30)
IBP (28) MARWIL (31) IBP with KL (30)

B.1.4 IBP, with Dapp(π, πθ) = Ddπ
KL(πθ||π)

When Dapp(π, πθ) = Ddπ
KL (π||πθ), the algorithm IBP is equivalent to RPO as in Formula (30). In general, for

a family of functions ψ(·) we define the Bregman divergence as Dd
ψ(π′, π) =

∑
s d(s)∆ψ(π′(·|s), π(·|s)),

where ∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉, with the inner product 〈·, ·〉 taken on the action space A.
We then have

max
θ∈Θ

((1− γ)βLdπ,π(πθ)−Dψ(πθ, π)) (32)

equivalent to the problem

min
θ∈Θ

Dψ(πθ,O(π)), where O(π) = arg max
π′∈Π

((1− γ)βLdπ,π(π′)−Dψ(π′, π)) (33)

To summarize, the proposed procedure is closely related to existing methods like regularized policy optimization.
And for special cases, imitating a better policy is equivalent to regularized policy optimization. We present the
relationship with previous method in Table 2.

B.2 Additional Details of the Algorithm Settings for HFO

To parametrize the policy and value function, we use a neural network with multiple outputs and shared basic
layers. 3 fully connected layers are used as the shared base layers, each having 64 hidden nodes and followed by
an ELU [Clevert et al., 2015] activation layer. For outputting probability for discrete actions k = 1, 2, 3, a small
network of 2 fully connected layers with 32 hidden nodes and 3 soft-maxed outputting nodes are appended to
the base layers. For outputting the mean of normal distribution for each action’s parameter, we use a 32 × 6
fully connected 2 layer network after the base layers. We also use a third 32 × 1 network appended to the base
layers to output the state value V (st) for each state.

In our implementation, we distribute the algorithm over different servers to speed up the experiments. The
“worker” processes which are responsible for generating trajectories to be filled in the replay memory D are
deployed on a CPU server. A “trainer” process which is responsible for updating θ is deployed on a GPU server.
The replay memory is distributed over the cluster to collect trajectories from workers in parallel and provide
batches of data for the trainer.

For these experiments, we use 20 workers and 1 centralized trainer. The maximum capacity of the replay memory
for each actor is set to 32 episodes, meaning a total of 640 episodes. In each iteration we randomly sample a
batch of 1024 samples from D. The overall loss is the policy loss plus the squared Bellman error of V π . The
basic learning rate is set to 10−4, with β set to 1.0. The learning rate decreases proportional to 1/

√
0.0001T .

We use RMSProp with weight decay set to 10−5 and no momentum. In the experiment, each run is allowed to
iterate 100000 batches to converge.

B.3 Additional Details of the Algorithm Settings for King of Glory

The solo mode of King of Glory is similar to those in previous works [Jiang et al., 2018, Xiong et al., 2018],
except that we use the hero Diao Chan in our experiments. For quantitatively measure, we use a pool of AI agents
as opponents, and calculate the Elo ratings [Coulom, 2005] of the agents trained with/without the proposed
technique. Experimental results are summarized in Table 3. As can be seen, the agents trained with our proposed
method are significantly stronger than those trained with the baseline method (IL). Also, in a proprietary test
with colleagues, the Diao Chan AI can defeat experienced XingYao and WangZhe level 4 players in a solo game.
We conclude that the proposed method can be successfully used in training AI agents for complex video games
with hybrid action space in real-world.

Feature For each frame, we extract 4 types of feature to represent the game state:

1. Image-like Feature of Global View The image-like feature covers the whole map of solo mode, with
a resolution of 16× 64 and 6 channels of allied hero position, allied soldiers’ positions, allied towers’
defense region, enemy hero position, enemy soldiers’ positions, and enemy towers’ defense region.

4The level of a player in the mobile game is ranked (from lowest to highest) by QingTong(Bronze),
BaiYin(Silver), HuangJin(Gold), BoJin(Platium), ZuanShi(Diamond), XingYao(Starshine), and WangZhe(King).

13

Table 3: Performance of the AI agents trained with/without the proposed technique. A total of 40 AI
agents trained with different methods are tested in roughly round-robin matches. For comparison,
MARWIL1 and IL1 use the same state-features, network structure, and algorithm settings, except
for the update formula when computing the gradient. Similarly, MARWIL2 and IL2 use the same
settings except for the update formula. The Elo score (higher is better) measures the strength of
agents, and the winning ratio is the percentage of games the agent has won. In the results, the best
agent is trained with MARWIL method, which reaches an Elo score (higher is better) of 126, and a
winning ratio of 64%.

AGENT ELO W.RATIO
MARWIL1 126 64%
MARWIL2 72 58%

IL1 -65 41%
IL2 -184 26%

2. Image-like Feature for Local View The image-like feature corresponds to the player’s screen size
of map. The resolution is 32× 48 with 12 channels of allied hero position, allied hero attack region,
allied soldiers’ positions, allied soldiers’ HP, allied towers’ defense region, allied bullets’ damage
region, enemy hero position, enemy hero attack region, enemy soldiers’ position, enemy soldiers’ HP,
enemy towers’ defense region, and enemy bullets’ damage region.

3. Dense Feature A 256 dimension dense feature is extracted for each frame. These features include
allied and enemy heroes’ basic attributes and properties, towers’ status and soldiers’ status, etc.

4. Sparse Feature Two sparse features are provided to indicate the allied and enemy hero types.

Action We use a hybrid of discrete and continuous action space. The action space is defined as A = K × R2,
where K = 6. The 6 discrete action types are: NoAction, Move, Attack, Skill1, Skill2, Skill3. For k ∈ {
Move, Skill1, Skill2 }, the environment also accepts a “direction” xk ∈ R2 as the action parameter.

Reward We craft 14 dimension rewards as the optimization target, namely ShortTimeGold, LongTimeGold,
InstantHP, ShortTimeHP, Kill, Death, Exp, LevelUp, Damage, DamageToHero, TowerDestruct,
HighTowerDestruct, CrystalDestruct, and WinLoss. Different rewards r(k) may have different discount
factors γ(k). A weighted sum of R(k)

t is used as the final cumulative reward Rt =
∑13
k=0 w

(k)R
(k)
t , where

R
(k)
t =

∑T
l=t(γ

(k))l−tr
(k)
l .

Network Structure We adopt a VGG [Simonyan and Zisserman, 2014] like structure for image-like features:
Each “block” consists of 5 layers in the order of Conv-ELU-Conv-ELU-Pooling, with kernel size of 3 for
convolution and stride of 2 for max-pooling. By default we use ELU [Clevert et al., 2015] as activation layer for
convolution layers and fully-connected layers. For global view image-like feature, 3 “blocks” of size 32×16×64
5 → 64×8×32→ 64×4×16 are stacked to extract information from raw image-like features. For local view
image-like feature, 3 “blocks” of size 32×16×24→ 64×8×12→ 64×4×6 are stacked. Each sparse feature is
embedded to a vector of 32 dimension and concatenated together with the dense feature, followed by 2 fully
connected layers with 512 hidden nodes. Then these preprocessed representations from image-like features
and dense features are all concatenated, followed by 5 fully connected layers of 2048 hidden nodes. 3 final
modules consisting of two fully-connected (FC) layers of hidden size 512 and 256 are appended for outputting
discrete action probabilities, continuous action parameters, and value estimation for each dimension of rewards,
respectively. The whole network structure is depicted as in Figure 2.

Figure 2: Network structure for our AI agent in King of Glory

5We write C ×H ×W for brevity, where C is the number of channels, H is the height, and W is the width.

14

	Introduction
	Preliminaries
	Related Work
	Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)
	Theoretical Analysis
	Equivalence to Imitating a New Policy
	Monotonic Advantage Reweighting
	Lower bound under Approximation

	Experimental Results
	Experiments with Half Field Offense (HFO)
	Environment Settings
	Algorithm Setting

	Experiments with TORCS
	Experiments with King of Glory

	Conclusion
	Proofs
	Proof to Proposition 1
	Proof to Proposition 2

	Discussion
	Connection with regularized policy optimization
	RPO, with Dapp(,) = DKLd(||)
	RPO, with Dapp(,) = DdKL(||)
	IBP, with Dapp(,) = DdKL(||)
	IBP, with Dapp(,) = DdKL(||)

	Additional Details of the Algorithm Settings for HFO
	Additional Details of the Algorithm Settings for King of Glory

