
Supplementary Material to:
Weakly Supervised Dense Event Captioning in Videos

This Supplementary material provides proof of proposition 1, and presents more details about the
model, training, and testing.

A Proof of proposition 1(Fixed-point iteration)

Proposition 1 (Fixed-Point-Iteration). We define the iteration as

S(t+ 1) = lθ1(V , gθ2(V ,S(t))), (18)

where S(t) will converge to the fixed-point solution, i.e. S∗ = lθ1(V , gθ2(V ,S∗)), if the initial start
S(0) surrounds the fixed point S∗ sufficiently and the function lθ1(V , gθ2(V ,S) is locally Lipschitz
continuous around S∗ with Lipschitz constant L < 1.

Proof. Since the function f(S) = lθ1(V , gθ2(V ,S) is Lipschitz continuous with Lipschitz constant
L ≤ 1, we have,

|S(t+ 1)− S(t)| = |f(S(t))− f(S(t− 1))|
≤ L|S(t)− S(t− 1)|,

...
≤ Lt|S(1)− S(0)|. (19)

Since L < 1, |S(t+ 1)− S(t)| → 0 converges to zeros as t→∞. Thus, S(t) will converge to the
fixed point that is the solution of Eq.(2) in the paper.

B Video Encoder & Sentence Encoder

In § 3, we have introduced the details of our model except the RNN-based video and sentence encoder
used in feature extracting, which are considered not crucial in the paper. But for reproduction of our
work, we will introduce them detailedly in this section.

B.1 Video Encoder.

Reviewing § 3, the video encoder aims to encode the video frames into a set of vectors. For this
purpose, a C3D[1] network is constructed to extract frame-block features and resolve short-term
dependency, while a followed GRU[2] is leveraged for long-term dependency.

We denote the input video as V = {f t}
Tv
t=0 where Tv is the temporal length of the video and f t

specifies the t-th frame. Following the implementation by[3], we first extract the non-overlapping C3D
features from the original image frames with a interval δ, i.e., computing {x(v)

t = C3D(f (t−1)∗δ+1 :

f t∗δ)}
Tv/δ
t=0 , where δ = 16.

The extracted C3D features are fed into a GRU network to learn the long-term dependence. Specially,
we set the initial hidden state as zero, i.e. h(v)

0 = 0, and compute the following outputs and hidden
states recursively by

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

vt,h
(v)
t = GRUvideo(x

(v)
t ,h

(v)
t−1). (20)

The output sequence {vt}Tv/δ
t=0 and hidden states {h(v)

t }
Tv/δ
t=0 are used in the followed processes of

sentence localizing and caption generating as video representation (In the original paper, we omit δ
and denote Tv/δ as Tv and the extract feature as {vt}Tv

t=0for simplify).

B.2 Sentence Encoder

Similar to the video encoder, sentence encoder aims to encode natural sentences into vector represen-
tations. Given a sentence C = {wt}Tc

t=0, wt ∈ {0, 1}V denote the one-hot encoding of the t-th word,
where V is the vocabulary size. Then, wt is embedded into a k-dimensional vector by x

(c)
t = W ewt,

with W e ∈ Rk×V being the trainable embedding matrix. Similar to the video encoder, the embedded
features {x(c)

t }
Tc
t=0 are fed into a GRU model. Specially, the initial hidden state h

(c)
0 is set to be zero,

and the outputs and following hidden states are computed as:

ct,h
(c)
t = GRUtext(x

(c)
t ,h

(c)
t−1). (21)

After the encoding stage, the final outputs {ct}Tc
t=0 and hidden states {h(c)

t }
Tc
t=0 are used in the

followed networks.

B.3 More Details

I. As both Sentence Localizer lθ1 and Caption Generator gθ2 use the video features for further
processing, they can choose whether to share the same video encoder parameters or not. In our
previous experiments, we found that both strategies reach similar performances. The reported results
are obtained using different video encoder parameters.

II. Also, as training a C3D network from scratch is very time-consuming and error-prone, we directly
adopt the public-available C3D features1. The public-available features are 500-way features reduced
from the original 4096-way output of C3D’s fc7 layer using PCA. In our experiments, the features
are denoted as {x(v)

t }
Tv/δ
t=0 and fed into the GRUvideo for further processing.

C Training & Testing Details

C.1 Training

Because our model consists of two submodels and several term losses, there may be several ways to
train the whole model. In this section, we introduce the strategy we used in our experiments. Firstly,
the model is pretrained with our predefined Fake Proposal, i.e. S(f) = (0.5, 1). After pretraining for
several rounds, we train the proposed three term losses alternatively. Details are shown in Algorithm1.

C.2 Testing

As our model is not directly trained on the dense event captioning problem, we provide an extra
explanation on the strategy we used in testing. In short, our training strategy and losses force
the model meets the requirement of fixed-point iteration, so we use a random bunch of segments
{S(r)

i }
Nr
i as initial temporal segments, feed them into the cycle system S′i = lθ1(V , gθ2(V ,S

(r)
i).

Considering that those random segments will converge to the true event temporal segments or diverge
to some unknown random segment, the distance between S′i and S

(r)
i should be small if they are in

the neighborhood of a certain event. Also, we measure the distance between S′i and S′j to further
reduce redundancy(This step is not critical, but can reduce the repetition of temporal segments.).
Specifically:

• if dist(S′i,S
(r)
i) > Θ1, remove S′i from the predicted temporal segment set

1http://activity-net.org/challenges/2016/download.html#c3d

2

• if dist(S′i,S
′
j) < Θ2, merge S′i, S

′
j as: S′′i = union(S′i,S

′
j)

where dist(·) computes the IoU between S1,S2:

dist(S1,S2) =
intersection(S1,S2)

union(S1,S2)
(22)

Details about testing are shown in Algorithm2.

Algorithm 1 Training pipeline for the WS-DEC model
Input: D // the dataset iterator for training
Input: lθ1 , gθ2 // the random initialized sentence localizer, caption generator
Input: {S(a)

j }
Na
j=0 // anchor segments for training lθ1

Input: S(f) // S(f) = (m(f), w(f)) is used to pretrain the caption generator
Output: θ1, θ2 // trained parameters for sentence localizer and caption generator

1: step← 0
2: while step < pretrain_step do // we pretrain the model with fake proposal
3: for (V , {Ci}Nv

i=0) ∈ D do
4: C ←RANDOMCHOOSE({Ci}Nv

i=0) // randomly choose a sentence
5: C ′ ← gθ2(V ,S(f)) // obtain the fake generation
6: Lc ← dist(C,C ′) //compute the loss
7: θ2 ← θ2 − η2 ∂Lc

∂θ2
// update parameters with SGD

8: end for
9: step← step+ 1

10: end while
11: while step < training_step do // we train the model with three term losses alternatively
12: if training Lc and Ls then // train the model with Lc and Ls
13: for (V , {Ci}Nv

i=0) ∈ D do
14: C ←RANDOMCHOOSE({Ci}Nv

i=0)
15: S′ ← lθ1(V ,C)
16: C ′ ← gθ2(V ,S′ + δ)
17: S′′ ← gθ2(V ,C ′)
18: L ← dist(C,C ′) + dist(S′,S′′)
19: θ1 ← θ1 − ηc1 ∂L∂θ1
20: θ2 ← θ2 − ηc2 ∂L∂θ2
21: end for
22: end if
23: if training La then // train the model with La
24: for (V , {Ci}Nv

i=0) ∈ D do
25: C ←RANDOMCHOOSE({Ci}Nv

i=0)
26: {Cj(a)}Na

j=0 ← {gθ2(V ,S
(a)
j)}Na

j=0 //anchor segments→ anchor sentences
27: confidence← lθ1(V ,C) // confidence about each anchor regarding V and C

28: {score(a)j }
Na
j=0 ← { METEOR(C,Cj(a)) }Na

j=0 // compute Meteor score

29: label← arg maxj{score
(a)
j }

Na
j=0 // the one with highest score is considered as label.

30: La ← CROSSENTROPY(confidence, label)
31: θ1 ← θ1 − ηa1 ∂La

∂θ1
// cross entropy loss

32: end for
33: end if
34: step← step+ 1
35: end while
36: return θ1, θ2

3

Algorithm 2 Testing pipeline for the WS-DEC model
Input: V // a video for testing(never seen in the training set)
Input: lθ1 , gθ2 // the learned sentence localizer, caption generator
Input: {S(r)

i }
Nr
i=0 // initial random bunch temporal segments(fixed for all testing example)

Output: {Ci,Si}
N(v)

e
i=0 // the predicted events within the video

1: step← 0 // iteration round
2: N (v)

e ← Nr // initial number of event equals the predefined one

3: {Si}
N(v)

e
i=0 ← {S

(r)
i }

Nr
i=0 // initial temporal segment equals the predefined temporal segments

4: {Ci}N
(v)
e

i=0 ← {gθ2(V ,Si)}
N(v)

e
i=0 // generate initial description

5: while step < iteration_step do // iterate until max iteration step

6: {S′i}
N(v)

e
i=0 ← {lθ1(V ,Ci)}N

(v)
e

i=0 // re localize the generated sentence

7: {S′′i }
N(v)′

e
i=0 ← SEGMENTMERGE({Si}

N(v)
e

i=0 , {S
′
i}
N(v)

e
i=0) // merge segments based on§ 4.3.3

8: N
(v)
e ← N

(v)′

e // update the predicted number of events

9: {Si}
N(v)

e
i=0 ← {S

′′
i }
N(v)

e
i=0 // update events temporal segments

10: {Ci}N
(v)
e

i=0 ← {gθ2(V ,Si)}
N(v)

e
i=0 // update description sentences

11: step← step+ 1
12: end while
13: return {Ci,Si}

N(v)
e

i=0

References
[1] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action

recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–231, 2013.

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[3] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning events
in videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
706–715, 2017.

4

	Proof of proposition 1(Fixed-point iteration)
	Video Encoder & Sentence Encoder
	Video Encoder.
	Sentence Encoder
	More Details

	Training & Testing Details
	Training
	Testing

