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Abstract

Learning near-optimal behaviour from an expert’s demonstrations typically relies
on the assumption that the learner knows the features that the true reward function
depends on. In this paper, we study the problem of learning from demonstrations
in the setting where this is not the case, i.e., where there is a mismatch between
the worldviews of the learner and the expert. We introduce a natural quantity, the
teaching risk, which measures the potential suboptimality of policies that look
optimal to the learner in this setting. We show that bounds on the teaching risk
guarantee that the learner is able to find a near-optimal policy using standard
algorithms based on inverse reinforcement learning. Based on these findings, we
suggest a teaching scheme in which the expert can decrease the teaching risk
by updating the learner’s worldview, and thus ultimately enable her to find a
near-optimal policy.

1 Introduction

Reinforcement learning has recently led to impressive and widely recognized results in several
challenging application domains, including game-play, e.g., of classical games (Go) and Atari games.
In these applications, a clearly defined reward function, i.e., whether a game is won or lost in the case
of Go or the number of achieved points in the case of Atari games, is optimized by a reinforcement
learning agent interacting with the environment.

However, in many applications it is very difficult to specify a reward function that captures all
important aspects. For instance, in an autonomous driving application, the reward function of an
autonomous vehicle should capture many different desiderata, including the time to reach a specified
goal, safe driving characteristics, etc. In such situations, learning from demonstrations can be a
remedy, transforming the need of specifying the reward function to the task of providing an expert’s
demonstrations of desired behaviour; we will refer to this expert as the teacher. Based on these
demonstrations, a learning agent, or simply learner attempts to infer a (stochastic) policy that
approximates the feature counts of the teacher’s demonstrations. Examples for algorithms that can
be used to that end are those in [Abbeel and Ng, 2004] and [Ziebart et al., 2008], which use inverse
reinforcement learning (IRL) to estimate a reward function for which the demonstrated behaviour is
optimal, and then derive a policy based on that.

For this strategy to be successful, i.e., for the learner to find a policy that achieves good performance
with respect to the reward function set by the teacher, the learner has to know what features the teacher
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considers and the reward function depends on. However, as we argue, this assumption does not hold
in many real-world applications. For instance, in the autonomous driving application, the teacher,
e.g., a human driver, might consider very different features, including high-level semantic features,
while the learner, i.e., the autonomous car, only has sensory inputs in the form of distance sensors
and cameras providing low-level semantic features. In such a case, there is a mismatch between
the teacher’s and the learner’s features which can lead to degraded performance and unexpected
behaviour of the learner.

In this paper we investigate exactly this setting. We assume that the true reward function is a linear
combination of a set of features known to the teacher. The learner also assumes that the reward
function is linear, but in features which are different from the truly relevant ones; e.g., the learner
could only observe a subset of those features. In this setting, we study the potential decrease in
performance of the learner as a function of the learner’s worldview. We introduce a natural and easily
computable quantity, the teaching risk, which bounds the maximum possible performance gap of the
teacher and the learner.

We continue our investigation by considering a teaching scenario in which the teacher can provide
additional features to the learner, e.g., add additional sensors to an autonomous vehicle. This naturally
raises the question which features should be provided to the learner to maximize her performance.
To this end, we propose an algorithm that greedily minimizes the teaching risk, thereby shrinking
the maximal gap in performance that policies optimized with respect to the learner’s resp. teacher’s
worldview can have.

Or main contributions are:

1. We formalize the problem of worldview mismatch for reward computation and policy
optimization based on demonstrations.

2. We introduce the concept of teaching risk, bounding the maximal performance gap of the
teacher and the learner as a function of the learner’s worldview and the true reward function.

3. We formally analyze the teaching risk and its properties, giving rise to an algorithm for
teaching a learner with an incomplete worldview.

4. We substantiate our findings in a large set of experiments.

2 Related Work

Our work is related to the area of algorithmic machine teaching, where the objective is to de-
sign effective teaching algorithms to improve the learning process of a learner [Zhu et al., 2018,
Zhu, 2015]. Machine teaching has recently been studied in the context of diverse real-world ap-
plications such as personalized education and intelligent tutoring systems [Hunziker et al., 2018,
Rafferty et al., 2016, Patil et al., 2014], social robotics [Cakmak and Thomaz, 2014], adversarial ma-
chine learning [Mei and Zhu, 2015], program synthesis [Mayer et al., 2017], and human-in-the-loop
crowdsourcing systems [Singla et al., 2014, Singla et al., 2013]. However, different from ours, most
of the current work in machine teaching is limited to supervised learning settings, and to a setting
where the teacher has full knowledge about the learner’s model.

Going beyond supervised learning, [Cakmak et al., 2012, Brown and Niekum, 2018,
Kamalaruban et al., 2018] have studied the problem of teaching an IRL agent, similar in
spirit to what we do in our work. Our work differs from their work in several aspects—they assume
that the teacher has full knowledge of the learner’s feature space, and then provides a near-optimal
set/sequence of demonstrations; we consider a more realistic setting where there is a mismatch
between the teacher’s and the learner’s feature space. Furthermore, in our setting, the teaching signal
is a mixture of demonstrations and features.

Our work is also related to teaching via explanations and features as explored recently by
[Aodha et al., 2018] in a supervised learning setting. However, we explore the space of teach-
ing by explanations when teaching an IRL agent, which makes it technically very different from
[Aodha et al., 2018]. Another important aspect of our teaching algorithm is that it is adaptive in
nature, in the sense that the next teaching signal accounts for the current performance of the learner
(i.e., worldview in our setting). Recent work of [Chen et al., 2018, Liu et al., 2017, Yeo et al., 2019]
have studied adaptive teaching algorithms, however only in a supervised learning setting.
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Apart from machine teaching, our work is related to [Stadie et al., 2017] and [Sermanet et al., 2018],
which also study imitation learning problems in which the teacher and the learner view the world
differently. However, these two works are technically very different from ours, as we consider the
problem of providing teaching signals under worldview mismatch from the perspective of the teacher.

3 The Model

Basic definitions. Our environment is described by a Markov decision process M =
(S,A, T,D,R, γ), where S is a finite set of states, A is a finite set of available actions, T is a
family of distributions on S indexed by S ×A with Ts,a(s′) describing the probability of transition-
ing from state s to state s′ when action a is taken, D is the initial-state distribution on S describing
the probability of starting in a given state, R : S → R is a reward function and γ ∈ (0, 1) is a discount
factor. We assume that there exists a feature map φ : S → Rk such that the reward function is linear
in the features given by φ, i.e.,

R(s) = 〈w∗,φ(s)〉
for some w∗ ∈ Rk which we assume to satisfy ‖w∗‖ = 1.

By a policy we mean a family of distributions on A indexed by S, where πs(a) describes the probabil-
ity of taking action a in state s. We denote by Π the set of all such policies. The performance measure
for policies we are interested in is the expected discounted reward R(π) := E (

∑∞
t=0 γ

tR(st)),
where the expectation is taken with respect to the distribution over trajectories (s0, s1, . . . ) induced
by π together with the transition probabilities T and the initial-state distribution D. We call a policy
π optimal for the reward function R if π ∈ arg maxπ′∈ΠR(π′). Note that

R(π) = 〈w∗, µ(π)〉,
where µ : Π→ Rk, π 7→ E (

∑∞
t=0 γ

tφ(st)), is the map taking a policy to its vector of (discounted)
feature expectations. Note also that the image µ(Π) of this map is a bounded subset of Rk due to
the finiteness of S and the presence of the discounting factor γ ∈ (0, 1); we denote by diamµ(Π) =
supµ0,µ1∈µ(Π) ‖µ0 − µ1‖ its diameter. Here and in what follows, ‖ · ‖ denotes the Euclidean norm.

Problem formulation. We consider a learner L and a teacher T , whose ultimate objective is that L
finds a near-optimal policy πL with the help of T .

The challenge we address in this paper is that of achieving this objective under the assumption that
there is a mismatch between the worldviews of L and T , by which we mean the following: Instead of
the “true” feature vectors φ(s), L observes feature vectors ALφ(s) ∈ R`, where

AL : Rk → R`

is a linear map (i.e., a matrix) that we interpret as L’s worldview. The simplest case is that AL
selects a subset of the features given by φ(s), thus modelling the situation where L only has access
to a subset of the features relevant for the true reward, which is a reasonable assumption for many
real-world situations. More generally, AL could encode different weightings of those features.

The question we ask is whether and how T can provide demonstrations or perform other teaching
interventions, in a way such as to make sure that L achieves the goal of finding a policy with
near-optimal performance.

Assumptions on the teacher and on the learner. We assume that T knows the full specification
of the MDP as well as L’s worldview AL, and that she can help L to learn in two different ways:

1. By providing L with demonstrations of behaviour in the MDP;

2. By updating L’s worldview AL.

Demonstrations can be provided in the form of trajectories sampled from a (not necessarily optimal)
policy πT , or in the form of (discounted) feature expectations of such a policy. The method by which
T can update AL will be discussed in Section 5. Based on T ’s instructions, L then attemps to train a
policy πL whose feature expectations approximate those of πT . Note that, if this is successful, the
performance of πL is close to that of πT due to the form of the reward function.
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Figure 1: A simple example to illustrate the challenges arising when teaching under worldview
mismatch. We consider an MDP in which S = {s1, . . . , s5} is the set of cells in the gridworld
displayed, A = {←,→}, and R(s) = 〈w∗,φ(s)〉 with feature map φ : S → R5 taking si to the
one-hot vector ei ∈ R5. The initial state distribution is uniform and the transition dynamics are
deterministic. More specifically, when the agent takes action→ (resp.←), it moves to the neighboring
cell to the right (resp. left); when the agent is in the rightmost (resp. leftmost) cell, the action→
(resp. ←) is not permitted. The reward weights are given by w∗ = (−1,−0.5, 0, 0.5, 1)T ∈ R5 up to
normalization; the values R(si) = 〈w∗,φ(si)〉 are also encoded by the colors of the cells. The policy
π∗ in (b) is the optimal policy with respect to the true reward function. Assuming that the learner L
only observes the feature corresponding to the central cell, i.e., AL = (0 0 1 0 0) ∈ R1×5,
the policy π0 in (a) is a better teaching policy in the worst-case sense. See the main text for a detailed
description.

We assume that L has access to an algorithm that enables her to do the following: Whenever she is
given sufficiently many demonstrations sampled from a policy πT , she is able to find a policy πL
whose feature expectations in her worldview approximate those of πT , i.e., ALµ(πL) ≈ ALµ(πT ).
Examples for algorithms that L could use to that end are the algorithms in [Abbeel and Ng, 2004]
and [Ziebart et al., 2008] which are based on IRL. The following discussion does not require any
further specification of what precise algorithm L uses in order to match feature expectations.

Challenges when teaching under worldview mismatch. If there was no mismatch in the world-
view (i.e., if AL was the identity matrix in Rk×k), then the teacher could simply provide demonstra-
tions from the optimal policy π∗ to achieve the desired objective. However, the example in Figure 1
illustrates that this is not the case when there is a mismatch between the worldviews.

For the MDP in Figure 1, assume that the teacher provides demonstrations using πT = π∗, which
moves to the rightmost cell as quickly as possible and then alternates between cells 4 and 5 (see
Figure 1b). Note that the policy π̃∗ which moves to the leftmost cell as quickly as possible and then
alternates between cells 1 and 2, has the same feature expectations as π∗ in the learner’s worldview;
in fact, π̃∗ is the unique policy other than π∗ with that property (provided we restrict to deterministic
policies). As the teacher is unaware of the internal workings of the learner, she has no control over
which of these two policies the learner will eventually learn by matching feature expectations.

However, the teacher can ensure that the learner achieves better performance in a worst case sense by
providing demonstrations tailored to the problem at hand. In particular, assume that the teacher uses
πT = π0, the policy shown in Figure 1a, which moves to the central cell as quickly as possible and
then alternates between cells 3 and 4. The only other policy π̃0 with which the learner could match
the feature expectations of π0 in her worldview (restricting again to deterministic policies) is the one
that moves to the central cell as quickly as possible and then alternates between states 2 and 3.

Note that R(π∗) > R(π0) > R(π̃0) > R(π̃∗), and hence π0 is a better teaching policy than π∗
regarding the performance that a learner matching feature expectations in her worldview achieves
in the worst case. In particular, this example shows that providing demonstrations from the truly
optimal policy π∗ does not guarantee that the learner’s policy achieves good performance in general.

4 Teaching Risk

Definition of teaching risk. The fundamental problem in the setting described in Section 3 is that
two policies π0, π1 that perform equally well with respect to any estimate s 7→ 〈wL, ALφ(s)〉 that
L may have of the reward function, may perform very differently with respect to the true reward
function. Hence, even if L is able to imitate the behaviour of the teacher well in her worldview, there
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Figure 2: Two policies in the environment introduced in Figure 1 (the policy π0 here is identical to
the one in Figure 1(a)). We assume again that L can only observe the feature corresponding to the
central cell. Provided that the initial state distribution is uniform, the feature expectations of π0 and
π1 in L’s worldview are equal, and hence these policies perform equally well with respect to any
estimate of the reward function that L may have. In fact, both look optimal to L if she assumes that
the central cell carries positive reward. However, their performance with respect to the true reward
function is positive for π0 but negative for π1. This illustrates that, if all we know about L is that she
matches feature counts in her worldview, we can generally not give good performance guarantees for
the policy she finds.

is genenerally no guarantee on how good her performance is with respect to the true reward function.
For an illustration, see Figure 2.

To address this problem, we define the following quantity: The teaching risk for a given worldview
AL with respect to reward weights w∗ is

ρ(AL;w∗) := max
v∈kerAL,‖v‖≤1

〈w∗, v〉. (1)

Here kerAL = {v ∈ Rk | ALv = 0} and kerw∗ = {v ∈ Rk | 〈w∗, v〉 = 0} denote the kernels
of AL resp. 〈w∗, ·〉. Geometrically, ρ(AL;w∗) is the cosine of the angle between kerAL and
w∗; in other words, ρ(AL;w∗) measures the degree to which kerAL deviates from satisfying
kerAL ⊆ kerw∗. Yet another way of characterizing the teaching risk is as ρ(AL;w∗) = ‖ pr(w∗)‖,
where pr : Rk → kerAL denotes the orthogonal projection onto kerAL.

Significance of teaching risk. To understand the significance of the teaching risk in our context,
assume thatL is able to find a policy πL which matches the feature expectations of T ’s (not necessarily
optimal) policy πT perfectly in her worldview, which is equivalent to µ(πT ) − µ(πL) ∈ kerAL.
Directly from the definition of the teaching risk, we see that the gap between their performances with
respect to the true reward function satisfies

|〈w∗, µ(πT )− µ(πL)〉| ≤ ρ(AL;w∗) · ‖µ(πT )− µ(πL)‖, (2)

with equality if µ(πT ) − µ(πL) is proportional to a vector v realizing the maximum in (1). If
the teaching risk is large, this performance gap can generally be large as well. This motivates the
interpretation of ρ(AL;w∗) as a measure of the risk when teaching the task modelled by an MDP
with reward weights w∗ to a learner whose worldview is represented by AL.

On the other hand, smallness of the teaching risk implies that this performance gap cannot be too
large. The following theorem, proven in the Appendix, generalizes the bound in (2) to the situation in
which πL only approximates the feature expectations of πT .

Theorem 1. Assume that ‖AL(µ(πT )− µ(πL))‖ < ε. Then the gap between the true performances
of πL and πT satisfies

|〈w∗, µ(πT )− µ(πL)〉| < ε

σ(AL)
+ ρ(AL;w∗) · diamµ(Π)

with σ(AL) = minv⊥kerAL,‖v‖=1 ‖ALv‖.

Theorem 1 shows the following: If L imitates T ’s behaviour well in her worldview (meaning that ε
can be chosen small) and if the teaching risk ρ(AL;w∗) is sufficiently small, then L will perform
nearly as well as T with respect to the true reward. In particular, if T ’s policy is optimal, πT = π∗,
then L’s policy πL is guaranteed to be near-optimal.
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Algorithm 1 TRGREEDY: Feature- and demo-based teaching with TR-greedy feature selection

Require: Reward vector w∗, set of teachable features F , feature budget B, initial worldview AL,
teacher policy πT , initial learner policy πL, performance threshold ε.
for i = 1, . . . , B do

if |〈w∗, µ(πL)〉 − 〈w∗, µ(πT )〉| > ε then
f ← arg minf∈F ρ(AL ⊕ 〈f, ·〉;w∗) . T selects feature to teach
AL ← AL ⊕ 〈f, ·〉 . L’s worldview gets updated
πL ← LEARNING(πL, ALµ(πT )) . L trains a new policy

else
return πL

end if
end for
return πL

The quantity σ(AL) appearing in Theorem 1 is a bound on the amount to which AL distorts lengths
of vectors in the orthogonal complement of kerAL. Note that σ(AL) is independent of the teaching
risk, in the sense that one can change it, e.g., by rescaling AL → αAL by some α ∈ R+, without
changing the teaching risk.

Teaching risk as obstruction to recognizing optimality. We now provide a second motivation
for the consideration of the teaching risk, by interpreting it as a quantity that measures the degree to
which truly optimal policies deviate from looking optimal to L. We make the technical assumption
that µ(Π) is the closure of a bounded open set with smooth boundary ∂µ(Π) (this will only be needed
for the proofs). Our first observation is the following:

Proposition 1. Let π∗ be a policy which is optimal for s 7→ 〈w∗,φ(s)〉. If ρ(AL;w∗) > 0, then π∗

is suboptimal with respect to any choice of reward function s 7→ 〈w, ALφ(s)〉 with w ∈ R`.

In view of Proposition 1, a natural question is whether we can bound the suboptimality, in L’s view,
of a truly optimal policy in terms of the teaching risk. The following theorem provides such a bound:

Theorem 2. Let π∗ be a policy which is optimal for s 7→ 〈w∗,φ(s)〉. There exists a unit vector
w∗L ∈ R` such that

max
µ∈µ(Π)

〈
w∗L, A

Lµ
〉
−
〈
w∗L, A

Lµ(π∗)
〉
≤ diamµ(Π) · ‖AL‖ · ρ(AL;w∗)√

1− ρ(AL;w∗)2
,

where ‖AL‖ = maxv∈Rk,‖v‖=1 ‖ALv‖.

Proofs of Proposition 1 and Theorem 2 are given in the Appendix. Note that the expression on
the right hand side of the inequality in Theorem 2 tends to 0 as ρ(AL;w∗) → 0, provided ‖AL‖
is bounded. Theorem 2 therefore implies that, if ρ(AL;w∗) is small, a truly optimal policy π∗ is
near-optimal for some choice of reward function linear in the features L observes, namely, the reward
function s 7→ 〈w∗L,φ(s)〉 with w∗L ∈ R` the vector whose existence is claimed by the theorem.

5 Teaching

Feature teaching. The discussion in the last section shows that, under our assumptions on how L
learns, a teaching scheme in which T solely provides demonstrations to L can generally, i.e., without
any assumption on the teaching risk, not lead to reasonable guarantees on the learner’s performance
with respect to the true reward. A natural strategy is to introduce additional teaching operations by
which the teacher can update L’s worldview AL and thereby decrease the teaching risk.

The simplest way by which the teacher T can change L’s worldview is by informing her about
features f ∈ Rk that are relevant to performing well in the task, thus causing her to update her
worldview AL : Rk → R` to

AL ⊕ 〈f, ·〉 : Rk → R`+1.
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(a) γ = 0.5
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(b) γ = 0.75
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(c) γ = 0.9

Figure 3: Performance vs. teaching risk. Each point in the plots shows the relative performance that a
learner L with a random worldview matrix AL achieved after one round of learning and the teaching
risk of AL. For all plots, a gridworld with N = 20, n = 2 was used. The reward vector w∗ was
sampled randomly in each round. (a)–(c) correspond to different values of the discount factor γ.

Viewing AL as a matrix, this operation appends f as a row to AL. (Strictly speaking, the feature that
is thus provided is s 7→ 〈f,φ(s)〉; we identify this map with the vector f in the following and thus
keep calling f a “feature”.)

This operation has simple interpretations in the settings we are interested in: If L is a human learner,
“teaching a feature” could mean making L aware that a certain quantity, which she might not have
taken into account so far, is crucial to achieving high performance. If L is a machine, such as an
autonomous car or a robot, it could mean installing an additional sensor.

Teachable features. Note that if T could provide arbitrary vectors f ∈ Rk as new features, she
could always, no matter what AL is, decrease the teaching risk to zero in a single teaching step by
choosing f = w∗, which amounts to telling L the true reward function. We assume that this is not
possible, and that instead only the elements of a fixed finite set of teachable features

F = {fi | i ∈ I} ⊂ Rk

can be taught. In real-world applications, such constraints could come from the limited availability of
sensors and their costs; in the case that L is a human, they could reflect the requirement that features
need to be interpretable, i.e., that they can only be simple combinations of basic observable quantities.

Greedy minimization of teaching risk. Our basic teaching algorithm TRGREEDY (Algorithm 1)
works as follows: T and L interact in rounds, in each of which T provides L with the feature f ∈ F
which reduces the teaching risk of L’s worldview with respect to w∗ by the largest amount. L then
trains a policy πL with the goal of imitating her current view ALµ(πT ) of the feature expectations
of the teacher’s policy; the LEARNING algorithm she uses could be the apprenticeship learning
algorithm from [Abbeel and Ng, 2004].

Computation of the teaching risk. The computation of the teaching risk required of T in every
round of Algorithm 1 can be performed as follows: One first computes the orthogonal complement of
kerAL ∩ kerw∗ in Rk and intersects that with kerAL, thus obtaining (generically) a 1-dimensional
subspace λ = (kerAL ∩ kerw∗)⊥ ∩ kerAL of Rk; this can be done using SVD. The teaching risk
is then ρ(AL;w∗) = 〈w∗, v⊥〉 with v⊥ the unique unit vector in λ with 〈w∗, v⊥〉 > 0.

6 Experiments

Our experimental setup is similar to the one in [Abbeel and Ng, 2004], i.e., we useN×N gridworlds
in which non-overlapping square regions of neighbouring cells are grouped together to form n ×
n macrocells for some n dividing N . The state set S is the set of gridpoints, the action set is
A = {←,→, ↑, ↓}, and the feature map φ : S → Rk maps a gridpoint belonging to macrocell
i ∈ {1, . . . , (N/n)2} to the one-hot vector ei ∈ Rk; the dimension of the “true” feature space is
therefore k = (N/n)2. Note that these gridworlds satisfy the quite special property that for states
s 6= s′, we either have φ(s) = φ(s′) (if s, s′ belong to the same macrocell), or φ(s) ⊥ φ(s′). The
reward weights w∗ ∈ Rk are sampled randomly for all experiments unless mentioned otherwise. As

7



(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
Feature index

0

5

10

15

20

25

30

First taught feature

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24
Feature index

0

5

10

15

20

25

30

Second taught feature

(c)

Figure 4: Gridworld with N = 10, n = 2. The colors in (a) indicate the reward of the corresponding
macrocell, with blue meaning positive and red meaning negative reward. The numbers within each
macrocell correspond to the feature index. The histograms in (b) and (c) show how often, in a series
of 100 experiments, each feature was selected as the first resp. second feature to be taught to a learner
with a random 5-dimensional initial worldview.

the LEARNING algorithm within Algorithm 1, we use the projection version of the apprenticeship
learning algorithm from [Abbeel and Ng, 2004].

Performance vs. teaching risk. The plots in Figure 3 illustrate the significance of the teaching
risk for the problem of teaching a learner under worldview mismatch. To obtain these plots, we
used a gridworld with N = 20, n = 2; for each value ` ∈ [1, 100], we sampled five random
worldview matrices AL ∈ R`×100, and let L train a policy πL using the projection algorithm in
[Abbeel and Ng, 2004], with the goal of matching the feature expectations µ(πT ) corresponding to
an optimal policy πT for a reward vector w∗ that was sampled randomly in each round. Each point
in the plots corresponds to one such experiment and shows the relative performance of πL after the
training round vs. the teaching risk of L’s worldview matrix AL.

All plots in Figure 3 show that the variance of the learner’s performance decreases as the teaching
risk decreases. This supports our interpretation of the teaching risk as a measure of the potential
gap between the performances of πL and πT when L matches the feature expectations of πT in
her worldview. The plots also show that the bound for this gap provided in Theorem 1 is overly
conservative in general, given that L’s performance is often high and has small variance even if the
teaching risk is relatively large.

The plots indicate that for larger γ (i.e., less discounting), it is easier for L to achieve high performance
even if the teaching risk is large. This makes intuitive sense: If there is a lot of discounting, it is
important to reach high reward states quickly in order to perform well, which necessitates being able
to recognize where these states are located, which in turn requires the teaching risk to be small. If
there is little discounting, it is sufficient to know the location of some maybe distant reward state, and
hence even a learner with a very deficient worldview (i.e., high teaching risk) can do well in that case.

Small gridworlds with high reward states and obstacles. We tested TRGREEDY (Algorithm 1)
on gridworlds such as the one in Figure 4a, with a small number of states with high positive rewards,
some obstacle states with high negative rewards, and all other states having rewards close to zero. The
histograms in Figures 4b and 4c show how often each of the features was selected by the algorithm
as the first resp. second feature to be taught to the learner in 100 experiments, in each of which the
learner was initialized with a random 5-dimensional worldview. In most cases, the algorithm first
selected the features corresponding to one of the high reward cells 4 and 9 or to one of the obstacle
cells 18 and 23, which are clearly those that the learner must be most aware of in order to achieve
high performance.

Comparison of algorithms. We compared the performance of TRGREEDY (Algorithm 1) to two
variants of the algorithm which are different only in how the features to be taught in each round
are selected: The first variant, RANDOM, simply selects a random feature f ∈ F from the set of
all teachable features. The second variant, PERFGREEDY, greedily selects the feature that will lead
to the best performance in the next round among all f ∈ F (computed by simulating the teaching
process for each feature and evaluating the corresponding learner).

8



0 10 20 30 40 50
Number of taught features

0.5

0.6

0.7

0.8

0.9

L
ea

rn
er

’s
re

la
ti

ve
p

er
fo

rm
an

ce

TRGreedy

PerfGreedy

Random

(a) Relative performance

0 10 20 30 40 50
Number of taught features

0.6

0.7

0.8

0.9

1.0

T
ea

ch
in

g
ri

sk

TRGreedy

PerfGreedy

Random

(b) Teaching risk

0 10 20 30 40 50
Number of taught features

0

5

10

15

20

R
u

nt
im

e/
s

TRGreedy

PerfGreedy

Random

(c) Runtime

Figure 5: Comparison of TRGREEDY vs. PERFGREEDY vs. RANDOM. The plots show (a) the
relative performance that the learner achieved after each round of feature teaching and training a
policy, (b) the teaching risk after each such step, and (c) the runtime required to perform each step. We
averaged over 100 experiments, in each of which a new random gridworld of size (N,n) = (20, 2)
and a new set F of randomly selected features with |F| = 70 were sampled; the bars in the relative
performance plot indicate the standard deviations. The discount factor used was γ = 0.9 in all cases.

The plots in Figure 5 show, for each of the three algorithms, the relative performance with respect
to the true reward function s 7→ 〈w∗,φ(s)〉 that the learner achieved after each round of feature
teaching and training a policy πL, as well as the corresponding teaching risks and runtimes, plotted
over the number of features taught. The relative performance of the learner’s policy πL was computed
as (R(πL)−minπ R(π))/(maxπ R(π)−minπ R(π)).

We observed in all our experiments that TRGREEDY performed significantly better than RANDOM.
While the comparison between TRGREEDY and PERFGREEDY was slightly in favour of the latter,
one should note that a teacher T running PERFGREEDY must simulate a learning round of L for all
features f ∈ F not yet taught, which presupposes that T knows L’s learning algorithm, and which
also leads to very high runtime. If T only knows that L is able to match (her view of) the feature
expectations of T ’s demonstrations and T simulates L using some algorithm capable of this, there
is no guarantee that L will perform as well as T ’s simulated counterpart, as there may be a large
discrepancy between the true performances of two policies which in L’s view have the same feature
expectations. In contrast, TRGREEDY relies on much less information, namely the kernel of AL, and
in particular is agnostic to the precise learning algorithm that L uses to approximate feature counts.

7 Conclusions and Outlook

We presented an approach to dealing with the problem of worldview mismatch in situations in which
a learner attempts to find a policy matching the feature counts of a teacher’s demonstrations. We
introduced the teaching risk, a quantity that depends on the worldview of the learner and the true
reward function and which (1) measures the degree to which policies which are optimal from the
point of view of the learner can be suboptimal from the point of view of the teacher, and (2) is
an obstruction for truly optimal policies to look optimal to the learner. We showed that under the
condition that the teaching risk is small, a learner matching feature counts using, e.g., standard
IRL-based methods is guaranteed to learn a near-optimal policy from demonstrations of the teacher
even under worldview mismatch.

Based on these findings, we presented our teaching algorithm TRGREEDY, in which the teacher
updates the learner’s worldview by teaching her features which are relevant for the true reward
function in a way that greedily minimizes the teaching risk, and then provides her with demostrations
based on which she learns a policy using any suitable algorithm. We tested our algorithm in gridworld
settings and compared it to other ways of selecting features to be taught. Experimentally, we found
that TRGREEDY performed comparably to a variant which selected features based on greedily
maximizing performance, and consistently better than a variant with randomly selected features.

We plan to investigate extensions of our ideas to nonlinear settings and to test them in more complex
environments in future work. We hope that, ultimately, such extensions will be applicable in real-
world scenarios, for example in systems in which human expert knowledge is represented as a reward
function, and where the goal is to teach this expert knowledge to human learners.
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A Proof of Theorem 1

Proof of Theorem 1. Denote by pr : Rk → kerAL the orthogonal projection onto kerAL and
let v = pr(µ(πL) − µ(πT )). Note that we have v + µ(πT ) − µ(πL) ∈ (kerAL)⊥ and ‖v‖ ≤
‖µ(πT )− µ(πL)‖ ≤ diamµ(Π). It follows that

‖v + µ(πT )− µ(πL)‖ ≤ 1

σ(AL)
‖AL(v + µ(πT )− µ(πL))‖

=
1

σ(AL)
‖AL(µ(πT )− µ(πL))‖

<
ε

σ(AL)
,

using the definition of σ(AL), the fact that v ∈ kerAL, and the assumption that ‖AL(µ(πT ) −
µ(πL))‖ < ε. We then obtain

|〈w∗, µ(πT )〉 − 〈w∗, µ(πL)〉| ≤ |〈w∗, v + µ(πT )− µ(πL)〉|+ |〈w∗, v〉|
≤ ‖v + µ(πT )− µ(πL)‖+ ‖v‖ · ρ(AL;w∗)

≤ ε

σ(AL)
+ diamµ(Π) · ρ(AL;w∗)

using the triangle inequality, the Cauchy-Schwarz inequality and the definition of ρ(AL;w∗), and
the estimates above.

B Proof of Proposition 1

Figure 6: A situation in which ρ(AL;w∗) > 0: Here, AL is the projection on the horizontal axis.
The points in ∂µ(Π) which AL maps to the boundary of ALµ(Π), and which therefore appear
optimal to L, are the two points marked by �, at which the normal vector to µ(Π) is contained
in (kerAL)⊥; these are precisely the points which are optimal for some w∗ with ρ(AL;w∗) = 0
(namely, w∗ = (±1, 0)). All other points in ∂µ(Π) get mapped by AL to the interior of ALµ(Π) and
therefore appear suboptimal for any choice of reward function L might consider.

Proof of Proposition 1. As mentioned in the main text, we assume that the set µ(Π) ⊂ Rk is the
closure of a bounded open set and has a smooth boundary ∂µ(Π).

Finding the feature expectations µ(π∗) of a policy π∗ which is optimal with respect to s 7→ 〈w∗,φ(s)〉
is equivalent to maximizing the linear map µ 7→ 〈w∗, µ〉 over µ(Π) ⊂ Rk, whose gradient is w∗ 6= 0.
It follows that these feature expectations need to satisfy the following conditions:

1. µ(π∗) lies on the boundary ∂µ(Π),

2. w∗ is normal to ∂µ(Π) at µ(π∗).
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The second condition is equivalent to saying that the tangent space to µ(Π) at µ(π∗) is kerw∗.

Assume now that ρ(AL;w∗) > 0. This is equivalent to saying that kerAL 6⊆ kerw∗, i.e., to saying
that kerAL is not tangent to ∂µ(Π) at µ(π∗). That implies that there exist some v ∈ kerAL such
that µ(π∗) + v is contained in the interior of µ(Π), which means that a sufficiently small ball around
µ(π∗) + v is contained in µ(Π). In particular, a small ball around µ(π∗) + v in the affine space
µ(π∗)+v+(kerAL)⊥ is entirely contained in µ(Π). This implies thatAL(µ(π∗)) = AL(µ(π∗+v))
is contained in the interior of ALµ(Π), i.e., not in the boundary ∂AL(µ(π∗)). Therefore π∗ is
suboptimal with respect to any choice of reward function s 7→ 〈w, ALφ(s)〉 with w ∈ R`.

C Proof of Theorem 2

Proof of Theorem 2. The assumption that π∗ is optimal for the reward function s 7→ 〈w∗,φ(s)〉
implies that 〈w∗, µ−µ(π∗)〉 ≤ 0 for all µ ∈ µ(Π). By decomposing w∗ as w∗ = pr(w∗)+pr⊥(w∗),
where pr : Rk → kerAL denotes the orthogonal projection onto kerAL and pr⊥ : Rk → (kerAL)⊥

the orthogonal projection onto (kerAL)⊥, we obtain

〈pr(w∗), µ− µ(π∗)〉+ 〈pr⊥(w∗), µ− µ(π∗)〉 ≤ 0. (3)
The first summand can be bounded as follows:

〈pr(w∗), µ− µ(π∗)〉 ≥ −‖µ− µ(π∗)‖ · ‖ pr(w∗)‖
= −‖µ− µ(π∗)‖ · ρ(AL;w∗)

≥ −diamµ(Π) · ρ(AL;w∗),

(4)

using the Cauchy-Schwarz inequality and the fact that ‖pr(w∗)‖ = ρ(AL;w∗). By combining
estimates (3) and (4), we obtain

〈pr⊥(w∗), µ− µ(π∗)〉 ≤ diamµ(Π) · ρ(AL;w∗). (5)

Denote now by (AL)+ the Moore-Penrose pseudoinverse of AL, and by X := ((AL)+)T its
transpose. We have

〈pr⊥(w∗), µ− µ(π∗)〉 = 〈w∗,pr⊥(µ− µ(π∗)〉
= 〈w∗, (AL)+AL pr⊥(µ− µ(π∗)〉
= 〈Xw∗, AL pr⊥(µ− µ(π∗)〉
= 〈Xw∗, AL(µ− µ(π∗)〉,

(6)

where the second equality uses the fact that the restriction of (AL)+AL to (kerAL)⊥ is the identity
(in fact, (AL)+AL = pr⊥, a general property of Moore-Penrose pseudoinverses). Setting w∗L :=

1
‖Xw∗‖Xw∗ and combining inequality (5) with (6), we obtain〈

w∗L, A
L(µ− µ(π∗))

〉
≤ diamµ(Π) · ρ(AL;w∗)

‖Xw∗‖ . (7)

We now estimate the term ‖Xw∗‖:
‖Xw∗‖ = max

v∈R`,‖v‖=1
〈Xw∗, v〉

= max
v∈R`,‖v‖=1

〈w∗, (AL)+v〉

≥ 〈w
∗, (AL)+AL pr⊥(w∗)〉
‖AL pr⊥(w∗)‖

=
‖ pr⊥(w∗)‖2
‖AL pr⊥(w∗)‖

=
‖ pr⊥(w∗)‖
‖AL pr⊥(w∗)

‖ pr⊥(w∗)‖‖

≥ ‖ pr⊥(w∗)‖
‖AL‖ .

(8)
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Since ‖ pr⊥(w∗)‖ =
√
‖w∗‖2 − ‖ pr(w∗)‖2 =

√
1− ρ(AL;w∗)2, combining (7) and (8) yields

〈w∗L, AL(µ− µ(π∗))〉 ≤ diamµ(Π) · ‖AL‖ · ρ(AL;w∗)√
1− ρ(AL;w∗)2

This holds for all µ ∈ µ(Π), and hence we can maximize over µ to obtain the statement claimed in
Theorem 2.
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