
A Proof of Proposition 5

According to the dynamical system in (12) we can write

ẋ = v, ẍ = v̇ = −2p+ 1

t
v − p2tp−2∇f(x). (23)

Using these definitions we can show that

Ė =
t2

4p2
〈2v, v̇〉+

2t

4p2
〈v, v〉+ 2〈x+

t

2p
v − x∗, ẋ+

ẋ

2p
+

t

2p
ẍ〉+ tp〈∇f(x), ẋ〉

+ ptp−1(f(x)− f(x∗))

=
2t2

4p2
〈ẋ, ẍ+

2p+ 1

t
ẋ〉 − 2t2

4p2
〈ẋ, 2p

t
ẋ〉+ 2

t

2p
〈x+

t

2p
ẋ− x∗, ẍ+

2p+ 1

t
ẋ〉

+ tp〈∇f(x), ẋ〉+ ptp−1(f(x)− f(x∗))

=
t2

2p2
〈ẋ,−p2tp−2∇f〉 − t

p
‖ẋ‖2 +

t

p
〈x+

t

2p
ẋ− x∗,−p2tp−2∇f〉

+ tp〈∇f(x), ẋ〉+ ptp−1(f(x)− f(x∗))

=− t

p
‖ẋ‖2 + ptp−1(f(x)− f(x∗))− ptp−1〈x− x∗,∇f〉

≤ − t

p
‖ẋ‖2. (24)

The equalities follows from rearrangement and (11). The last inequality holds due to convexity.

B Proof of Proposition 6 (Discretization Error)

In this section, we aim to bound the difference between the true solution defined by the ODE and
the point generated by the integrator, i.e., ‖Φh(yc) − ϕh(yc)‖. Since the integrator has order s, the
difference ∆(h) := ‖Φh(yc)−ϕh(yc)‖ should be proportional to hs+1. Here, we intend to formally
derive an upper bound of O(hs+1) on ∆(h).

We start by introducing some notations. Given a vector y = [v;x; t] ∈ R2d+1, we define the
following projection operators

πx(y) = x ∈ Rd, πv(y) = v ∈ Rd, πt(y) = t ∈ R, πv,x(y) =

[
v
x

]
∈ R2d. (25)

We also define the set B(xc, R) which is a ball with center xc and radius R as

B(xc, R) = {x ∈ Rd|‖x− xc‖ ≤ R}, (26)

and define the set UR,0.2(yc) as

UR,0.2(yc) = {y = [v;x; t]|‖v − vc‖ ≤ R, ‖x− xc‖ ≤ R, |t− tc| ≤ 0.2}. (27)

In the following Lemma, we show that if we start from the point yc and choose a sufficiently small
stepsize, the true solution defined by the ODE ϕh(y0) and the point generated by the integrator
Φh(yc) remain in the set UR,0.2(yc).

Lemma 8. Let y ∈ UR,0.2(yc) where yc = [vc;xc; tc], tc ≥ 1, and R = 1
tc

. Suppose
that B(xc, R) ⊆ A (defined in (3)) and hence Assumptions 1 and 2 are satisfied. If h ≤
min{0.2, 1

(1+κ)C(E(yc)+1)(L+M+1)}, the true solution defined by the ODE ϕh(y0) and the point
generated by the integrator Φh(yc) remain in the set UR,0.2(yc), i.e.,

ϕh(yc) ∈ UR,0.2(yc), Φh(yc) ∈ UR,0.2(yc), (28)

where κ is a constant determined by the Runge-Kutta integrator. In addition, the intermediate points
gi defined in Definition 1 also belong to the set UR,0.2(yc).

11



Proof. Note that ∀y ∈ R2d+1, ‖πtF (y)‖ = 1. Clearly when h ≤ 0.2,

πtϕh(yc)− yc = h ≤ 0.2. (29)

Similarly, for any integrator that is at least order 1,

πtΦh(yc)− yc = h ≤ 0.2. (30)

Therefore, we only need to focus on bounding the remaining coordinates.

By Lemma 10, we have that when y ∈ UR,0.2(yc),

‖πv,xF (y)‖ ≤ C(E(yc) + 1)(L+M + 1)

tc
. (31)

By definition 1,

gi = yk + h

i−1∑
j=1

aijF (gj) Φh(yk) = yk + h

s−1∑
i=0

biF (gi).

Let κ = max{
∑
j |aij |,

∑
|bi|}, we have that when h ≤ min{0.2, R/[κC(E(yc)+1)(L+M)

tc
]},

gi ∈ UR,0.2(yc) Φh(yc) ∈ UR,0.2(yc). (32)

By fundamental theorem of calculus, we have that

ϕh(yc) = yc +

∫ h

0

F (ϕt(yc))dt ∈ UR,0.2(yc). (33)

Rearrange and apply Cauchy-Schwarz, we get

‖πv,x[ϕh(yc)− yc]‖ ≤
∫ h

0

‖πv,xF (ϕt(yc))‖dt ∈ UR,0.2(yc). (34)

By mean value theorem and proof of contradiction, we can show that when h ≤
min{0.2, R/C(E(yc)+1)(L+M)

tc
}, ∫ h

0

‖πv,xF (ϕt(yc))‖dt ≤ R. (35)

In particular, if
∫ h
0
‖πv,xF (ϕt(yc))‖dt ≥ R, then exists y1 and h0 < h such that ‖y1 − yc‖ = R

and y1 = yc +
∫ h0

0
F (ϕt(yc))dt. By mean value theorem, this implies that exist y ∈ UR,0.2(yc)

such that ‖πv,xF (y)‖ > C(E(yc)+1)(L+M+1)
tc

, which contradicts Lemma 10.

Therefore we proved that
ϕh(yc) ∈ UR,0.2(yc). (36)

The result in Lemma 8 shows that ϕh(yc) and Φh(yc) remain in the set UR,0.2(yc). In addition, we
can bound the operator norm of ∇(i)f in B(xc, R) by Lemma 9. Since ∂qϕh(yc)

∂hq is a function of
∇(i)f , we can show in Lemma 11 that the (s + 1)th derivative of ϕh(yc) and Φh(yc) are bounded
above by ∥∥∥∥∂qϕh(yc)

∂hq

∥∥∥∥ ≤ C0[E(yc) + 1]q(L+M + 1)q

tc
, (37)

and∥∥∥∥∂qΦh(yc)

∂hq

∥∥∥∥ ≤ C1[1 + E(yc)]
q(L+M + 1)q + C2h[1 + E(yc)]

q+1(L+M + 1)p+1

tc
. (38)

Since the integrator has order s, we can write

∂i

∂hi
[Φh(yk)− ϕh(yk)] = 0 for i = 1, ..., s. (39)
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Therefore, the difference between the true solution ϕh(yc) defined by the ODE and the point Φh(yc)
generated by the integrator can be upper bounded by

‖Φh(yc)− ϕh(yc)‖ ≤
(∥∥∥∥∂s+1ϕh(yk)

∂hs+1

∥∥∥∥+

∥∥∥∥∂s+1Φh(yk)

∂hs+1

∥∥∥∥)hs+1 (40)

Replacing the norms on the right hand side of (40) by their upper bounds in (37) and (38) implies
that

‖Φh(yc)− ϕh(yc)‖ ≤ hs+1

[
(C0 + C1)[E(yc) + 1]s+1(M + L+ 1)s+1

tc

]
+ hs+2

[
C2[1 + E(yc)]

s+2(M + L+ 1)s+2

tc

]
. (41)

By replacing yc = [vc;xc; tc] in (41) by yk = [vk;xk; tk] the claim in (18) follows.

C Proof of Proposition 7 (Analysis of discrete Lyapunov functions)

As defined earlier in Section 4, Φh(yk) is the solution generated by the numerical integrator, and
ϕh(yk) is a point on the trajectory of the ODE. yc = [~0;xc; 1] is the initial point of the ODE. Recall
that {yk}Ni=0 is the sequence of points produced by the numerical integrator, i.e., yk+1 = Φh(yk).

To simplify the notation, we let Ek = E(yk), Ek+1 = E(Φh(yk)), ỹ = ϕh(yk) = [ṽ; x̃; t + h],
ŷ = Φh(yk) = [v̂; x̂; t+ h].

We want to prove by induction on k = 0, 1, ..., N that

Ek ≤ (1 +
1

N
)kE0 +

k

N
. (42)

The base case E0 ≤ E0 is trivial. Now let’s assume by induction that the inequality in (42) holds
for k = j, i.e.,

Ej ≤ (1 +
1

N
)jE0 +

j

N
. (43)

By this assumption, we know that f(xk) ≤ eE0+1
tpk

≤ eE0 + 1 and hence xk ∈ S defined in (2).

Note that R = 1
tk
≤ 1. We then have

B(xk, R) ⊆ B(xk, 1) ∈ A (44)

for A defined in (3). By assumption in Proposition 5,

h ≤ 0.2, h ≤ 1

(1 + κ)C(eE0 + 2)(L+M + 1)
. (45)

By utilizing the bound on ‖Φh(yk) − ϕh(yk)‖ and the continuity of E(y), we show in Lemma 13
that the discretization error of ‖E(ŷ)− E(ỹ)‖ is upper bounded by

‖E(Φh(yk))− E(ϕh(yk))‖ (46)

≤ C ′hs+1[(1 + Ek)s+1(L+M + 1)s+1+ h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

under conditions in (44) and (45). C ′ only depends on p, s and the numerical integrator.

We proceed to prove the inductive step. Start by writing Ek+1 = E(Φh(yk)) as

E(Φh(yk)) = E(yk) + E(ϕh(yk))− E(yk) + E(Φh(yk))− E(ϕh(yk)). (47)

According to Proposition 5, E(ϕh(yk))− E(yk) ≤ 0. Therefore,

Ek+1 ≤ Ek + ‖E(ŷ)− E(ỹ)‖. (48)

Replace the norm ‖E(ŷ)− E(ỹ)‖ = ‖E(Φh(yk))− E(ϕh(yk))‖ by its upper bound (46) to obtain

Ej+1 ≤ Ej+Chs+1[(1+Ej)
s+1(L+M+1)s+1+h(1+Ej)

s+2(L+M+1)s+2](Ej+Ej+1+1).
(49)
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Before proving the inductive step, we need to ensure that the step size h is sufficiently small. Here,
we further add two more j-independent conditions on the choice of step size h. In particular, we
assume that

h ≤ 1

eE0 + 2
, hs+1 ≤ 1

3(1 + C−1)C ′N(eE0 + 2)s+1(L+M + 1)s+1
. (50)

Note that since we want show the claim in (42) for k = 1, . . . , N , in inductive assumptions we have
that j ≤ N − 1. Now we proceed to show that if the inequality in (42) holds for k = j it also holds
for k = j + 1. By setting k = j in (49) we obtain that

Ej+1 ≤ Ej+C ′hs+1(1+Ej)
s+1(L+M+1)s+1[1+h(1+Ej)(L+M+1)](Ej+Ej+1+1). (51)

Using the assumption of induction in (43) we can obtain that Ej ≤ eE0 + 1 by setting j = n in the
right hand side. Using this inequality and the second condition in (45), we can write

h ≤ 1

C(eE0 + 2)(L+M + 1)
≤ 1

C(Ej + 1)(L+M + 1)
(52)

Using this expression we can simplify (51) to
Ej+1 ≤ Ej + (1 + C−1)C ′hs+1(1 + Ej)

s+1(L+M + 1)s+1(Ej + Ej+1 + 1). (53)
We can further show that

(1 + C−1)C ′hs+1(1 + Ej)
s+1(L+M + 1)s+1

≤ (1 + C−1)C ′hs+1(2 + eE0)s+1(L+M + 1)s+1 ≤ 1

3N
, (54)

where the first inequality holds since Ej ≤ eE0 + 1 and the second inequality holds due to the
second condition in (50). Simplifying the right hand side of (53) using the upper bound (54) leads
to

Ej+1 ≤ Ej +
1

3N
(Ej + Ej+1 + 1). (55)

Regroup the terms in (55) to obtain that Ej+1 is upper bounded by

Ej+1 ≤
(

1 + 1
3N

1− 1
3N

)
Ej +

1

3N − 1
(56)

Now replace Ej by its upper bound in (43) to obtain

Ej+1 ≤
(

1 + 1
3N

1− 1
3N

)((
1 +

1

N

)j
E0 +

j

N

)
+

1

3N − 1

=

(
1 + 1

3N

1− 1
3N

)(
1 +

1

N

)j
E0 +

(
1 + 1

3N

1− 1
3N

)
j

N
+

1

3N − 1

=

(
3N + 1

3N − 1

)(
1 +

1

N

)j
E0 +

(
3N + 1

3N − 1

)
j

N
+

1

3N − 1

≤
(

1 +
1

N

)j+1

E0 +

(
3N + 1

3N − 1

)
j

N
+

1

3N − 1
, (57)

where the first inequality holds since 3N+1
3N−1 ≤

N+1
N and the last inequality follows from 1+ 2

3N−1 ≥
1 + 1

N . Further, we can show that(
3N + 1

3N − 1

)
j

N
+

1

3N − 1
=

(
1 +

2

3N − 1

)
j

N
+

1

3N − 1

=
j

N
+

(
2

3N − 1

)
j

N
+

1

3N − 1

≤ j

N
+

(
2

3N − 1

)
N − 1

N
+

1

3N − 1

=
j

N
+

1

N

(
3N − 2

3N − 1

)
≤ j + 1

N
, (58)
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where in the first inequality we use the fact that j ≤ N − 1. Using the inequalities in (57) and (58)
we can conclude that

Ej+1 ≤
(

1 +
1

N

)j+1

E0 +
j + 1

N
, (59)

Therefore, the inequality in (42) is also true for k = j + 1. The proof is complete by induction and
we can write

EN ≤ eE0 + 1. (60)
Now if we reconsider the conditions on h in (45) and (50), we can conclude that there exists a
constant C̃ that is determined by p, s and the numerical integrator, such that

h ≤ C̃ N−1/(s+1)

(L+M + 1)(eE0 + 1)
, (61)

satisfies all the inequalities in (45) and (50).

D Bounding operator norms of derivatives and discretization errors of
Lyapunov functions

Lemma 9. Given state yc = [vc;xc; tc] with tc ≥ 1 and the radius R = 1
tc

, if B(xc, R) ⊆ A
(defined in (3)) and hence Assumptions 1,2 hold, then for all y ∈ UR,0.2(yc) we can write

‖∇(i)f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−ic

. (62)

Proof. Based on Assumption 2, we know that

‖∇(p)f(x)‖ ≤M. (63)

We further can show that the norm ‖∇(p−1)f(x)‖ is upper hounded by

‖∇(p−1)f(x)‖ = ‖∇(p−1)f(xc) +∇(p−1)f(x)−∇(p−1)f(xc)‖
≤ ‖∇(p−1)f(xc)‖+ ‖∇(p−1)f(x)−∇(p−1)f(xc)‖ (64)

Using the bound in (63) and the mean value theorem we can show that ‖∇(p−1)f(x) −
∇(p−1)f(xc)‖ ≤ M‖x − xc‖ ≤ MR, where the last inequality follows from y ∈ UR,0.2(yc).
Applying this substitution into (64) implies that

‖∇(p−1)f(x)‖ ≤ ‖∇(p−1)f(xc)‖+MR

≤ [L(f(xc)− f(x∗))]
1
p +MR, (65)

where the first inequality holds due to definition of operator norms and the last inequality holds due
to the condition in Assumption 1. By following the same steps one can show that

‖∇(p−2)f(x)‖ ≤ [L(f(xc)− f(x∗))]
2
p +R[[L(f(xc)− f(x∗))]

1
p +MR] (66)

By iteratively applying this procedure we obtain that if y = [x; v; t] ∈ R2d+1 belongs to the set
UR,0.2(yc), then we have

‖∇(i)f(x)‖ ≤MRp−i +

p−1∑
j=i

[L(f(xc)− f(x∗))]
p−j
p Rj−i. (67)

Notice that since p−j
p ≤ 1 for j = 1, . . . , p − 1, it follows that we can write L

p−j
p ≤ 1 + L.

Moreover, the definition of the Lyapunov function E in (16) implies that

[f(xc)− f(x∗)]
p−j
p ≤ E(yc)

p−j
p

tp−jc

≤ 1 + E(yc)

tp−jc

(68)
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where the last inequality follows from the fact that E(yc)
p−j
p ≤ 1 + E(yc) for j = 1, . . . , p − 1.

Therefore, we can simplify the upper bound in (67) by

‖∇(i)f(x)‖ ≤MRp−i +

p∑
j=i

(1 + L)(1 + E(yc))

tp−jc

Rj−i. (69)

By replacing the radius R with 1/tc we obtain that

‖∇(i)f(x)‖ ≤ M

tp−ic

+

p∑
j=i

(1 + L)(1 + E(yc))

tp−ic

=
M + p(1 + L)(1 + E(yc))

tp−ic

(70)

As the Lyapunov function E(yc) is always non-negative, we can write M ≤ Mp(1 + E(yc)). Ap-
plying this substitution into (70) yields

‖∇(i)f(x)‖ ≤ p(L+M + 1)(1 + E(yc))

tp−ic

, (71)

and the claim in (62) follows.

Lemma 10. If B(xc, R) ⊆ A (defined in (3)) and hence Assumptions 1 and 2 hold, there exists a
constant C determined by p such that, ∀y ∈ UR,0.2(yc) where yc = [vc;xc; tc], tc ≥ 1 and R = 1

tc
,

we have

‖πx,vF (y)‖ =≤ C(E(yc) + 1)(L+M + 1)

tc
. (72)

Proof. According to Lemma 9, we can write that

‖∇f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−1c

. (73)

Further, the definition of the Lyapunov function in (16) implies that

‖vc‖ ≤
2pE(yc)

0.5

tc
. (74)

Since y ∈ UR,0.2(yc), we have that
|t− tc| ≤ 0.2, ‖v − vc‖ ≤ R, ‖x− xc‖ ≤ R. (75)

Further, based on the dynamical system in (12), we can write

‖πx,vF (y)‖ =

∥∥∥∥[− 2p+1
t v − p2tp−2∇f(x)

v

]∥∥∥∥
≤ 2p+ 1

t
‖v‖+ ‖p2tp−2∇f(x)‖+ ‖v‖

≤
(

2p+ 1

t
+ 1

)
(‖vc‖+ ‖vc − v‖) + p2tp−2‖∇f(x)‖, (76)

where the first inequality is obtained by using the property of norm, and in the last one we use the
triangle inequality. Note that according to (75) we have t ≥ tc − 0.2. Since tc ≥ 1 it implies that
t ≥ 0.8tc. In addition we can also show that t ≤ tc + 0.2 ≤ 1.2tc. Applying these bounds into (76)
yields

‖πx,vF (y)‖ ≤
(
p+ 1

0.8tc
+ 1

)
(‖vc‖+ ‖vc − v‖) + (1.2)p−2p2tp−2c ‖∇f(x)‖ (77)

Replace ‖∇f(x)‖, ‖vc‖, and ‖vc − v‖ in (77) by their upper bounds in (73), (74), and (75), respec-
tively, to obtain

‖πx,vF (y)‖ ≤
(
p+ 1

0.8tc
+ 1

)(
2pE(yc)

0.5

tc
+R

)
+ (1.2)p−2p3(M + L+ 1)

E(yc) + 1

tc

≤
(
p+ 1

0.8tc
+ 1

)(
2p(E(yc) + 1) + 1

tc

)
+ (1.2)p−2p3(M + L+ 1)

E(yc) + 1

tc
, (78)
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where in the second inequality we replace R by 1/tc and E(yc)
0.5 by its upper bound E(yc) + 1.

Considering that tc ≥ 1 and the result in (78) w obtain that there exists a constant C such that

‖πx,vF (y)‖ ≤ C(E(yc) + 1)(L+M + 1)

tc
, (79)

where C only depends on p.

Lemma 11. Given state yc = [vc, xc, tc] with tc ≥ 1, let R = 1
tc

. If B(xc, R) ⊆ A (defined in (3))
and hence Assumptions 1,2 hold, then when h ≤ min{0.2, 1

(1+κ)C(E(yc)+1)(L+M+1)}, we have

∥∥∥∥∂qϕh(yc)

∂hq

∥∥∥∥ ≤ C0[E(yc) + 1]q(L+M + 1)q

tc
, (80)

and∥∥∥∥∂qΦh(yc)

∂hq

∥∥∥∥ ≤ C1[1 + E(yc)]
q(L+M + 1)q + C2h[1 + E(yc)]

q+1(L+M + 1)p+1

tc
, (81)

where C and κ are the same constants as in Lemma 10. Further, the constants C1, C2, C3 are
determined by p, q, and the integrator.

Remark 12. In the proof below, we reuse variants of symbol C(e.g.C1, C2, C̃) to hide constants de-
termined by p, q and the integrator. We recommend readers to focus on the degree of the polynomials
in (L+M + 1), E(yc), h, tc, and check that the rest can be upper-bounded by variants of symbol C.
We frequently use two tricks in this section. First, for a ∈ (0, 1), we can bound

ca ≤ c+ 1 (82)

Second, note that given tc ≥ 1,for any n > 0, there exist constants C1, C2, C3 determined by n such
that for all t subject to |t− tc| ≤ 0.2,

1

tn
≤ C1

tnc
≤ C2t

n ≤ C3t
n
c (83)

Proof. Notice that the system dynamic function F : R2d+1 → R2d+1 in Equation (12) is a vec-
tor valued multivariate function. We denote its ith order derivatives by ∇(i)F (y), which is a
(2d+ 1)× . . .×(2d+ 1)︸ ︷︷ ︸

i+1 times

tensor. The tensor is symmetric by continuity and Schwartz theorem. As

a shorthand, we use ∇(i)F to denote ∇(i)F (y). We know that y(i) = F (i−1)(y) = ∂iy
∂ti . Notice that

F (i−1)(y) is a vector. As an example, we can write

y(1) =F

y(2) =F (1) = ∇F (F )

y(3) =F (2) = ∇(2)F (F, F ) +∇F (∇F (F )). (84)

The derivative∇(i)F (y) can be interpreted as a linear map: ∇(i)F : R2d+1× . . .×R2d+1︸ ︷︷ ︸
i times

→ R2d+1.

∇(2)F (F1, F2) maps F1, F2 to some element in R2d+1. Enumerating the expressions will soon get
very complicated. However, we can express them compactly with elementary differentials summa-
rized in Appendix E (see Chapter 3.1 in [12] for details).
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First we bound ∇(i)F by explicitly computing its entries. Let a(t) = p2tp−2 and b(t) = 2p+1
t .

Based on the definition in (12), we obtain that

∂k+1F

∂v∂tk
=

−b(k)(t)II(k)

0

 , ∂kF

∂tk
=

−b(k)(t)v − a(k)(t)∇f(x)
0
0

 ,
∂i+kF

∂xi∂tk
=

−a(k)(t)∇i+1f(x)
0
0

 , ∂iF

∂xi
=

−a(t)∇i+1f(x)
0
0

 ,
∂i+jF

∂vj∂xi
=0,

∂F

∂v
=

 2p+1
t I
I
0

 , ∂jF

∂vj
= 0, j ≥ 2. (85)

(86)

For any vector y = [v;x; t] ∈ UR,0.2(yc), we can show that the norm of∇(n)F is upper bounded by

‖∇(n)F (F1, F2, ..., Fn)‖ ≤ ‖a(t)∇(n+1)f(x)‖
∏
i∈[n]

‖πxFi‖

+ ‖b(n)(t)v + a(n)(t)∇f(x)‖
∏
i∈[n]

‖πtFi‖

+

n−1∑
k≥1

∑
S⊂[n]
|S|=k

‖a(k)(t)∇(n−k+1)f(x)‖

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖


+
∑
i∈[n]

‖b(n−1)(t) + 1‖‖πvFi‖
∏
j 6=i

‖πtFj‖. (87)

Using the definition of the Lyapunov function E and the definition of the set UR,0.2(yc) it can be
shown that

‖vc‖ ≤
E(yc)

0.5

tc
≤ E(yc) + 1

tc
, tc ≥ 1, |t− tc| ≤ 0.2, ‖v − vc‖ ≤ R. (88)

Further, the result in Lemma 9 implies that

‖∇(i)f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−ic

. (89)

Substituting the upper bounds in (88) and (89) into (87) implies that for n = 1, . . . , p we can write

‖∇(n)F (F1, F2, ..., Fn)‖

≤ C1(M + L+ 1)[E(yc) + 1]tn−1c

∏
i∈[n]

‖πxFi‖

+ C2(M + L+ 1) [E(yc) + 1] t−n−1c

∏
i∈[n]

‖πtFi‖

+ C3(M + L+ 1)

p−1∑
k≥1

[E(Fc) + 1] tn−2k−1c

∑
S⊂[n]
|S|=k

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖


+ C4

∑
i∈[n]

[
1 +

1

tnc

]
‖πvFi‖

∏
j 6=i

‖πtFj‖, (90)

where C1, C2, C3, and C4 only depend on n and p.
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For n = p, p + 1, ..., s, we can get similar bounds. To do so, not only we use the result in (89), but
also we use the bounds guaranteed by Assumption 2. Hence, for n = p, p+ 1, ..., s it holds

‖∇(n)F (F1, F2, ..., Fn)‖

≤ C1Mtp−2c

∏
i∈[n]

‖πxFi‖

+ C2(M + L+ 1)[E(yc) + 1]t−n−1c

∏
i∈[n]

‖πtFi‖

+ C3

p−1∑
k≥1

(M + L+ 1)[E(yc) + 1]tp−k−2c

∑
S⊂[n]
|S|=k

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖


+ C4

∑
i∈[n]

[
1 +

1

tnc

]
‖πvFi‖

∏
j 6=i

‖πtFj‖. (91)

Finally we are ready to bound the time derivatives. We first bound the elementary differentials F (τ)
defined in Section E Definition 2. Let F (τ) = F (τ)(y) for convenience. We claim that when
|τ | ≤ q, then ∀y ∈ UR,0.2(yc)

‖πtF (τ)‖ ≤ 1, ‖πv,xF (τ)‖ ≤ C|τ |(L+M + 1)|τ |
[E(yc) + 1]|τ |

tc
, (92)

where the constant Cq only depends on p and q. We use induction to prove the claims in (92).
The base case is trivial as we have shown in Lemma 10 that ‖πx,vF (•)(y)‖ = ‖πx,vF (y)‖ ≤
C(E(yc)+1)(L+M)

tc
, and ‖πtF (•)(y)‖ = ‖πtF (y)‖ = 1. Since the last coordinate grows linearly

with rate 1 no matter what x, v are, it can be shown that

πtF (τ)(y) = 0,∀|τ | ≥ 2. (93)

We hence focus on proving the upper bound for the norm ‖πx,vF (τ)(y)‖ in (92).

Now assume |τ | = q and it has m subtrees attached to the root, τ = [τ1, ..., τm] with
∑m
i=1 |τi| =

q − 1. When m ≤ p− 1, by (90) we obtain

‖∇(m)F (F (τ1), ..., F (τm))‖

≤ C1[(M + L+ 1)(E(yc) + 1)]tm−1c

∏
i∈[m]

‖πxF (τi)‖

+ C2(M + L+ 1)[E(yc) + 1]t−m−1c

∏
i∈[m]

‖πtF (τi)‖

+ C3

m−1∑
k≥1

[(M + L+ 1)(E(yc) + 1)1]tm−2k−1c

∑
S⊂[m]
|S|=k

[∏
s∈S
‖πtF (τs)‖

] ∏
s′∈[m]/S

‖πxF (τs′)‖


+ C4

∑
i∈[m]

[
1 +

1

tnc

]
‖πvF (τi)‖

∏
j 6=i

‖πtF (τj)‖. (94)

Notice that |τi| ≤ q − 1. By inductive assumption in (92) we can write

‖πtF (τi)‖ ≤ 1 for all i = 1 . . . ,m (95)∏
i∈S
‖πv,xF (τi)‖ ≤ Cn(L+M + 1)n

[E(yc) + 1]n

t
|S|
c

, where n =
∑
i

|τi|. (96)

Apply these substitutions into (94) to and use the inequality
∑
i |τi| ≤ q − 1 to obtain that

‖∇(m)F (F (τ1), ..., F (τm))‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (97)
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Hence, since ‖πx,vF (τ)‖ ≤ ‖∇(m)F (F (τ1), ..., F (τm))‖ we obtain that

‖πx,vF (τ)‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (98)

Similarly, for m ≥ p, by (91) we can write

‖∇(m)F (F (τ1), ..., F (τm))‖

≤ C1Mtp−2c

∏
i∈[m]

‖πxF (τi)‖

+ C2(M + L+ 1)[E(yc) + 1]t−n−1
∏
i∈[n]

‖πtF (τi)‖

+ C3

m−1∑
k≥1

[(M + L+ 1)(E(yc) + 1)1]tp−k−2c

∑
S⊂[m]
|S|=k

[∏
s∈S
‖πtF (τs)‖

] ∏
s′∈[m]/S

‖πxF (τs′)‖


+ C4

∑
i∈[m]

[
1 +

1

tnc

]
‖πvF (τi)‖

∏
j 6=i

‖πtF (τj)‖. (99)

Plug in the induction assumption in (92) into (99) to obtain

‖πx,vF (τ)‖ ≤ ‖∇(m)F (F (τ1), ..., F (τm))‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (100)

Hence, the proof is complete by induction.

Now we proceed to derive an upper bound for higher order time derivatives. By Lemma 14 we can
write

‖∂
qϕh(yc)

∂hq
‖ = ‖F (q−1)(ϕh(yc))‖ = ‖

∑
|τ |=q

α(τ)F (τ)(ϕh(yc))‖.

By Lemma 10, we know that when h ≤ min{0.2, 1
(1+κ)C(E(yc)+1)(M+L)}, y ∈ UR,0.2(yc). There-

fore, (100) holds. Hence, there exists a constant C determined by p, q such that

‖∂
qϕh(yc)

∂hq
‖ ≤ C[E(yc) + 1]q(M + L+ 1)q

tc
.

Similarly by Lemma 15, we have the following equation

∂qΦh(yc)

∂hq
=
∑
i≤S

bi[h
∂qF (gi)

∂hq
+ q

∂q−1F (gi)

∂hq
]

Here, ∂
qF (gi)
∂hq has the same recursive tree structure as F (q)(y), except that we need to replace all F

in the expression by ∂gi
∂h and all∇(n)F (y) by∇(n)F (gi). By Definition 1 and Lemma 10, we know

that

‖πx,v∂gi
∂h

‖ ≤
∑
j≤i−1

|aij |
C(E(yc) + 1)(M + L+ 1)

tc
, ‖πt∂gi

∂h
‖ = |

∑
j≤i−1

aij |.

We also know by lemma 10 that ∀i, gi ∈ UR,0.2(yc). Hence the bounds for ‖∇(n)F (y)‖ also
holds for ∇(n)F (gi). Therefore, by the same argument as for bounding ‖∂

qϕh(yc)
∂hq ‖, we will get

same bounds for ‖∂
qF (gi)
∂hq ‖ up to a constant factor determined by the integrator. Based on this, we

conclude that

‖∂
qΦh(yc)

∂hq
‖ ≤ C[(L+M + 1)(1 + E(yc))]

q + C ′h[(L+M + 1)(1 + E(yc))]
(q+1)

tc
,

where the constants are determined by p, q and the integrator.
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Lemma 13. Suppose the conditions in Proposition 6 hold. Then, we have that
‖E(Φh(yk))− E(ϕh(yk))‖
≤ Chs+1[(1 + Ek)s+1(L+M + 1)s+1 + h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

(101)
where C only depends on p, s and the numerical integrator.

Proof. Denote ŷ = Φh(yk), ỹ = ϕh(yk). Notice that t̃ = t̂ = tk + h. In fact, because we start the
simulation at tc = 1 and we require that h ≤ 0.2, we have

tk

t̃
=

tk
tk + h

∈
[

5

6
, 1

]
. (102)

Now using the definition of the Lyapunov function E we can show that

‖E(ŷ)− E(ỹ)‖ ≤ t̃2

4p2
∣∣‖ṽ‖2 − ‖v̂‖2∣∣+

∣∣∣∣‖x̃+
t̃

2p
ṽ − x∗‖2 − ‖x̂+

t̂

2p
v̂ − x∗‖2

∣∣∣∣+ t̃p(|f(x̃)− f(x̂)|)

≤ 2t̂2

4p2
(‖ṽ − v̂‖‖ṽ + v̂‖) + t̃p(‖x̃− x̂‖)(‖∇f(x̃)‖+ ‖∇f(x̂)‖)

+ 2

∥∥∥∥x̃− x̂+
t̃

2p
(ṽ − v̂)

∥∥∥∥∥∥∥∥x̃+
t̃

2p
ṽ − x∗ + x̂+

t̂

2p
v̂ − x∗

∥∥∥∥ , (103)

where to derive the second inequality we used the convexity of the function f which implies
〈y − x,∇f(y)〉 ≤ f(x)− f(y) ≤ 〈x− y,∇f(x)〉. (104)

Recall that Ek = E(yk), Ek+1 = E(ŷ) = E(Φh(yk)), Ẽk+1 = E(ỹ) = E(ϕh(yk)). According to
Proposition 5 we know that Ẽk+1 ≤ Ek, and therefore Ẽk+1 is upper bounded by Ek. Therefore,
we can write

‖ṽ‖ ≤

√
Ẽk+1

t̃
≤
√
Ek

t̃
≤ Ek + 1

t̃
, ‖v̂‖ ≤ Ek+1 + 1

t̂
,∥∥∥∥x̃+

t̃

2p
ṽ − x∗

∥∥∥∥ ≤√Ek ≤ Ek + 1,

∥∥∥∥x̂+
t̂

2p
v̂ − x∗

∥∥∥∥ ≤ Ek+1 + 1. (105)

Further, by Assumption 1, we have that

‖∇f(x̃)‖ ≤ L(Ek + 1)

t̃p−1
, ‖∇f(x̂)‖ ≤ L(f(x̂)− f(x∗))

p−1
p ≤ L(

Ek+1

t̂p
)

p−1
p ≤ L(Ek+1 + 1)

t̂p−1
.

(106)
In addition, by Proposition 6, we know that for some constant C determined by p, s, L,M and the
integrator, it holds

max{‖ṽ − v̂‖, ‖x̃− x̂‖}

≤ Chs+1

[
[1 + E(yk)]s+1(L+M + 1)s+1

tk
+ h

[1 + E(yk)]s+2(L+M + 1)s+2

tk

]
. (107)

Define M := [ [1+E(yk)]
s+1(L+M+1)s+1

tk
+ h [1+E(yk)]s+2(L+M+1)s+2

tk
]. Use the upper bounds in

(105)-(107) and the definition ofM to simplify the right hand side of (103) to

‖E(ŷ)− E(ỹ)‖ ≤ 2t̃2

4p2
Chs+1MEk + Ek+1 + 2

t̃
+ t̃pChs+1ML(Ek+1 + Ek + 2)

t̃p−1

+ 2

(
1 +

tk
2p

)
Chs+1M(Ek + Ek+1 + 2). (108)

Now use the fact that tk
t̃

is bounded by a constant as shown (102). Further, upper bound all the
constants determined by s, p and the numerical integrator, we obtain that
‖E(ŷ)− E(ỹ)‖
≤ C ′hs+1[(1 + Ek)s+1(L+M + 1)s+1 + h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

(109)
and the claim in (101) follows.
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Figure 2: A figure adapted from [12]. Example tree structures and corresponding function deriva-
tives.

E Elementary differentials

We briefly summarize some key results on elementary differentials from [12]. For more details,
please refer to chapter 3 of the book. Given a dynamical system

ẏ = F (y)

we want to find a convenient way to express and compute its higher order derivatives. To do this,
let τ denote a tree structure as illustrated in Figure 2. |τ | is the number of nodes in τ . Then we can
adopt the following notations as in [12]
Definition 2. For a tree τ , the elementary differential is a mapping F (τ) : Rd → Rd, defined
recursively by F (•)(y) = F (y) and

F (τ) = ∇(m)F (y)(F (τ1)(y), ..., F (τm)(y))

for τ = [τ1, ..., τm]. Notice that
∑m
i=1 |τi| = |τ | − 1.

Some examples are shown in Figure 2. With this notation, the following results from [12] Chapter
3.1 hold. The proof follows by recursively applying the product rule.
Lemma 14. The qth order derivative of the exact solution to ẏ = F (y) is given by

y(q)(tc) = F (q−1)(yc) =
∑
|τ |=q

α(τ)F (τ)(yc)

for y(tc) = yc. α(τ) is a positive integer determined by τ and counts the number of occurrences of
the tree pattern τ .

The next result is obtained by Leibniz rule. The expression for ∂qF (gi)
∂hq can be calculated the same

way as in Lemma 14.
Lemma 15. For a Runge-Kutta method defined in definition 1, if F is qth differentiable, then

∂qΦh(yc)

∂hq
=
∑
i≤S

bi[h
∂qF (gi)

∂hq
+ q

∂q−1F (gi)

∂hq
] (110)

where ∂qF (gi)
∂hq has the same structure as F (q)(y) in lemma 14, except that we need to replace all F

in the expression by ∂gi
∂h and all ∇(n)F (y) by∇(n)F (gi).

22


