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1 Derivation of Equation (7) in paper

Consider the following optimization problem,

d , min
δ
‖δ‖p s.t. aT δ = b (1)

We show that d has the form d = |b|
‖a‖∗ , where ‖.‖∗ is the dual-norm of ‖.‖p. For a given norm ‖.‖p,

the length of any vector u w.r.t. to the dual norm is defined as ‖u‖∗ , max‖v‖p≤1 u
Tv. Since uTv

is linear, the maximizer is attained at the boundary of the feasible set, i.e. ‖v‖p = 1. Therefore, it
follows that:

‖u‖∗ = max
‖v‖p=1

uTv = max
v
uT

v

‖v‖p
= max

v
|uT v

‖v‖p
| , (2)

In particular for u = a and v = δ:

‖a‖∗ = max
δ
|aT δ

‖δ‖p
| (3)

So far we have just used properties of the dual norm. In order to prove our result, we start from
the trivial identity (assuming ‖δ‖p 6= 0 which is guaranteed when b 6= 0): aT δ = ‖δ‖p( a

T δ
‖δ‖p ).

Consequently, |aT δ| = ‖δ‖p | a
T δ
‖δ‖p |. Applying the constraint aT δ = b, we obtain |b| = ‖δ‖p | a

T δ
‖δ‖p |.

Thus, we can write,

‖δ‖p =
|b|
| aT δ
‖δ‖p |

=⇒ min
δ
‖δ‖p = min

δ

|b|
| aT δ
‖δ‖p |

. (4)

We thus continue as below (using (3) in the last step):

min
δ
‖δ‖p = min

δ

|b|
| aT δ
‖δ‖p |

=
|b|

maxδ | a
T δ
‖δ‖p |

=
|b|
‖a‖∗

(5)

It is well known from Hölder’s inequality that ‖.‖∗ = ‖.‖q , where q = p
p−1 .

2 SVM as a Special Case
In the special case of a linear classifier, our large margin formulation coincides with an SVM. Consider
a binary classification task, so that fi(x) , wT

i x+ bi, for i = 1, 2. Let g(x) , f1(x)− f2(x) =
wTx+ b where w , w1 −w2, b , b1 − b2. Recall from Eq. (7) (in the paper) that the distance to
the decision boundary in our formulation is defined as:

d̃f,x,{i,j} =
|g(x)|

‖∇xg(x)‖2
=
|wTx+ b|
‖w‖2

, (6)
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In this (linear) case, there is a scaling redundancy; if the model parameter (w, b) yields distance
d̃, so does (cw, cb) for any c > 0. For SVMs, we make the problem well-posed by assuming
|wTx + b| ≥ 1 (the subset of training points that attains the equality are called support vectors).
Thus, denoting the evaluation of d̃ at x = xk by d̃k, the inequality constraint implies that d̃k ≥ 1

‖w‖2
for any training point xk. The margin is defined as the smallest such distance γ , mink d̃k = 1

‖w‖2 .
Obviously, maximizing γ is equivalent to minimizing ‖w‖2; the well-known result for SVMs.

3 MNIST - Additional Results

Figure 1: Performance of MNIST models on noisy label tasks. In this plot and all others, “Xent"
refers to cross-entropy.

Figure 2: Performance of MNIST models on generalization tasks. Gal etal. refers to the method of
Gal et al. (2017).

Figure 3: Performance of MNIST models on white-box and black-box FGSM attacks. For the
black-box, attacker is a cross-entropy trained model (best seen in PDF).
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Figure 4: Performance of selected MNIST models on input Gaussian Noise with varying standard
deviations.

Figure 5: Performance of CIFAR-10 models on FGSM adversarial examples (best seen in PDF).

4 FGSM/IFGSM Adversarial Example Generation

Given an input image x, a loss function L(x), the perturbed FGSM image x̂ is generated as x̂ ,
x + ε sign(∇xL(x)). For IFGSM, this process is slightly modified as x̂k , Clipx,ε(x̂

k−1 +

α sign(∇xL(x̂k)), x̂0 = x, where Clipx,ε(y) clips the values of each pixel i of y to the range
(xi− ε,xi+ ε). This process is repeated for a number of iterations k ≥ ε/α. The value of ε is usually
set to a small number such as 0.1 to generate imperceptible perturbations which can nevertheless
cause the accuracy of a network to be significantly degraded.

5 CIFAR-10 - Additional Results

Figure 5 shows the performance of the CIFAR-10 models against FGSM black-box and white-box
attacks.

6 MNIST Model Architecture and Hyperparameter Details

We use a 4 hidden layer network. The first two hidden layers are convolutional, with filter sizes of
5 × 5 and 32 and 64 units. The hidden layers are of size 512 each. We use a learning rate of 0.01.
Dropout is set to either 0 or 0.2 (hyperparameter sweep for each run), weight decay to 0 or 0.005,
and γl to 200 or 1000 (for margin only). The same value of γl is used at all layers where margin
is applied for ease of hyperparameter tuning. The aggregation operator (see (4) in the paper) is set
to max. For margin training, we add cross-entropy loss with a small weight of 1.0. For example,
as noise levels increase, we find that dropout hurts performance. The best performing validation
accuracy among the parameter sweeps is used for reporting final test accuracy. We run for 50000
steps of training with mini-batch size of 128. We use either SGD with momentum or RMSProp. We
fix ε at 10−6 for all experiments (see Equation 16 in the paper) - this applies to all datasets.
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7 CIFAR-10 Model Architecture and Hyperparameter Details

We use the depth 58, k=10 architecture from Zagoruyko & Komodakis (2016). This consists of
a first convolutional layer with filters of size 3 × 3 and 16 units; followed by 3 sets of residual
units (9 residual units each). No dropout is used. Learning rate is set to 0.001 for margin and
0.01 for cross-entropy and hinge. with decay of 0.9 every 2000 or 20000 steps (we choose from a
hyperparameter sweep). γl is set to either 5000, 10000 or 20000 (as for MNIST, the same value of γl
is used at all layers where margin is applied). The aggregation operator for margin is set to

∑
. We

use either SGD with momentum or RMSProp. For margin training, we add cross-entropy loss with a
small weight of 1.0.

8 Imagenet Model Architecture and Hyperparameter Details

We follow the architecture in Szegedy et al. (2016). We always use RMSProp for optimization. For
margin training, we add cross-entropy loss with a small weight of 0.1 and an additional auxiliary loss
(as suggested in the paper) in the middle of the network.

9 Evolution of distance metric

Below we show plots of our distance approximation (see (7)) averaged over each mini-batch for 50000
steps of training CIFAR-10 model with 100% of the data. This is a screengrab from a Tensorflow
run (Tensorboard). The orange curve represents training distance, red curve is validation and blur
curve is test. We show plots for different layers, for both cross-entropy and margin. It is seen that for
each layer, (input, layer 7 and output), the margin achieves a higher mean distance to boundary than
cross-entropy (for input, margin achieves mean distance about 100 for test set, whereas cross-entropy
achieves about 70.). Note that for cross-entropy we are only measuring this distance.

Figure 6: Cross-entropy (top) Margin (bottom) mean distance to boundary for input layer of CIFAR-
10.
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Figure 7: Cross-entropy (top) Margin (bottom) mean distance to boundary for hidden layer 7 of
CIFAR-10.
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Figure 8: Cross-entropy (top) Margin (bottom) mean distance to boundary for output layer of
CIFAR-10.
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