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Abstract

Policy gradient methods are widely used for control in reinforcement learning,
particularly for the continuous action setting. There have been a host of theoret-
ically sound algorithms proposed for the on-policy setting, due to the existence
of the policy gradient theorem which provides a simplified form for the gradient.
In off-policy learning, however, where the behaviour policy is not necessarily at-
tempting to learn and follow the optimal policy for the given task, the existence
of such a theorem has been elusive. In this work, we solve this open problem by
providing the first off-policy policy gradient theorem. The key to the derivation is
the use of emphatic weightings. We develop a new actor-critic algorithm—called
Actor Critic with Emphatic weightings (ACE)—that approximates the simplified
gradients provided by the theorem. We demonstrate in a simple counterexam-
ple that previous off-policy policy gradient methods—particularly OffPAC and
DPG—converge to the wrong solution whereas ACE finds the optimal solution.

1 Introduction

Off-policy learning holds great promise for learning in an online setting, where an agent generates
a single stream of interaction with its environment. On-policy methods are limited to learning about
the agent’s current policy. Conversely, in off-policy learning, the agent can learn about many poli-
cies that are different from the policy being executed. Methods capable of off-policy learning have
several important advantages over on-policy methods. Most importantly, off-policy methods allow
an agent to learn about many different policies at once, forming the basis for a predictive under-
standing of an agent’s environment [Sutton et al., 2011, White, 2015] and enabling the learning of
options [Sutton et al., 1999, Precup, 2000]. With options, an agent can determine optimal (short)
behaviours, starting from its current state. Off-policy methods can also learn from data generated
by older versions of a policy, known as experience replay, a critical factor in the recent success of
deep reinforcement learning [Lin, 1992, Mnih et al., 2015, Schaul et al., 2015]. They also enable
learning from other forms of suboptimal data, including data generated by human demonstration,
non-learning controllers, and even random behaviour. Off-policy methods also enable learning about
the optimal policy while executing an exploratory policy [Watkins and Dayan, 1992], thereby ad-
dressing the exploration-exploitation tradeoff.

Policy gradient methods are a general class of algorithms for learning optimal policies, for both the
on and off-policy setting. In policy gradient methods, a parameterized policy is improved using
gradient ascent [Williams, 1992], with seminal work in actor-critic algorithms [Witten, 1977, Barto
et al., 1983] and many techniques since proposed to reduce variance of the estimates of this gradient
[Konda and Tsitsiklis, 2000, Weaver and Tao, 2001, Greensmith et al., 2004, Peters et al., 2005,
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Bhatnagar et al., 2008, 2009, Grondman et al., 2012, Gu et al., 2016]. These algorithms rely on
a fundamental theoretical result: the policy gradient theorem. This theorem [Sutton et al., 2000,
Marbach and Tsitsiklis, 2001] simplifies estimation of the gradient, which would otherwise require
difficult-to-estimate gradients with respect to the stationary distribution of the policy and potentially
of the action-values if they are used.

Off-policy policy gradient methods have also been developed, particularly in recent years where
the need for data efficiency and decorrelated samples in deep reinforcement learning require the
use of experience replay and so off-policy learning. This work began with OffPAC [Degris et al.,
2012a], where an off-policy policy gradient theorem was provided that parallels the on-policy policy
gradient theorem, but only for tabular policy representations.2 This motivated further development,
including a recent actor-critic algorithm proven to converge when the critic uses linear function
approximation [Maei, 2018], as well as several methods using the approximate off-policy gradient
such as Deterministic Policy Gradient (DPG) [Silver et al., 2014, Lillicrap et al., 2015], ACER
[Wang et al., 2016], and Interpolated Policy Gradient (IPG) [Gu et al., 2017]. However, it remains an
open question whether the foundational theorem that underlies these algorithms can be generalized
beyond tabular representations.

In this work, we provide an off-policy policy gradient theorem, for general policy parametrization.
The key insight is that the gradient can be simplified if the gradient in each state is weighted with an
emphatic weighting. We use previous methods for incrementally estimating these emphatic weight-
ings [Yu, 2015, Sutton et al., 2016] to design a new off-policy actor-critic algorithm, called Actor-
Critic with Emphatic weightings (ACE). We show in a simple three state counterexample, with two
states aliased, that solutions are suboptimal with the (semi)-gradients used in previous off-policy
algorithms—such as OffPAC and DPG. We demonstrate both the theorem and the counterexample
under stochastic and deterministic policies, and that ACE converges to the optimal solution.

2 Problem Formulation

We consider a Markov decision process (S, A, P, r), where S denotes the finite set of states, A
denotes the finite set of actions, P : S × A × S → [0,∞) denotes the one-step state transition
dynamics, and r : S × A × S → R denotes the transition-based reward function. At each timestep
t = 1, 2, . . ., the agent selects an action At according to its behaviour policy µ, where µ : S×A→
[0, 1]. The environment responds by transitioning into a new state St+1 according to P, and emits a
scalar reward Rt+1 such that E [Rt+1|St, At, St+1] = r(St, At, St+1).

The discounted sum of future rewards given actions are selected according to some target policy π
is called the return, and defined as:

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + . . . (1)
= Rt+1 + γt+1Gt+1

We use transition-based discounting γ : S × A × S → [0, 1], as it unifies continuing and episodic
tasks [White, 2017]. Then the state value function for policy π and γ is defined as:

vπ(s)
def
= Eπ[Gt|St = s] ∀s ∈ S (2)

=
∑
a∈A

π(s, a)
∑
s′∈S

P(s, a, s′)[r(s, a, s′) + γ(s, a, s′)vπ(s
′)] ∀a ∈ A,∀s ∈ S

In off-policy control, the agent’s goal is to learn a target policy π while following the behaviour
policy µ. The target policy πθ is a differentiable function of a weight vector θ ∈ Rd. The goal is to
learn θ to maximize the following objective function:

Jµ(θ)
def
=
∑
s∈S

dµ(s)i(s)vπθ
(s) (3)

where i : S → [0,∞) is an interest function, dµ(s)
def
= limt→∞ P(St = s|s0, µ) is the limiting

distribution of states under µ (which we assume exists), and P(St = s|s0, µ) is the probability that

2See B. Errata in Degris et al. [2012b] for the clarification that the theorem only applies to tabular policy
representations.
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St = s when starting in state s0 and executing µ. The interest function—introduced by Sutton et al.
[2016]—provides more flexibility in weighting states in the objective. If i(s) = 1 for all states, the
objective reduces to the standard off-policy objective. Otherwise, it naturally encompasses other
settings, such as the start state formulation by setting i(s) = 0 for all states but the start state(s).
Because it adds no complications to the derivations, we opt for this more generalized objective.

3 Off-Policy Policy Gradient Theorem using Emphatic Weightings

The policy gradient theorem with function approximation has only been derived for the on-policy
setting thus far, for stochastic policies [Sutton et al., 2000, Theorem 1] and deterministic policies
[Silver et al., 2014]. The policy gradient theorem for the off-policy case has only been established
for the setting where the policy is tabular [Degris et al., 2012b, Theorem 2].3 In this section, we
show that the policy gradient theorem does hold in the off-policy setting, when using function ap-
proximation for the policy, as long as we use emphatic weightings. These results parallel those in
off-policy policy evaluation, for learning the value function, where issues of convergence for tem-
poral difference methods are ameliorated by using an emphatic weighting [Sutton et al., 2016].
Theorem 1 (Off-policy Policy Gradient Theorem).

∂Jµ(θ)

∂θ
=
∑
s

m(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a) (4)

where m : S→ [0,∞) is the emphatic weighting, in vector form defined as

m>
def
= i>(I−Pπ,γ)

−1 (5)

where the vector i ∈ R|S| has entries i(s)
def
= dµ(s)i(s) and Pπ,γ ∈ R|S|×|S| is the matrix with

entries Pπ,γ(s, s′)
def
=
∑
a π(s, a;θ)P(s, a, s

′)γ(s, a, s′)

Proof. First notice that

∂Jµ(θ)

∂θ
=
∂
∑
s i(s)vπ(s)

∂θ
=
∑
s

i(s)
∂vπ(s)

∂θ

Therefore, to compute the gradient of Jµ, we need to compute the gradient of the value function
with respect to the policy parameters. A recursive form of the gradient of the value function can be
derived, as we show below. Before starting, for simplicity of notation we will use

g(s) =
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a)

where g : S→ Rd. Now let us compute the gradient of the value function.

∂vπ(s)

∂θ
=

∂

∂θ

∑
a

π(s, a;θ)qπ(s, a)

=
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a) +

∑
a

π(s, a;θ)
∂qπ(s, a)

∂θ
(6)

= g(s) +
∑
a

π(s, a;θ)
∂
∑
s′ P(s, a, s′)(r(s, a, s′) + γ(s, a, s′)vπ(s

′))

∂θ

= g(s) +
∑
a

π(s, a;θ)
∑
s′

P(s, a, s′)γ(s, a, s′)
∂vπ(s

′)

∂θ

We can simplify this more easily using vector form. Let v̇π ∈ R|S|×d be the matrix of gradients
(with respect to the policy parameters θ) of vπ for each state s, and G ∈ R|S|×d the matrix where
each row corresponding to state s is the vector g(s). Then

v̇π = G+Pπ,γ v̇π =⇒ v̇π = (I−Pπ,γ)
−1G (7)

3Note that the statement in the paper is stronger, but in an errata published by the authors, they highlight an
error in the proof. Consequently, the result is only correct for the tabular setting.
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Therefore, we obtain ∑
s

i(s)
∂vπ(s)

∂θ
= i>v̇π = i>(I−Pπ,γ)

−1G

= m>G

=
∑
s

m(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a)

We can prove a similar result for the deterministic policy gradient objective, for a deterministic
policy, π : S→ A. The objective remains the same, but the space of possible policies is constrained,
resulting in a slightly different gradient.
Theorem 2 (Deterministic Off-policy Policy Gradient Theorem).

∂Jµ(θ)

∂θ
=

∫
S

m(s)
∂π(s;θ)

∂θ

∂qπ(s, a)

∂a

∣∣∣∣
a=π(s;θ)

ds (8)

where m : S→ [0,∞) is the emphatic weighting for a deterministic policy, which is the solution to
the recursive equation

m(s′)
def
= dµ(s

′)i(s′) +

∫
S

P(s, π(s;θ), s′)γ(s, π(s;θ), s′)m(s) ds (9)

The proof is presented in Appendix A.

4 Actor-Critic with Emphatic Weightings

In this section, we develop an incremental actor-critic algorithm with emphatic weightings, that uses
the above off-policy policy gradient theorem. To perform a gradient ascent update on the policy
parameters, the goal is to obtain a sample of the gradient∑

s

m(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a). (10)

Comparing this expression with the approximate gradient used by OffPAC and subsequent methods
(which we refer to as semi-gradient methods) reveals that the only difference is in the weighting of
states: ∑

s

dµ(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a). (11)

Therefore, we can use standard solutions developed for other actor-critic algorithms to obtain a
sample of

∑
a
∂π(s,a;θ)

∂θ qπ(s, a). Explicit details for our off-policy setting are given in Appendix B.
The key difficulty is then in estimating m(s) to reweight this gradient, which we address below.

The policy gradient theorem assumes access to the true value function, and provides a Bellman
equation that defines the optimal fixed point. However, approximation errors can occur in practice,
both in estimating the value function (the critic) and the emphatic weighting. For the critic, we
can take advantage of numerous algorithms that improve estimation of value functions, including
through the use of λ-returns to mitigate bias, with λ = 1 corresponding to using unbiased samples
of returns [Sutton, 1988]. For the emphatic weighting, we introduce a similar parameter λa ∈ [0, 1],
that introduces bias but could help reduce variability in the weightings

m>λa = i>(I−Pπ,γ)
−1(I− (1− λa)Pπ,γ). (12)

For λa = 1, we get mλa = m and so get an unbiased emphatic weighting.4 For λa = 0, the
emphatic weighting is simply i, and the gradient with this weighting reduces to the regular off-
policy actor critic update [Degris et al., 2012b]. For λa = 0, therefore, we obtain a biased gradient

4Note that the original emphatic weightings [Sutton et al., 2016] use λ = 1 − λa. This is because their
emphatic weightings are designed to balance bias introduced from using λ for estimating value functions: larger
λ means the emphatic weighting plays less of a role. For this setting, we want larger λa to correspond to the
full emphatic weighting (the unbiased emphatic weighting), and smaller λa to correspond to a more biased
estimate, to better match the typical meaning of such trace parameters.
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estimate, but the emphatic weightings themselves are easy to estimate—they are myopic estimates
of interest—which could significantly reduce variance when estimating the gradient. Selecting λa
between 0 and 1 could provide a reasonable balance, obtaining a nearly unbiased gradient to enable
convergence to a valid stationary point but potentially reducing some variability when estimating
the emphatic weighting.

Now we can draw on previous work estimating emphatic weightings incrementally to obtain an em-
phatically weighted policy gradient. Assume access to an estimate of the gradient ∂π(s,a;θ)∂θ qπ(s, a),
such as the commonly-used estimate: ρtδt∇θ lnπ(s, a;θ), where ρt is the importance sampling ra-
tio (described further in Appendix B), and δt is the temporal difference error, which—as an estimate
of the advantage function aπ(s, a) = qπ(s, a)− vπ(s)—implicitly includes a state value baseline.

Because this is an off-policy setting, the states s from which we would sample this gradient are
weighted according to dµ. We need to adjust this weighting from dµ(s) to m(s). We can do so by
using an online algorithm previously derived to obtain a sample Mt of the emphatic weighting

Mt
def
= (1− λa)i(St) + λaFt . Ft

def
= γtρt−1Ft−1 + i(St) (13)

for F0 = 0. The actor update is then multiplied by Mt to give the emphatically-weighted actor up-
date: ρtMtδt∇θ lnπ(s, a;θ). Previous work by Thomas [2014] to remove bias in natural actor-critic
algorithms is of interest here, as it suggests weighting actor updates by an accumulating product of
discount factors, which can be thought of as an on-policy precursor to emphatic weightings. We
prove that our update is an unbiased estimate of the gradient for a fixed policy in Proposition 1. We
provide the complete Actor-Critic with Emphatic weightings (ACE) algorithm, with pseudo-code
and additional algorithm details, in Appendix B.
Proposition 1. For a fixed policy π, and with the conditions on the MDP from [Yu, 2015],

Eµ[ρtMtδt∇θ lnπ(St, At;θ)] =
∑
s

m(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a)

Proof. Emphatic weightings were previously shown to provide an unbiased estimate for value func-
tions with Emphatic TD. We use the emphatic weighting differently, but can rely on the proof
from [Sutton et al., 2016] to ensure that (a) dµ(s)Eµ[Mt|St = s] = m(s) and the fact that (b)
Eµ[Mt|St = s] = Eµ[Mt|St = s,At, St+1]. Using these equalities, we obtain

Eµ[ρtMtδt∇θ lnπ(s, a;θ)]

=
∑
s

dµ(s)Eµ[ρtMtδt∇θ lnπ(St, At;θ)|St = s]

=
∑
s

dµ(s)Eµ
[
Eµ[ρtMtδt∇θ lnπ(St, At;θ)|St = s,At, St+1]

]
. law of total expectation

=
∑
s

dµ(s)Eµ
[
Eµ[Mt|St = s,At, St+1] Eµ[ρtδt∇θ lnπ(St, At;θ)|St = s,At, St+1]

]
=
∑
s

dµ(s)Eµ[Mt|St = s]Eµ
[
Eµ[ρtδt∇θ lnπ(St, At;θ)|St = s,At, St+1]

]
. using (b)

=
∑
s

m(s)
∑
a

∂π(s, a;θ)

∂θ
qπ(s, a) . using (a).

5 Experiments

We empirically investigate the utility of using the true off-policy gradient, as opposed to the previous
approximation used by OffPAC; the impact of the choice of λa; and the efficacy of estimating
emphatic weightings in ACE. We present a toy problem to highlight the fact that OffPAC—which
uses an approximate semi-gradient—can converge to suboptimal solutions, even in ideal conditions,
whereas ACE—with the true gradient—converges to the optimal solution. We conduct several other
experiments on the same toy problem, to elucidate properties of ACE.
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5.1 The Drawback of Semi-Gradient Updates

We design a world with aliased states to highlight the problem with semi-gradient updates. The toy
problem, depicted in Figure 1a, has three states, where S0 is a start state with feature vector [1, 0],
and S1 and S2 are aliased, both with feature vector [0, 1]. This aliased representation forces the
actor to take a similar action in S1 and S2. The behaviour policy takes actions A0 and A1 with
probabilities 0.25 and 0.75 in all non-terminal states, so that S0, S1, and S2 will have probabilities
0.5, 0.125, and 0.375 under dµ. Under this aliasing, the optimal action in S1 and S2 is A0, for the
off-policy objective Jµ. The target policy is initialized to take A0 and A1 with probabilities 0.9 and
0.1 in all states, which is near optimal.

We first compared an idealized semi-gradient actor (λa = 0) and gradient actor (λa = 1), with
exact value function (critic) estimates. Figures 1b and 1c clearly indicate that the semi-gradient
update—which corresponds to an idealized version of the OffPAC update—converges to a subopti-
mal solution. This occurs even if it is initialized close to the optimal solution, which highlights that
the true solution is not even a stationary point for the semi-gradient objective. On the other hand,
the gradient solution—corresponding to ACE—increases the objective until converging to optimal.
We show below, in Section 5.3 and Figure 5, that this is similarly a problem in the continuous action
setting with DPG.

The problem with the semi-gradient updates is made clear from the fact that it corresponds to the
λa = 0 solution, which uses the weighting dµ instead of m. In an expected semi-gradient update,
each state tries to increase the probability of the action with the highest action-value. There will
be a conflict between the aliased states S1 and S2, since their highest-valued actions differ. If the
states are weighted by dµ in the expected update, S1 will appear insignificant to the actor, and the
update will increase the probability of A1 in the aliased states. (The ratio between qπ(S1, A0) and
qπ(S2, A1) is not enough to counterbalance this weighting.) However, S1 has an importance that a
semi-gradient update overlooks. Taking a suboptimal action at S1 will also reduce q(S0, A0) and,
after multiple updates, the actor gradually prefers to take A1 in S0. Eventually, the target policy
will be to take A1 at all states, which has a lower objective function than the initial target policy.
This experiment suggests why the weight of a state should depend not only on its own share of dµ,
but also on its predecessors, and the behaviour policy’s state distribution is not the proper deciding
factor in the competition between S1 and S2.

(a) Counterexample (b) Learning curves (c) Action probability

Figure 1: (a) A counterexample that identifies suboptimal behaviour when using semi-gradient up-
dates. The semi-gradients converge for the tabular setting [Degris et al., 2012b], but not necessarily
under function approximation—such as with the state aliasing in this MDP. S0 is the start state and
the terminal state is denoted by T3. S1 and S2 are aliased to the actor. The interest i(s) is set to one
for all states. (b) Learning curves comparing semi-gradient updates and gradient updates, averaged
over 30 runs with negligible standard error bars. The actor has a softmax output on a linear trans-
formation of features and is trained with a step-size of 0.1 (though results were similar across all the
stepsizes tested). The dashed line shows the highest attainable objective function under the aliased
representation. (c) The probability of taking A0 at the aliased states, where taking A0 is optimal
under the aliased representation.

6



(a) Stepsize sensitivity (b) Learning curves (c) Action probability

Figure 2: Performance with different values of λa in the 3-state MDP, averaged over 30 runs. (a)
ACE performs well, for a range of stepsizes and even λa that gets quite small. (b) For λa = 0, which
corresponds to OffPAC, the algorithm decreases performance, to get to the suboptimal fixed point.
Even with as low a value as λa = 0.25, ACE improves the value from the starting point, but does
converge to a worse solution than λa ≥ 0.5. The learning curves correspond to each algorithm’s
best step-size. (c) The optimal behaviour is to take A0 with probability 1, in the aliased states.
ACE(0)—corresponding to OffPAC—quickly converges to the suboptimal solution of preferring the
optimal action for S2 instead of S1. Even with λa just a bit higher than 0, convergence is to a more
reasonable solution, preferring the optimal action the majority of the time.

5.2 The Impact of the Trade-Off Parameter

The parameter λa in (12) has the potential to trade off bias and variance. For λa = 0, the bias can
be significant, as shown in the previous section. A natural question is how the bias changes as λa
decreases from 1 to 0. There is unlikely to be significant variance reduction—it is a low variance
domain—but we can nonetheless gain some insight into bias.

We repeated the experiment in 5.1, with λa chosen from {0, 0.25, 0.5, 0.75, 1} and the step-size
chosen from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. To highlight the rate of learning, the actor parame-
ters are now initialized to zero. Figure 2 summarizes the results. As shown in Figure 2a, with λa
close to one, a small and carefully-tuned step-size is needed to make the most of the method. As
λa decreases, the actor is able to learn with higher step-sizes and increases the objective function
faster. The quality of the final solution, however, deteriorates with small values of λa since the actor
follows biased gradients. Even for surprisingly small λa = 0.5 the actor converged to optimal, and
even λa = 0.25 produced a much more reasonable solution than λa = 0.

We ran a similar experiment, this time using value estimates from a critic trained with Gradient
TD, called GTD(λ) [Maei, 2011] to examine whether the impact of λa values with the actual (non-
idealized) ACE algorithm persists in an actor-critic architecture. The step-size αv was chosen from
{10−5, 10−4, 10−3, 10−2, 10−1, 100}, αw was chosen from {10−10, 10−8, 10−6, 10−4, 10−2}, and
{0, 0.5, 1.0} was the set of candidate values of λ for the critic. The results in Figure 3 show that,
as before, even relatively low λa values can still get close to the optimal solution. However, semi-
gradient updates, corresponding to λa = 0, still find a suboptimal policy.

(a) Stepsize sensitivity (b) Learning curves (c) Action probability

Figure 3: Performance of ACE with a GTD(λ) critic and different values of λa in the 3-state MDP.
The results are averaged over 10 runs. The outcomes are similar to Figure 2, though noisier due to
learning the critic rather than using the true critic.
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5.3 Challenges in Estimating the Emphatic Weightings

We have been using an online algorithm to estimate the emphatic weightings. There can be different
sources of inaccuracy in these approximations. First, the estimate depends on importance sampling
ratios of previous actions in the trajectory. This can result in high variance if the behaviour policy
and the target policy are not close. Secondly, derivation of the online algorithm assumes a fixed
target policy [Sutton et al., 2016], while the actor is updated at every time step. Therefore, the
approximation is less reliable in long trajectories, as it is partly decided by older target policies in
the beginning of the trajectory. We designed experiments to study the efficacy of these estimates in
an aliased task with more states.

The first environment, shown in Figure 6 in the appendix, is an extended version of the previous
MDP with two long chains before the aliased states. The addition of new states makes the trajecto-
ries considerably longer, allowing errors to build up in emphatic weighting estimates. The actor is
initialized with zero weights and uses true state values in its updates. The behaviour policy takes A0
with probability 0.25 and A1 with probability 0.75 in all non-terminal states. The actor’s step-size
is picked from {5 · 10−5, 10−4, 2 · 10−4, 5 · 10−4, 10−3, 2 · 10−3, 5 · 10−3, 10−2}. We also trained
an actor, called True-ACE, that uses true emphatic weightings for the current target policy and be-
haviour policy, computed at each timestep. The performance of True-ACE is included here for the
sake of comparison, and computing the exact emphatic weightings is not generally possible in an
unknown environment. The results in Figure 4 show that, even though performance improves as λa
is increased, there is a gap between ACE with λa = 1 and True-ACE. This shows the inaccuracies
pointed out above indeed disturb the updates in long trajectories.

(a) Stepsize sensitivity (b) Learning curves (c) Action probability

Figure 4: Performance of ACE with different values of λa and True-ACE on the 11-state MDP. The
results are averaged over 10 runs. Unlike Figure 2, the methods now have more difficulty getting
near the optimal solution, though ACE with larger λa does still clearly get a significantly better
solution that λa = 0.

The second environment is similar to Figure 1a, but with one continuous unbounded action. Taking
action with value a at S0 will result in a transition to S1 with probability 1 − σ(a) and a transition
to S2 with probability σ(a), where σ denotes the logistic sigmoid function. For all actions from
S0, the reward is zero. From S1 and S2, the agent can only transition to the terminal state, with
reward 2σ(−a) and σ(a) respectively. The behaviour policy takes actions drawn from a Gaussian
distribution with mean 1.0 and variance 1.0.

Because the environment has continuous actions, we can include both stochastic and deterministic
policies, and so can include DPG in the comparison. DPG is built on the semi-gradient, like OffPAC.
We compare to DPG with Emphatic weightings (DPGE), with the true emphatic weightings rather
than estimated ones. We compare to True-DPGE to avoiding confounding factors of estimating
the emphatic weighting, and focus the investigation on if DPG converges to a suboptimal solution.
Estimation of the emphatic weightings for a deterministic target policy is left for future work. The
stochastic actor in ACE has a linear output unit and a softplus output unit to represent the mean and
the standard deviation of a Gaussian distribution. All actors are initialized with zero weights.

Figure 5 summarizes the results. The first observation is that DPG demonstrates suboptimal be-
haviour similar to OffPAC. As training goes on, DPG prefers to take positive actions in all states,
because S2 is updated more often. This problem goes away in True-DPGE. The emphatic weightings
emphasize updates in S1 and, thus, the actor gradually prefers negative actions and surpasses DPG
in performance. Similarly, True-ACE learns to take negative actions but, being a stochastic policy, it
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cannot achieve True-DPGE’s performance on this domain. ACE with different λa values, however,
cannot outperform DPG, and this result suggests that an alternative to importance sampling ratios is
needed to extend ACE to continuous actions.

(a) Stepsize sensitivity (b) Learning curves (c) Mean action

Figure 5: Performance of ACE with different values of λa, True-ACE, DPG, and True-DPGE on the
continuous action MDP. The results are averaged over 30 runs. For continuous actions, the methods
have even more difficulty getting to the optimal solutions, given by True-DPGE and True-ACE,
though the action selection graphs suggest that ACE for higher λa is staying nearer the optimal
action selection than ACE(0) and DPG.

6 Conclusions and Future Work

In this paper we proved the off-policy policy gradient theorem, using emphatic weightings. The
result is generally applicable to any differentiable policy parameterization. Using this theorem, we
derived an off-policy actor-critic algorithm that follows the gradient of the objective function, as
opposed to previous method like OffPAC and DPG that followed an approximate semi-gradient. We
designed a simple MDP to highlight issues with existing methods—namely OffPAC and DPG—
particularly highlighting that the stationary points of these semi-gradient methods for this problem
do not include the optimal solution. Our algorithm, called Actor-Critic with Emphatic Weightings,
on the other hand, which follows the gradient, reaches the optimal solution, both for an idealized
setting given the true critic and when learning the critic. We conclude with a result suggesting that
more work needs to be done to effectively estimate emphatic weightings, and that important next
steps for developing Actor-Critic algorithm for the off-policy setting are to improve estimation of
these weightings.
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A Proof of Deterministic Off-Policy Policy Gradient Theorem

A.1 Assumptions

We make the following assumptions on the MDP:

Assumption 1. P(s, a, s′), r(s, a, s′), γ(s, a, s′), π(s;θ) and their derivatives are continuous in all
variables s, a, s′,θ.

Assumption 2. S is a compact set of Rd.

Assumption 3. The policy π and discount γ are such that for Pπ,γ(s, s
′) =∫

A
π(s, a)γ(s, a, s′)P(s, a, s′)da, the inverse kernel of δ(s, s′)−Pπ,γ(s, s

′) exists.

Under Assumption 1, vπθ
(s) and ∂vπθ (s)

∂θ are continuous functions of θ and s. Together, Assump-

tions 1 and 2 imply that
∣∣∣∣∣∣∂vπθ (s)∂θ

∣∣∣∣∣∣, ∣∣∣∣∣∣∂π(s;θ)∂θ

∣∣∣∣∣∣, and
∣∣∣∣∣∣∣∣ ∂qπθ (s,a)∂a

∣∣∣
a=π(s;θ)

∣∣∣∣∣∣∣∣ are bounded functions of

s, which allows us to switch the order of integration and differentiation, and the order of multiple
integrations later in the proof.

A.2 Proof of Theorem 2

Proof. We start by deriving a recursive form for the gradient of the value function with respect to
the policy parameters:

∂vπ(s)

∂θ
=

∂

∂θ
qπ(s, π(s;θ))

=
∂

∂θ

∫
S

P(s, π(s;θ), s′)
(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)
ds′

=

∫
S

∂

∂θ

(
P(s, π(s;θ), s′)

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
))

ds′ (14)

where in (14) we used the Leibniz integral rule to switch the order of integration and differentiation.
We proceed with the derivation using the product rule:

=

∫
S

∂

∂θ
P(s, π(s;θ), s′)

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)

+ P(s, π(s;θ), s′)
∂

∂θ

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)
ds′

=

∫
S

∂π(s;θ)

∂θ

∂P(s, a, s′)
∂a

∣∣∣∣
a=π(s;θ)

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)

+ P(s, π(s;θ), s′)
(
∂

∂θ
r(s, π(s;θ), s′) +

∂

∂θ
γ(s, π(s;θ), s′)vπ(s

′) + γ(s, π(s;θ), s′)
∂

∂θ
vπ(s

′)

)
ds′

=

∫
S

∂π(s;θ)

∂θ

∂P(s, a, s′)
∂a

∣∣∣∣
a=π(s;θ)

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)

+ P(s, π(s;θ), s′)

(
∂π(s;θ)

∂θ

∂r(s, a, s′)

∂a

∣∣∣∣
a=π(s;θ)

+
∂π(s;θ)

∂θ

∂γ(s, a, s′)

∂a

∣∣∣∣
a=π(s;θ)

vπ(s
′)

)
ds′

+

∫
S

P(s, π(s;θ), s′)γ(s, π(s;θ), s′)
∂

∂θ
vπ(s

′) ds′

=

∫
S

∂π(s;θ)

∂θ

(
∂P(s, a, s′)

∂a

∣∣∣∣
a=π(s;θ)

(
r(s, π(s;θ), s′) + γ(s, π(s;θ), s′)vπ(s

′)
)

+ P(s, π(s;θ), s′)
∂

∂a

(
r(s, a, s′) + γ(s, a, s′)vπ(s

′)
)∣∣∣∣
a=π(s;θ)

)
ds′

+

∫
S

P(s, π(s;θ), s′)γ(s, π(s;θ), s′)
∂

∂θ
vπ(s

′) ds′
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=
∂π(s;θ)

∂θ

∫
S

∂

∂a

(
P(s, a, s′)

(
r(s, a, s′) + γ(s, a, s′)vπ(s

′)
))∣∣∣∣

a=π(s;θ)

ds′

+

∫
S

P(s, π(s;θ), s′)γ(s, π(s;θ), s′)
∂vπ(s

′)

∂θ
ds′

=
∂π(s;θ)

∂θ

∂qπ(s, a)

∂a

∣∣∣∣
a=π(s;θ)

+

∫
S

P(s, π(s;θ), s′)γ(s, π(s;θ), s′)
∂vπ(s

′)

∂θ
ds′ (15)

For simplicity of notation, we will write (15) as:
∂vπ(s)

∂θ
= g(s) +

∫
S

Pπ,γ(s, s
′)
∂vπ(s

′)

∂θ
ds′ (16)

since P(s, π(s;θ), s′)γ(s, π(s;θ), s′) is a function of s and s′ for a fixed deterministic policy.

Note that we can write ∂vπ(s)
∂θ as an integral transform using the delta function:

∂vπ(s)

∂θ
=

∫
S

δ(s, s′)
∂vπ(s

′)

∂θ
ds′ (17)

Plugging (17) into the left-hand side of (16), we obtain:

∫
S

δ(s, s′)
∂vπ(s

′)

∂θ
ds′ = g(s) +

∫
S

Pπ,γ(s, s
′)
∂vπ(s

′)

∂θ
ds′

=⇒
∫
S

(
δ(s, s′)−Pπ,γ(s, s

′)
)∂vπ(s′)

∂θ
ds′ = g(s)

=⇒ ∂vπ(s)

∂θ
=

∫
S

k(s, s′)g(s′) ds′ (18)

where k(s, s′) is the inverse kernel of δ(s, s′)−Pπ,γ(s, s
′). Now, using a continuous version of the

off-policy objective defined in (3), we have:
∂Jµ(θ)

∂θ
=

∂

∂θ

∫
S

dµ(s)i(s)vπ(s) ds

=

∫
S

∂vπ(s)

∂θ
dµ(s)i(s) ds

=

∫
S

∫
S

k(s, s′)g(s′) ds′ dµ(s)i(s) ds

=

∫
S

∫
S

k(s, s′)dµ(s)i(s) ds g(s
′) ds′ (19)

where in (19) we used Fubini’s theorem to switch the order of integration.

Now, we convert the recursive definition of emphatic weightings for deterministic policies over
continuous state-action spaces into a non-recursive form. Recall the definition:

m(s′) = dµ(s
′)i(s′) +

∫
S

Pπ,γ(s, s
′)m(s) ds (20)

Again, we can write m(s′) as an integral transform using the delta function:

m(s′) =

∫
S

δ(s, s′)m(s) ds (21)

Plugging (21) into the left-hand side of (20), we obtain:∫
S

δ(s, s′)m(s) ds = dµ(s
′)i(s′) +

∫
S

Pπ,γ(s, s
′)m(s) ds

=⇒
∫
S

(δ(s, s′)−Pπ,γ(s, s
′))m(s) ds = dµ(s

′)i(s′)

=⇒ m(s′) =

∫
S

k(s, s′)dµ(s)i(s) ds (22)
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where k(s, s′) is again the inverse kernel of δ(s, s′)−Pπ,γ(s, s
′). Plugging equation (22) into (19)

yields:

∂Jµ(θ)

∂θ
=

∫
S

m(s′)g(s′) ds′

=

∫
S

m(s)
∂π(s;θ)

∂θ

∂qπ(s, a)

∂a

∣∣∣∣
a=π(s;θ)

ds

B Algorithm details

Observed states and actions are sampled according to the behaviour policy µ. Notice the inner sum
over actions in equation 10 is not weighted by any distribution, and will therefore be skewed by
sampling the actions according to µ. One option for solving this problem is to explicitly sum the
gradient over actions. This has the added benefit of reducing variability, but for many actions could
be impractical. An alternative is to modify the sampling distribution using importance sampling:∑

a

∂π(s, a;θ)

∂θ
qπ(s, a) =

∑
a

µ(s, a)
1

µ(s, a)

∂π(s, a;θ)

∂θ
qπ(s, a)

=
∑
a

µ(s, a)
π(s, a;θ)

µ(s, a)

1

π(s, a;θ)

∂π(s, a;θ)

∂θ
qπ(s, a)

=
∑
a

µ(s, a)ρ(s, a;θ)
∂ lnπ(s, a;θ)

∂θ
qπ(s, a)

where the last step follows from the fact that the derivative of ln y is 1
y . Now this reweighted gradient

can be sampled by sampling states according to dµ, actions according to µ and then weighting the
update ρ(s, a;θ)∂ lnπ(s,a;θ)

∂θ qπ(s, a) with Mt as in equation 13. The resulting update on each step,
without any additional variance reduction, for a particular action is

θ ← θ + αρtMt
∂ lnπ(s, a;θ)

∂θ
qπ(s, a)

and when summed over all actions, or a subset of actions, is

θ ← θ + αMt

∑
b∈A

π(s, b;θ)
∂ lnπ(s, b;θ)

∂θ
qπ(s, b)

The second approach is generally more suitable, as it avoids potentially high-variance importance
sampling ratios. The first approach, though, is necessary when only a value function is estimated,
as described in the body of the paper. In the next section we consider other approaches to reduce
variance of this update. The final ACE algorithm incorporating these variance reduction techniques
is summarized in Algorithm 1.

B.1 Incorporating baselines

To reduce the variance of the sampled gradient, it is common to include a baseline as a form of
control variate. The baseline b : S→ R is incorporated into the update as∑

a

∂π(s, a;θ)

∂θ
[qπ(s, a)− b(s)] (23)

The typical choice of baseline is the value function b(s) = vπ(s), because∑
a

∂π(s, a;θ)

∂θ
vπ(s) = vπ(s)

∂

∂θ

∑
a

π(s, a;θ)

= vπ(s)
∂

∂θ
1

= 0
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Algorithm 1 Emphatic Actor Critic

Initialize weights for actor θ to zero
Initialize emphatic weightings for actor: F−1 = 0
Initialize importance sampling ratios: ρ−1 = 1
Suggested (default) settings of parameters: it = 1, λa = 0.9
Obtain initial feature vector x0

repeat
Choose an action at according to µ(xt, ·)
Observe reward rt+1, next state vector xt+1 and γt+1

Update critic V̂t (and potentially Q̂t) with any value function learning algorithm
ρt ← π(xt,at)

µ(xt,a)

Ft ← ρt−1γtFt−1 + it
Mt ← (1− λa,t)it + λa,tFt
if Only learned V̂t then
ψt ← ∇θ lnπ(xt, at;θ)

δt ← rt+1 + γt+1V̂t(xt+1)− V̂t(xt)
θ ← θ + αtρtMtδtψt

else
for b ∈ A or a randomly sampled subset do
ψt ← ∇θ lnπ(s, b;θ)

θ ← θ + αtMtπ(s, b;θ)(Q̂t(xt, b)− V̂t(xt))ψt
until agent done interaction with environment

However, the variance of qπ(s, a) − vπ(s) is lower because vπ(s) is correlated with qπ(s, a)
[Williams, 1992].

Estimates of 23 can then be computed in at least three ways. The first is to simply estimate vπ and qπ .
The second is to estimate vπ , and then estimate the advantage function aπ(s, a) = qπ(s, a)− vπ(s).
The advantage function can be updated using δt, which compares the value for the given action a
from state s, r(s, a) + γ(s, a, St+1)vπ(St+1), to the value at state s, vπ(s). The third is to again use
δt, but to avoid computing qπ altogether. For this third approach, r(s, a) + γ(s, a, St+1)vπ(St+1)
is used as an approximation of qπ(s, a). To improve this approximation, a λ-return could be used,
which then causes traces of gradients of policy parameters to be used (see Algorithm 1 [Degris et al.,
2012b]). Because the traces for the policy parameters are different for ACE, we do not include this
additional trace. It could be added if only vπ is learned, but we anticipate that in addition to the
emphatic weighting, this would induce too much variability in the algorithm. When using only vπ ,
therefore, we set this trace parameter to zero and qπ(st, at)− vπ(st) is approximated with δt.
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Figure 6: An 11-state MDP that makes estimating the emphatic weightings difficult. S0 is the start
state and the terminal state is denoted by T11. S9 and S10 are aliased to the actor.
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