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and note that since |1 + Ti(2⇡(Xi)� 1)|  1 we have that D0 satisfies bounded differences with
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Further, by the Rademacher comparison lemma [14, Thm. 4.12], we get that
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Letting p2 = p3 = p4 = �/5 and p1 = 2�/5, the above is bounded by 2Rn(F) + 2C
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�2 log(5/�)/2. The proof is completed by noting that by assumption of true weights
being inside U we get that R̂⇤
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Proof. Proof of the equivalence of programs (5) and (6). We can easily verify that a feasible solution
for one problem is feasible for the other: for a feasible solution W to (FP), we can generate a feasible
solution to (LP) as wi =

WiP
i Wi

, t = 1P
i Wi

with the same objective value. In the other direction, we
can generate a feasible solution to (6) from a feasible fractional program (5) solution W, t if we take
wi = wit. This solution has the same objective value since

P
i wi = 1.

Proof. Proof of Thm. 2. We analyze the program using complementary slackness, which will yield
an algorithm for finding a solution that generalizes that of Aronow and Lee [1].

At optimality only one of the primal weight bound constraints, (for nontrivial bounds a
�
< b

�),
wi  tb

�
i or ta�i  wi will be tight. For the nonbinding primal constraints, at the optimal solution,

by complementary slackness at most one of ui or vi is nonzero. Furthermore, t 6= 0 as t = 0 is
infeasible. The constraint

P
i �bivi + aiui � 0 is active at optimality, otherwise there exists smaller
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yet feasible � that achives a lower objective of the dual program. So the optimal solution to the dual
will satisfy:

min�
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By non-negativity of ui, vi, note that ui > 0 if ri < � and vi > 0 if ri > � such that ui =
max(0,�� ri) and vi = max(0, ri��). Additionally, feasible objective values satisfy �  maxi Yi

and � � mini Yi. Let (k) denote the kth index of the increasing order statistics, an ordering where
r(1)  r(2)  · · ·  r(n). Then at optimality, there exists some index (k) where Y(k) < �  Y(k+1).
We can subsitute in the solution from the binding constraints � = ri+ui�vi and obtain the following
equality which holds at optimality:
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Therefore, we only need to check the possible objective values �(k) for k = 1, . . . , n. The primal

solution is easily recovered from the dual solution: for r(i), take w(i) =
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P
i:(i)<(k)

a�
(i)

+
P

i:(i)�(k)

b�
(i)

and

t =
P

i:(i)<(k)

a
�
(i) +

P
i:(i)�(k)

b
�
(i). Consider the parametric restriction of the primal program, where it is

parametrized by the sum of weights t: the value function is concave in t and concave in the discrete
restriction of t to the values it takes at the solutions of �(k), t(k), and t(k) is increasing in k. So
the optimal such � occurs with the order statistic threshold at (k) for k⇤ = inf{k = 1, . . . , n+ 1 :
�(k + 1) < �(k)}.

B Additional Experimental Details

Comparison to SNPOEM: In the simulated example in Sec. 5, we additionally assess the perfor-
mance of a self-normalized counterfactual policy maximizer, SNPOEM [27]. This approach adds
both a variance regularization and a self-normalization, both of which strongly bias the learned policy
toward the logging policy. While this has merit, it results in spuriously inconsistent results across the
problems we consider, where in one it has reasonable results and in another much worse results than
any other standard method. Specifically, SNPOEM achieves a mean policy value of 0.82 (SD 0.04)
in the simulated example and 0.04 (SD 0.029) in the IST example. Because this additional layer of
complexity only confuses the comparisons and the main focus on the contrast between ignoring and
accounting for unconfoundedness, we omit these results from the main text.

C IST data details

The International Stroke Trial assessed the clinical effectiveness of aspirin, subcutaneous heparin,
both, or neither among 19435 patients with acute ischaemic stroke in a factorial design.

Our scalarized composite score is:
Y = 2I[death] + I[recurrent stroke] + 0.5I[pulmonary embolism or intracranial bleeding]

+0.5I[other side effects]� 2I[full recovery at 6 months]� I[discharge within 14 days]

Covariates available at the time of randomization used by us to train data include age, indicators
of conscious state, sex, blood pressure, and factors describing clinical assessments such as visible
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infarct on CT, face decifit, arm/face deficit, leg/foot deficit, dysphasia, hemianopia, stroke subtype,
visuospatial disorder, brainstem/cerebellar signs, and other deficit. We construct one-hot encodings
of the categorical variables and train policies on 28 covariates after the dummy encoding.
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