Supplementary material for "Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions"

Sara Magliacane MIT-IBM Watson AI Lab, IBM Research* sara.magliacane@gmail.com Thijs van Ommen University of Amsterdam thijsvanommen@gmail.com

Tom Claassen Radboud University Nijmegen tomc@cs.ru.nl Stephan Bongers University of Amsterdam srbongers@gmail.com Philip Versteeg University of Amsterdam p.j.j.p.versteeg@uva.nl

Joris M. Mooij University of Amsterdam j.m.mooij@uva.nl

1 A stronger version of the assumption in the main paper

In the main paper we make a non-standard assumption, Assumption 2(ii). Here we prove that this is assumption is a weakened version of two more standard assumptions, i.e. assuming the causal Markov and faithfulness assumptions in the source and target domains separately. Note that assuming these two assumptions instead of Assumption 2(ii) implies we cannot have perfect interventions in the target domain, which is otherwise allowed.

Proposition 1. Assumption 2(*ii*), *i.e.* if $A \cup B \cup S$ contains Y but not C_1 , then²

 $\boldsymbol{A} \perp \boldsymbol{B} \mid \boldsymbol{S} \left[C_1 = 0 \right] \implies \boldsymbol{A} \perp \boldsymbol{B} \mid \boldsymbol{S} \left[C_1 = 1 \right];$

is implied by the following assumptions:

(a) the pooled source domains distribution $\mathbb{P}(\mathbf{V} | C_1 = 0)$ is Markov and faithful to $\mathcal{G}^{\setminus C_1}$, and

(b) the pooled target domains distribution $\mathbb{P}(V | C_1 = 1)$ is Markov and faithful to $\mathcal{G}^{\setminus C_1}$,

where $\mathcal{G}^{\setminus C_1}$ denotes the induced subgraph of the causal graph \mathcal{G} on the nodes $\mathcal{V} \setminus \{C_1\}$ (i.e., it is obtained by removing C_1 and all edges involving C_1 from the causal graph \mathcal{G}).

Proof. Let $A, B, S \subseteq V \setminus \{C_1\}$. By assumption, we have that

$$A \perp B \mid S \mid C_1 = c \mid \iff A \perp B \mid S \mid \mathcal{G}^{\setminus C_1}$$

holds for both c = 0, 1, which directly gives Assumption 2(ii).

2 Other proofs

Proposition 2. (Proposition 1 in the main paper) Under Assumption 2,

 $A \perp B \mid S \mid C_1 = 0 \iff A \perp B \mid S \cup \{C_1\} \iff A \perp B \mid S \cup \{C_1\} \mid \mathcal{G}$

for subsets $A, B, S \subseteq V$ such that their union contains Y but not C_1 .

*Most of the work was performed while at the University of Amsterdam.

²Here, with $A \perp B \mid S \mid [C_1 = 0]$ we mean $A \perp B \mid S \mid [\mathbb{P}(V \mid C_1 = 0)]$, i.e., the conditional independence of A from B given S in the mixture of the source domains $\mathbb{P}(V \mid C_1 = 0)$, and similarly for the target domains.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Proof. First of all, $A \not\perp B \mid S \mid [C_1 = 0]$ implies (by definition) $A \not\perp B \mid S \cup \{C_1\}$. Second, $A \perp B \mid S \mid [C_1 = 0]$ implies (by assumption) $A \perp B \mid S \mid [C_1 = 1]$, and taken together, we get $A \perp B \mid S \cup \{C_1\}$. By the Markov and faithfulness assumption (Assumption 2(i)), this holds iff $A \perp B \mid S \cup \{C_1\} \mid G$].

Example 1. (*Example 2 in the main paper*) Assume that Assumptions 1 and 2 hold for two context variables C_1, C_2 and three system variables X_1, X_2, X_3 with $Y := X_2$. If the following conditional (in)dependences all hold in the source domains:

 $C_2 \perp X_2 \mid X_1 \mid [C_1 = 0], \qquad C_2 \not\perp X_2 \mid \emptyset \mid [C_1 = 0], \qquad C_2 \perp X_3 \mid X_2 \mid [C_1 = 0], \qquad (1)$

then $C_1 \perp X_2 \mid X_1 \mid \mathcal{G}$, i.e., $\{X_1\}$ is a separating set for C_1 and X_2 .

Proof. In the JCI setting, we assume that in the full ADMG \mathcal{G} over variables $\{C_1, C_2, X_1, X_2, X_3\}$, C_1 and C_2 are confounded and not caused by system variables X_1, X_2, X_3 . Furthermore, no pair of system variable and context variables is confounded.

In the context $[C_1 = 0]$, if the conditional independences $C_2 \perp X_2 \mid X_1 \mid [C_1 = 0]$ and $C_2 \not\perp X_2 \mid \emptyset \mid [C_1 = 0]$ hold, then we can also derive that $C_2 \not\perp X_1 \mid \emptyset \mid [C_1 = 0]$, for example using Rule (9) from Magliacane et al. [2016]. Moreover, we know that C_2 is not caused by X_1 and X_2 , or in other words $X_1 \not\rightarrow C_2$ and $X_2 \not\rightarrow C_2$. Thus we conclude that (C_2, X_1, X_2) is an LCD triple [Cooper, 1997] in the context $C_1 = 0$. Since in addition, in this case C_2 and X_1 are unconfounded, the marginal ADMG \mathcal{G}' on $\{C_2, X_1, X_2\}$ (in the context $C_1 = 0$, and hence by Proposition 1 in all contexts) must be given by Figure 1a.

Therefore, the extended marginal ADMG \mathcal{G}'' on variables $\{C_1, C_2, X_1, X_2\}$ must also have a directed path from C_2 to X_1 and from X_1 to X_2 . C_1 cannot be on these paths, as none of the variables causes C_1 , and therefore \mathcal{G}'' also contains the directed edges $C_2 \to X_1$ and $X_1 \to X_2$. Moreover, \mathcal{G}'' cannot contain any edge between C_2 and X_2 , nor a bidirected edge between X_1 and X_2 , because that would violate the conditional independence. By construction, in the JCI setting there is a bidirected edge between C_1 and C_2 , and that is the only bidirected edge connecting to C_1 or C_2 . As we assumed there is no direct effect of C_1 on target X_2 , there is no edge between C_1 and X_2 in \mathcal{G}'' . There is also no directed edge $X_1 \to C_1$ in \mathcal{G}'' , as the JCI assumption implies none of the other variables causes $C_1 \to X_1$ present, or without that edge.

If it additionally holds that $C_2 \perp X_3 \mid X_2 \mid C_1 = 0$, we have two possibilities:

- if C₂ ⊥ X₃ | Ø [C₁ = 0] holds, then X₃ is not caused by C₂. This means it cannot be on any directed path from C₂ to X₁, from X₁ to X₂, or be a descendant of X₂. Therefore the full ADMG G also necessarily contains the directed edges C₂ → X₁ and X₁ → X₂.
- if C₂ ≠ X₃ | Ø [C₁ = 0] holds, then in conjunction with C₂ ⊥ X₃ | X₂ [C₁ = 0] we can derive X₂ --→ X₃, for example using Rule (5) from [Magliacane et al., 2016]. This means X₃ must be a descendant of X₂ in the full ADMG G, which implies it cannot be on the directed path from C₂ to X₁, or on the one from X₁ to X₂. Therefore the full ADMG G also necessarily contains the directed edges C₂ → X₁ and X₁ → X₂.

Figure 1: ADMGs for proof of Example 1. Each dashed edge can either be present or absent.

Because of the independence statements and JCI assumptions, there cannot be a bidirected edge between X_3 and X_1 , X_2 , C_1 or C_2 . Similarly, there cannot be directed edges from X_3 to one of those nodes. The edges $X_1 \rightarrow X_3$ and $C_2 \rightarrow X_3$ must also be absent.

In both cases, there can be a directed edge from C_1 to X_3 . Therefore, the full ADMG \mathcal{G} is of the form given in Figure 1c. In all cases we see that $C_1 \perp X_2 \mid X_1 \mid \mathcal{G}$, and we conclude that $\{X_1\}$ is a valid separating set.

If the ADMG is as in Figure 2, then a standard feature selection method would asymptotically prefer the subset $\{X_1, X_3\}$ to predict X_2 over the subset $\{X_1\}$ (note that the Markov blanket of X_2 in context $[C_1 = 0]$ is $\{X_1, X_3\}$). As a result, any prediction method trained on all available features using source domain data (i.e., in context $[C_1 = 0]$) may incur a possibly unbounded prediction error when used to predict X_2 in the target domain $[C_1 = 1]$ (for example, if X_3 is an almost deterministic copy of X_2 if $C_1 = 0$, but has a drastically different distribution if $C_1 = 1$).

3 Additional results on synthetic data

We provide more information and experimental results for the synthetic data. We adapted the simulator of Hyttinen et al. [2014] to our setting. We generate randomly 200 acyclic models with three system variables, two context variables, and at most two latent variables (chosen randomly, so that the number of latent variables equals 1 or 2 each with probability 1/4, and 0 otherwise). Each latent variable has two system variables as children, while the other variables have a random number of system variables as children, where system variables must be consistent with a chosen topological ordering, and where we enforce that a context variable may not simultaneously affect all system variables. The system and latent variables are each described by a linear structural equation with independent noise terms distributed as $\mathcal{N}(0, 0.0064)$. In these equations, each variable is multiplied by a coefficient sampled from $\mathcal{N}(0.2, 0.64)$ or $\mathcal{N}(-0.2, 0.64)$ (each with probability 1/2 per variable). The context variables each correspond to an experimental domain; in their domain, that variable equals 1, otherwise it equals 0. This way, we simulate soft interventions. In order to scale the effect of these interventions, we multiply the coefficients of the context variables by the parameter γ , varying it from 0.1 to 100. We sample N data points each for the observational and two experimental domains. Moreover, we randomly select C_1 and Y from context and system variables respectively. We disallow direct effects of C_1 on Y.

As expected, our method performs well when the target distribution is significantly different from the source distributions. Figure 2 shows different settings with different scales of intervention effects. (In most graphs, the vertical axis has been adjusted to clearly show the boxplot, but leaving out the larger outliers.) In Figure 2a the intervention effects are all scaled by 0.1, resulting in very similar distributions in all domains. In this case, using our method does not offer any advantage with respect to the baseline and it actually performs worse. In the other cases, using our method starts to pay off in terms of prediction accuracy, and the difference increases with the scale of the interventions, as seen in Figure 2d.

In Figure 3, we vary the number of samples N for each regime. The results improve with more samples, especially for our method, since the quality of the conditional independence test improves, but also for the baseline. In particular, as shown in Figure 3a, the accuracy is low for N = 100 samples, but it improves substantially with N = 1000 samples (Figure 2b).

References

- G. F. Cooper. A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. *Data Mining and Knowledge Discovery*, 1(2):203–224, 1997.
- A. Hyttinen, F. Eberhardt, and M. Järvisalo. Constraint-based causal discovery: Conflict resolution with answer set programming. In *Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,* (UAI-14), pages 340–349, 2014.
- S. Magliacane, T. Claassen, and J. M. Mooij. Ancestral causal inference. In In Proceedings of Advances in Neural Information Processing Systems, (NIPS-16), pages 4466–4474, 2016.

(a) Synthetic data with a small perturbation ($\gamma = 0.1$) and N = 1000 samples.

(b) Synthetic data with a medium perturbation $(\gamma = 1)$ and N = 1000 samples.

(c) Synthetic data with a large perturbation ($\gamma = 10$) and N = 1000 samples.

Figure 2: Additional results when varying the causal effect of all interventions (γ).

(a) Synthetic data with N = 100 samples per regime and a large perturbation ($\gamma = 10$).

(b) Synthetic data with N = 1000 samples per regime and a large perturbation ($\gamma = 10$).

(c) Synthetic data with N=5000 samples per regime and a large perturbation ($\gamma=10).$

Figure 3: Additional results when varying the sample size per regime (N).