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Abstract

Binary classifiers are often employed as discriminators in GAN-based unsupervised
style transfer systems to ensure that transferred sentences are similar to sentences
in the target domain. One difficulty with this approach is that the error signal
provided by the discriminator can be unstable and is sometimes insufficient to train
the generator to produce fluent language. In this paper, we propose a new technique
that uses a target domain language model as the discriminator, providing richer
and more stable token-level feedback during the learning process. We train the
generator to minimize the negative log likelihood (NLL) of generated sentences,
evaluated by the language model. By using a continuous approximation of discrete
sampling under the generator, our model can be trained using back-propagation
in an end-to-end fashion. Moreover, our empirical results show that when using
a language model as a structured discriminator, it is possible to forgo adversarial
steps during training, making the process more stable. We compare our model
with previous work that uses convolutional networks (CNNs) as discriminators, as
well as a broad set of other approaches. Results show that the proposed method
achieves improved performance on three tasks: word substitution decipherment,
sentiment modification, and related language translation.

1 Introduction

Recently there has been growing interest in designing natural language generation (NLG) systems
that allow for control over various attributes of generated text – for example, sentiment and other
stylistic properties. Such controllable NLG models have wide applications in dialogues systems (Wen
et al., 2016) and other natural language interfaces. Recent successes for neural text generation
models in machine translation (Bahdanau et al., 2014), image captioning (Vinyals et al., 2015) and
dialogue (Vinyals and Le, 2015; Wen et al., 2016) have relied on massive parallel data. However,
for many other domains, only non-parallel data – which includes collections of sentences from each
domain without explicit correspondence – is available. Many text style transfer problems fall into this
category. The goal for these tasks is to transfer a sentence with one attribute to a sentence with an
another attribute, but with the same style-independent content, trained using only non-parallel data.

Unsupervised text style transfer requires learning disentangled representations of attributes (e.g., nega-
tive/positive sentiment, plaintext/ciphertext orthography) and underlying content. This is challenging
because the two interact in subtle ways in natural language and it can even be hard to disentangle them
with parallel data. The recent development of deep generative models like variational auto-encoders
(VAEs) (Kingma and Welling, 2013) and generative adversarial networks(GANs) (Goodfellow et al.,
2014) have made learning disentangled representations from non-parallel data possible. However,
despite their rapid progress in computer vision—for example, generating photo-realistic images (Rad-
ford et al., 2015), learning interpretable representations (Chen et al., 2016b), and translating im-
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ages (Zhu et al., 2017)—their progress on text has been more limited. For VAEs, the problem of
training collapse can severely limit effectiveness (Bowman et al., 2015; Yang et al., 2017b), and when
applying adversarial training to natural language, the non-differentiability of discrete word tokens
makes generator optimization difficult. Hence, most attempts use REINFORCE (Sutton et al., 2000)
to finetune trained models (Yu et al., 2017; Li et al., 2017) or uses professor forcing (Lamb et al.,
2016) to match hidden states of decoders.

Previous work on unsupervised text style transfer (Hu et al., 2017a; Shen et al., 2017) adopts an
encoder-decoder architecture with style discriminators to learn disentangled representations. The
encoder takes a sentence as an input and outputs a style-independent content representation. The
style-dependent decoder takes the content representation and a style representation and generates
the transferred sentence. Hu et al. (2017a) use a style classifier to directly enforce the desired style
in the generated text. Shen et al. (2017) leverage an adversarial training scheme where a binary
CNN-based discriminator is used to evaluate whether a transferred sentence is real or fake, ensuring
that transferred sentences match real sentences in terms of target style. However, in practice, the
error signal from a binary classifier is sometimes insufficient to train the generator to produce fluent
language, and optimization can be unstable as a result of the adversarial training step.

We propose to use an implicitly trained language model as a new type of discriminator, replacing the
more conventional binary classifier. The language model calculates a sentence’s likelihood, which
decomposes into a product of token-level conditional probabilities. In our approach, rather than
training a binary classifier to distinguish real and fake sentences, we train the language model to
assign a high probability to real sentences and train the generator to produce sentences with high
probability under the language model. Because the language model scores sentences directly using a
product of locally normalized probabilities, it may offer more stable and more useful training signal to
the generator. Further, by using a continuous approximation of discrete sampling under the generator,
our model can be trained using back-propagation in an end-to-end fashion.

We find empirically that when using the language model as a structured discriminator, it is possible to
eliminate adversarial training steps that use negative samples—a critical part of traditional adversarial
training. Language models are implicitly trained to assign a low probability to negative samples
because of its normalization constant. By eliminating the adversarial training step, we found the
training becomes more stable in practice.

To demonstrate the effectiveness of our new approach, we conduct experiments on three tasks: word
substitution decipherment, sentiment modification, and related language translation. We show that
our approach, which uses only a language model as the discriminator, outperforms a broad set of
state-of-the-art approaches on the three tasks.

2 Unsupervised Text Style Transfer

We start by reviewing the current approaches for unsupervised text style transfer (Hu et al., 2017a;
Shen et al., 2017), and then go on to describe our approach in Section 3. Assume we have two text

datasets X = {x(1),x(2), . . . ,x(m)} and Y = {y(1),y(2), . . . ,y(n)} with two different styles vx

and vy , respectively. For example, vx can be the positive sentiment style and vy can be the negative

sentiment style. The datasets are non-parallel such that the data does not contain pairs of (x(i),y(j))
that describe the same content. The goal of style transfer is to transfer data x with style vx to style
vy and vice versa, i.e., to estimate the conditional distribution p(y|x) and p(x|y). Since text data
is discrete, it is hard to learn the transfer function directly via back-propagation as in computer
vision (Zhu et al., 2017). Instead, we assume the data is generated conditioned on two disentangled
parts, the style v and the content z1 (Hu et al., 2017a).

Consider the following generative process for each style: 1) the style representation v is sampled
from a prior p(v); 2) the content vector z is sampled from p(z); 3) the sentence x is generated from
the conditional distribution p(x|z,v). This model suggests the following parametric form for style
transfer where q represents a posterior:

p(y|x) =

∫
zx

p(y|zx,vy)q(zx|x,vx)dzx.

1We drop the subscript in notations wherever the meaning is clear.
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The above equation suggests the use of an encoder-decoder framework for style transfer problems.
We can first encode the sentence x to get its content vector zx, then we switch the style label from vx

to vy. Combining the content vector zx and the style label vy, we can generate a new sentence x̃
(the transferred sentences are denotes as x̃ and ỹ).

One unsupervised approach is to use the auto-encoder model. We first use an encoder model E to
encode x and y to get the content vectors zx = E(x,vx) and zy = E(y,vy). Then we use a decoder
G to generate sentences conditioned on z and v. The E and G together form an auto-encoder and
the reconstruction loss is:

Lrec(θE, θG) = Ex∼X[− log pG(x|zx,vx)] + Ey∼Y[− log pG(y|zy,vy)],

where vx and vy can be two learnable vectors to represent the label embedding. In order to make
sure that the zx and zy capture the content and we can deliver accurate transfer between the style
by switching the labels, we need to guarantee that zx and zy follow the same distribution. We can
assume p(z) follows a prior distribution and add a KL-divergence regularization on zx, zy. The
model then becomes a VAE. However, previous works (Bowman et al., 2015; Yang et al., 2017b)
found that there is a training collapse problem with the VAE for text modeling and the posterior
distribution of z fails to capture the content of a sentence.

To better capture the desired styles in the generated sentences, Hu et al. (2017a) additionally impose
a style classifier on the generated samples, and the decoder G is trained to generate sentences that
maximize the accuracy of the style classifier. Such additional supervision with a discriminative model
is also adopted in (Shen et al., 2017), though in that work a binary real/fake classifier is instead used
within a conventional adversarial scheme.

Adversarial Training Shen et al. (2017) use adversarial training to align the z distributions. Not
only do we want to align the distribution of zx and zy, but also we hope that the transferred sentence
x̃ from x to resemble y and vice versa. Several adversarial discriminators are introduced to align
these distributions. Each of the discriminators is a binary classifier distinguishing between real and
fake. Specifically, the discriminator Dz aims to distinguish between zx and zy:

Lz
adv(θE, θDz

) = Ex∼X[− logDz(zx)] + Ey∼Y[− log(1−Dz(zy))].

Similarly, Dx distinguish between x and ỹ, yielding an objective Lx
adv as above; and Dy distinguish

between y and x̃, yielding Ly
adv. Since the samples of x̃ and ỹ are discrete and it is hard to train the

generator in an end-to-end way, professor forcing (Lamb et al., 2016) is used to match the distributions
of the hidden states of decoders. The overall training objective is a min-max game played among the
encoder E/decoder G and the discriminators Dz, Dx, Dy (Goodfellow et al., 2014):

min
E,G

max
Dz,Dx,Dy

Lrec − λ(Lz
adv + Lx

adv + Ly
adv)

The model is trained in an alternating manner. In the first step, the loss of the discriminators are
minimize to distinguish between the zx,x,y and zy, x̃, ỹ, respectively; and in the second step the
encoder and decoder are trained to minimize the reconstruction loss while maximizing loss of the
discriminators.

3 Language Models as Discriminators

In most past work, a classifier is used as the discriminator to distinguish whether a sentence is real or
fake. We propose instead to use locally-normalized language models as discriminators. We argue
that using an explicit language model with token-level locally normalized probabilities offers a more
direct training signal to the generator. If a transfered sentence does not match the target style, it will
have high perplexity when evaluated by a language model that was trained on target domain data.
Not only does it provide an overall evaluation score for the whole sentence, but a language model can
also assign a probability to each token, thus providing more information on which word is to blame if
the overall perplexity is very high.

The overall model architecture is shown in Figure 1. Suppose x̃ is the output sentence from applying
style transfer to input sentence x, i.e., x̃ is sampled from pG(x̃|zx,vy) (and similary for ỹ and y). Let
pLM(x) be the probability of a sentence x evaluate against a language model, then the discriminator
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Figure 1: The overall model architecture consists of two parts: reconstruction and transfer. For
transfer, we switch the style label and sample an output sentence from the generator that is evaluated
by a language model.

loss becomes:

Lx
LM(θE, θG, θLMx

) = Ex∼X[− log pLMx
(x))] + γEy∼Y,ỹ∼pG(ỹ|zy,vx)[log pLMx

(ỹ)], (1)

Ly
LM(θE, θG, θLMy

) = Ey∼Y[− log pLMy
(y))] + γEx∼X,x̃∼pG(x̃|zx,vy)[log pLMy

(x̃)]. (2)

Our overall objective becomes:

min
E,G

max
LMx,LMy

Lrec − λ(Lx
LM + Ly

LM) (3)

Negative samples: Note that Equation 1 and 2 differs from traditional ways of training language
models in that we have a term including the negative samples. We train the LM in an adversarial way
by minimizing the loss of LM of real sentences and maximizing the loss of transferred sentences.
However, since the LM is a structured discriminator, we would hope that a language model trained
on the real sentences will automatically assign high perplexity to sentences not in the target domain,
hence negative samples from the generator may not be necessary. To investigate the necessity of
negative samples, we add a weight γ to the loss of negative samples. The weight γ adjusts the
negative sample loss in training the language models. If γ = 0, we simply train the language model
on real sentences and fix its parameters, avoiding potentially unstable adversarial training steps. We
investigate the necessity of using negative samples in the experiment section.

Training consists of two steps alternatively. In the first step, we train the language models according
to Equation 1 and 2. In the second step, we minimize the reconstruction loss as well as the per-
plexity of generated samples evaluated by the language model. Since x̃ is discrete, one can use the
REINFORCE (Sutton et al., 2000) algorithm to train the generator:

∇θGL
y
LM = Ex∼X,x̃∼pG(x̃|zx,vy)[log pLM(x̃)∇θG log pG(x̃|zx,vy)]. (4)

However, using a single sample to approximate the expected gradient leads to high variance in
gradient estimates and thus unstable learning.

Continuous approximation: Instead, we propose to use a continuous approximation to the sampling
process in training the generator, as demonstrated in Figure 2. Instead of feeding a single sampled
word as input to the next timestep of the generator, we use a Gumbel-softmax (Jang et al., 2016)
distribution as a continuous approximation to sample instead. Let u be a categorical distribution with
probabilities π1, π2, . . . , πc. Samples from u can be approximated using:

pi =
exp((log πi) + gi)/τ∑c

j=1 exp((log πj + gj)/τ)
,

where the gi’s are independent samples from Gumbel(0, 1).

Let the tokens of the transferred sentence be x̃ = {x̃t}
T
t=1. Suppose the output of the logit at timestep

t is vx
t , then p̃x

t = Gumbel-softmax(vx
t , τ), where τ is the temperature. When τ → 0, p̃x

t becomes
the one hot representation of token x̃t. Using the continuous approximation, then the output of the
decoder becomes a sequence of probability vectors p̃x = {p̃x

t }
T
t=1.
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Figure 2: Continuous approximation of language model loss. The input is a sequence of probability
distributions {p̃x

t }
T
t=1 sampled from the generator. At each timestep, we compute a weighted

embedding as input to the language model and get the sequence of output distributions from the LM
as {p̂x

t }
T
t=1. The loss is the sum of cross entropies between each pair of p̃x

t and p̂x
t .

With the continuous approximation of x̃, we can calculate the loss evaluated using a language model
easily, as shown in Figure 2. For every step, we feed p̃x

t to the language model of y (denoted as
LMy) using the weighted average of the embedding Wep̃

x
t , then we get the output from the LMy

which is a probability distribution over the vocabulary of the next word p̂x
t+1. The loss of the current

step is the cross entropy loss between p̃x
t+1 and p̂x

t+1: (p̃x
t+1)

⊺ log p̂x
t+1. Note that when the decoder

output distribution p̃x
t+1 aligns with the language model output distribution p̂x

t+1, the above loss
achieves minimum. By summing the loss over all steps and taking the gradient, we can use standard
back-propagation to train the generator:

∇θGL
y
LM ≈ Ex∼X,p̃x∼pG(x̃|zx,vy)[∇θG

T∑
t=1

(p̃x
t )

⊺ log p̂x
t ]. (5)

The above Equation is a continuous approximation of Equation 4 with Gumbel softmax distribution.
In experiments, we use a single sample of p̃x to approximate the expectation.

Note that the use of the language model discriminator is a somewhat different in each of the two
types of training update steps because of the continuous approximation. We use discrete samples
from the generators as negative samples in training the language model discriminator step, while we
use a continuous approximation in updating the generator step according to Equation 5.

Overcoming mode collapse: It is known that in adversarial training, the generator can suffer from
mode collapse (Arjovsky and Bottou, 2017; Hu et al., 2017b) where the samples from the generator
only cover part of the data distribution. In preliminary experimentation, we found that the language
model prefers short sentences. To overcome this length bias, we use two tricks in our experiments: 1)
we normalize the loss of Equation 5 by length and 2) we fix the length of x̃ to be the same of x. We
find these two tricks stabilize the training and avoid generating collapsed overly short outputs.

4 Experiments

In order to verify the effectiveness of our model, we experiment on three tasks: word substitution
decipherment, sentiment modification, and related language translation. We mainly compare with the
most comparable approach of (Shen et al., 2017) that uses CNN classifiers as discriminators2. Note
that Shen et al. (2017) use three discriminators to align both z and decoder hidden states, while our
model only uses a single language model as a discriminator directly on the output sentences x̃, ỹ.
Moreover, we also compare with a broader set of related work (Hu et al., 2017a; Fu et al., 2017; Li
et al., 2018) for the tasks when appropriate. Our proposed model provides substantiate improvements
in most of the cases. We implement our model with the Texar (Hu et al., 2018b) toolbox based on
Tensorflow (Abadi et al., 2016).

2We use the code from https://github.com/shentianxiao/language-style-transfer.
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Model 20% 40% 60% 80% 100%

Copy 64.3 39.1 14.4 2.5 0
Shen et al. (2017)∗ 86.6 77.1 70.1 61.2 50.8

Our results:
LM 89.0 80.0 74.1 62.9 49.3
LM + adv 89.1 79.6 71.8 63.8 44.2

Table 1: Decipherment results measured in BLEU. Copy is directly measuring y against x. LM +
adv denotes we use negative samples to train the language model.∗We run the code open-sourced by
the authors to get the results.

Model Accu BLEU PPLX PPLY

Shen et al. (2017) 79.5 12.4 50.4 52.7
Hu et al. (2017a) 87.7 65.6 115.6 239.8

Our results:
LM 83.3 38.6 30.3 42.1
LM + Classifier 91.2 57.8 47.0 60.9

Table 2: Results for sentiment modification. X = negative,Y = positive. PPLx denotes the
perplexity of sentences transferred from positive sentences evaluated by a language model trained
with negative sentences and vice versa.

4.1 Word substitution decipherment

As the first task, we consider the word substitution decipherment task previous explored in the NLP
literature (Dou and Knight, 2012). We can control the amount of change to the original sentences
in word substitution decipherment so as to systematically investigate how well the language model
performs in a task that requires various amount of changes. In word substitution cipher, every token
in the vocabulary is mapped to a cipher token and the tokens in sentences are replaced with cipher
tokens according to the cipher dictionary. The task of decipherment is to recover the original text
without any knowledge of the dictionary.

Data: Following (Shen et al., 2017), we sample 200K sentences from the Yelp review dataset as plain
text X and sample other 200K sentences and apply word substitution cipher on these sentences to get
Y. We use another 100k parallel sentences as the development and test set respectively. Sentences of
length more than 15 are filtered out. We keep all words that appear more than 5 times in the training
set and get a vocabulary size of about 10k. All words appearing less than 5 times are replaced with a
“<unk>” token. We random sample words from the vocabulary and replace them with cipher tokens.
The amount of ciphered words ranges from 20% to 100%. As we have ground truth plain text, we
can directly measure the BLEU 3 score to evaluate the model. Our model configurations are included
in Appendix B.

Results: The results are shown in Table 1. We first investigate the effect of using negative samples in
training the language model, as denotes by LM + adv in Table 1. We can see that using adversarial
training sometimes improves the results. However, we found empirically that using negative samples
makes the training very unstable and the model diverges easily. This is the main reason why we did
not get consistently better results by incorporating adversarial training.

Comparing with (Shen et al., 2017), we can see that the language model without adversarial training
is already very effective and performs much better when the amount of change is less than 100%. This
is intuitive because when the change is less than 100%, a language model can use context information
to predict and correct enciphered tokens. It’s surprising that even with 100% token change, our model
is only 1.5 BLEU score worse than (Shen et al., 2017), when all tokens are replaced and no context
information can be used by the language model. We guess our model can gradually decipher tokens
from the beginning of a sentence and then use them as a bootstrap to decipher the whole sentence.
We can also combine language models with the CNNs as discriminators. For example, for the 100%

3BLEU score is measured with multi-bleu.perl.
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case, we get BLEU score of 52.1 when combing them. Given unstableness of adversarial training and
effectiveness of language models, we set γ = 0 in Equation 1 and 2 in the rest of the experiments.

4.2 Sentiment Manipulation

We have demonstrated that the language model can successfully crack word substitution cipher.
However, the change of substitution cipher is limited to a one-to-one mapping. As the second task,
we would like to investigate whether a language model can distinguish sentences with positive and
negative sentiments, thus help to transfer the sentiments of sentences while preserving the content.
We compare to the model of (Hu et al., 2017a) as an additional baseline, which uses a pre-trained
classifier as guidance.

Data: We use the same data set as in (Shen et al., 2017). The data set contains 250K negative
sentences (denoted as X) and 380K positive sentences (denoted as Y), of which 70% are used for
training, 10% are used for development and the remaining 20% are used as test set. The pre-processing
steps are the same as the previous experiment. We also use similar experiment configurations.

Evaluation: Evaluating the quality of transferred sentences is a challenging problem as there are no
ground truth sentences. We follow previous papers in using model-based evaluation. We measure
whether transferred sentences have the correct sentiment according to a pre-trained sentiment classifier.
We follow both (Hu et al., 2017a) and (Shen et al., 2017) in using a CNN-based classifier. However,
simply evaluating the sentiment of sentences is not enough since the model can output collapsed
output such as a single word “good” for all negative transfer and “bad” for all positive transfer. We
not only would like transferred sentences to preserve the content of original sentences, but also to
be smooth in terms of language quality. For these two aspects, we propose to measure the BLEU
score of transferred sentences against original sentences and measure the perplexity of transferred
sentences to evaluate the fluency. A good model should perform well on all three metrics.

Results: We report the results in Table. 2. As a baseline, the original corpus has perplexity of 35.8
and 38.8 for the negative and positive sentences respectively. Comparing LM with (Shen et al.,
2017), we can see that LM outperforms it in all three aspects: getting higher accuracy, preserving
the content better while being more fluent. This demonstrates the effectiveness of using LM as the
discriminator. (Hu et al., 2017a) has the highest accuracy and BLEU score among the three models
while the perplexity is very high. It is not surprising that the classifier will only modify the features of
the sentences that are related to the sentiment and there is no mechanism to ensure that the modified
sentence being fluent. Hence the corresponding perplexity is very high. We can manifest the best of
both models by combing the loss of LM and the classifier in (Hu et al., 2017a): a classifier is good at
modifying the sentiment and an LM can smooth the modification to get a fluent sentence. We find
improvement of accuracy and perplexity as denoted by LM + classifier compared to classifier only
(Hu et al., 2017a).

Comparing with other models: Recently there are other models that are proposed specifically
targeting the sentiment modification task such as (Li et al., 2018). Their method is feature based and
consists of the following steps: (Delete) first, they use the statistics of word frequency to delete the
attribute words such as “good, bad” from original sentences, (Retrieve) then they retrieve the most
similar sentences from the other corpus based on nearest neighbor search, (Generate) the attribute
words from retrieved sentences are combined with the content words of original sentences to generate
transferred sentences. The authors provide 500 human annotated sentences as the ground truth of
transferred sentences so we measure the BLEU score against those sentences. The results are shown
in Table 3. We can see our model has similar accuracy compared with DeleteAndRetrieve, but has
much better BLEU scores and slightly better perplexity.

We list some examples of transferred sentences in Table 5 in the appendix. We can see that (Shen
et al., 2017) does not keep the content of the original sentences well and changes the meaning
of the original sentences. (Hu et al., 2017a) changes the sentiment but uses improper words, e.g.
“maintenance is equally hilarious”. Our LM can change the change the sentiment of sentences. But
sometimes there is an over-smoothing problem, changing the less frequent words to more frequent
words, e.g. changing “my goodness it was so gross” to “my food it was so good.”. In general LM +
classifier has the best results, it changes the sentiment, while keeps the content and the sentences are
fluent.
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Model ACCU BLEU PPLX PPLY

Shen et al. (2017) 76.2 6.8 49.4 45.6
Fu et al. (2017):
StyleEmbedding 9.2 16.65 97.51 142.6
MultiDecoder 50.9 11.24 111.1 119.1

Li et al. (2018):
Delete 87.2 11.5 75.2 68.7
Template 86.7 18.0 192.5 148.4
Retrieval 95.1 1.3 31.5 37.0
DeleteAndRetrieval 90.9 12.6 104.6 43.8

Our results:
LM 85.4 13.4 32.8 40.5
LM + Classifier 90.0 22.3 48.4 61.6

Table 3: Results for sentiment modification based on the 500 human annotated sentences as ground
truth from (Li et al., 2018).

4.3 Related language translation

In the final experiment, we consider a more challenging task: unsupervised related language trans-
lation (Pourdamghani and Knight, 2017). Related language translation is easier than normal pair
language translation since there is a close relationship between the two languages. Note here we
don’t compare with other sophisticated unsupervised neural machine translation systems such as
(Lample et al., 2017; Artetxe et al., 2017), whose models are much more complicated and use other
techniques such as back-translation, but simply compare the different type of discriminators in the
context of a simple model.

Data: We choose Bosnian (bs) vs Serbian (sr) and simplified Chinese (zh-CN) vs traditional Chinese
(zh-TW) pair as our experiment languages. Due to the lack of parallel data for these data, we build the
data ourselves. For bs and sr pair, we use the monolingual data from Leipzig Corpora Collections4.
We use the news data and sample about 200k sentences of length less than 20 for each language,
of which 80% are used for training, 10% are used for validation and remaining 10% are used for
test. For validation and test, we obtain the parallel corpus by using the Google Translation API.
The vocabulary size is 25k for the sr vs bs language pair. For zh-CN and zh-TW pair, we use the
monolingual data from the Chinese Gigaword corpus. We use the news headlines as our training data.
300k sentences are sampled for each language. The data is partitioned and parallel data is obtained in
a similar way to that of sr vs bs pair. We directly use a character-based model and the total vocabulary
size is about 5k. For evaluation, we directly measure the BLEU score using the references for both
language pairs.

Note that the relationship between zh-CN and zh-TW is simple and mostly like a decipherment
problem in which some simplified Chinese characters have the corresponding traditional character
mapping. The relation between bs vs sr is more complicated.

Results: The results are shown in Table. 4. For sr–bos and bos–sr, since the vocabulary of two
languages does not overlap at all, it is a very challenging task. We report the BLEU1 metric since
the BLEU4 is close to 0. We can see that our language model discriminator still outperforms (Shen
et al., 2017) slightly. The case for zh–tw and tw–zh is much easier. Simple copying already has a
reasonable score of 32.3. Using our model, we can improve it to 81.6 for cn–tw and 85.5 for tw–cn,
outperforming (Shen et al., 2017) by a large margin.

5 Related Work

Non-parallel transfer in natural language: (Hu et al., 2017a; Shen et al., 2017; Prabhumoye et al.,
2018; Gomez et al., 2018) are most relevant to our work. Hu et al. (2017a) aim to generate sentences
with controllable attributes by learning disentangled representations. Shen et al. (2017) introduce
adversarial training to unsupervised text style transfer. They apply discriminators both on the encoder

4http://wortschatz.uni-leipzig.de/en
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Model sr–bs bs–sr cn–tw tw–cn

Copy 0 0 32.3 32.3
Shen et al. (2017) 29.1 30.3 60.1 60.7

Our results:
LM 31.0 31.7 81.6 85.5

Table 4: Related language translation results measured in BLEU. The results for sr vs bs in measured
in BLEU1 while cn vs tw is measure in BLEU.

representation and on the hidden states of the decoders to ensure that they have the same distribution.
These are the two models that we mainly compare with. Prabhumoye et al. (2018) use the back-
translation technique in their model, which is complementary to our method and can be integrated
into our model to further improve performance. Gomez et al. (2018) use GAN-based approach to
decipher shift ciphers. (Lample et al., 2017; Artetxe et al., 2017) propose unsupervised machine
translation and use adversarial training to match the encoder representation of the sentences from
different languages. They also use back-translation to refine their model in an iterative way.

GANs: GANs have been widely explored recently, especially in computer vision (Zhu et al., 2017;
Chen et al., 2016b; Radford et al., 2015; Sutton et al., 2000; Salimans et al., 2016; Denton et al., 2015;
Isola et al., 2017). The progress of GANs on text is relatively limited due to the non-differentiable
discrete tokens. Lots of papers (Yu et al., 2017; Che et al., 2017; Li et al., 2017; Yang et al., 2017a)
use REINFORCE (Sutton et al., 2000) to finetune a trained model to improve the quality of samples.
There is also prior work that attempts to introduce more structured discriminators, for instance, the
energy-based GAN (EBGAN) (Zhao et al., 2016) and RankGAN (Lin et al., 2017). Our language
model can be seen as a special energy function, but it is more complicated than the auto-encoder
used in (Zhao et al., 2016) since it has a recurrent structure. Hu et al. (2018a) also proposes to
use structured discriminators in generative models and establishes its the connection with posterior
regularization.

Computer vision style transfer: Our work is also related to unsupervised style transfer in computer
vision (Gatys et al., 2016; Huang and Belongie, 2017). (Gatys et al., 2016) directly uses the covariance
matrix of the CNN features and tries to align the covariance matrix to transfer the style. (Huang
and Belongie, 2017) proposes adaptive instance normalization for an arbitrary style of images. (Zhu
et al., 2017) uses a cycle-consistency loss to ensure the content of the images is preserved and can be
translated back to original images.

Language model for reranking: Previously, language models are used to incorporate the knowledge
of monolingual data mainly by reranking the sentences generated from a base model such as (Brants
et al., 2007; Gulcehre et al., 2015; He et al., 2016). (Liu et al., 2017; Chen et al., 2016a) use a
language model as training supervision for unsupervised OCR. Our model is more advanced in using
language models as discriminators in distilling the knowledge of monolingual data to a base model in
an end-to-end way.

6 Conclusion

We showed that by using language models as discriminators and we could outperform traditional
binary classifier discriminators in three unsupervised text style transfer tasks including word substitu-
tion decipherment, sentiment modification and related language translation. In comparison with a
binary classifier discriminator, a language model can provide a more stable and more informative
training signal for training generators. Moreover, we empirically found that it is possible to eliminate
adversarial training with negative samples if a structured model is used as the discriminator, thus
pointing one possible direction to solve the training difficulty of GANs. In the future, we plan to
explore and extend our model to semi-supervised learning.
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