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Abstract

In this paper, we propose and analyze zeroth-order stochastic approximation algo-
rithms for nonconvex and convex optimization. Specifically, we propose general-
izations of the conditional gradient algorithm achieving rates similar to the standard
stochastic gradient algorithm using only zeroth-order information. Furthermore,
under a structural sparsity assumption, we first illustrate an implicit regularization
phenomenon where the standard stochastic gradient algorithm with zeroth-order
information adapts to the sparsity of the problem at hand by just varying the step-
size. Next, we propose a truncated stochastic gradient algorithm with zeroth-order
information, whose rate depends only poly-logarithmically on the dimensionality.

1 Introduction
In this work, we propose and analyze algorithms for solving the following stochastic optimization
problem

min
x∈X

{
f(x) = Eξ[F (x, ξ)] =

∫
F (x, ξ) dP (ξ)

}
, (1.1)

where X is a closed convex subset of Rd. The case of nonconvex objective function f is ubiquitous
in modern deep learning problems and developing provable algorithms for such problems has been a
topic of intense research in the recent years [16, 11], along with the more standard convex case [1].
Several methods are available for solving such stochastic optimization problems under access to
different oracle information, for example, function queries (zeroth-order oracle), gradient queries
(first-order oracle), and higher-order oracles. In this work, we assume that we only have access to
noisy evaluation of f through a stochastic zeroth-order oracle described in detail in Assumption 1.
This oracle setting is motivated by several applications where only noisy function queries of problem
(1.1) is available and obtaining higher-order information might not be possible. Such a situation
occurs frequently for example, in simulation based modeling [29], selecting the tuning parameters
of deep neural networks [32] and design of black-box attacks to deep networks [3]. It is worth
noting that recently such zeroth-order optimization techniques have also been applied in the field of
reinforcement learning [30, 4, 20]. Furthermore, methods using similar oracles have been studied in
the literature under the name of derivative-free optimization [33, 5], bayesian optimization [21] and
optimization with bandit feedback [2].
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Algorithm Structure Function Queries References

ZSCG (Alg 1) Nonconvex O(d/ε4) Theorem 2.1Convex O(d/ε3)
Modified ZSCG (Alg 3) Convex O(d/ε2) Theorem 2.2

ZSGD (Alg 4) Nonconvex, s-sparse O
(
(s log d)2/ε4

)
Theorem 3.1

Truncated ZSGD (Alg 5) Convex, s-sparse O
(
s(log d/ε)2

)
Theorem 3.2

ZSGD Convex O(d/ε2) [18, 7, 9]
Nonconvex O(d/ε4) [9]

Table 1: A list of complexity bounds for stochastic zeroth-order methods to find an ε-stationary or
ε-optimal (see Definition 1.1) point of problem (1.1).

Algorithms available for solving problem (1.1) also depend crucially on the constraint set X . First,
consider the case of X = Rd. When first-order information is available, the rate of convergence of
the standard Gradient Descent (GD) algorithm is dimension-independent [26]. Whereas when only
the zeroth-order information is available, any algorithm (with estimated gradients) has (at least) linear
dependence on d [9, 18, 7]. This illustrates the main difference between the availability of different
oracle information. Next, note that depending on the geometry of the constraint set X , the cost of
computing the projection to the set might be prohibitive. This lead to the re-emergence of Conditional
Gradient (CG) algorithms recently [12, 15]. But the performance of the CG algorithm under the
zeroth-order oracle is unexplored in the literature to the best of our knowledge, both under convex and
nonconvex settings. Hence it is natural to ask if CG algorithms, with access to zeroth-order oracle has
similar (or better) convergence rates compared to GD algorithms with zeroth-order information. We
propose and analyze in Section 2 a classical version of CG algorithm with zeroth-order information
and present convergence results. We then propose a modification in Section 2.2 that has improved
rates, when f is convex.

Notably, with zeroth-order information, the complexity of CG algorithms also depend linearly on
the dimensionality, similar to the GD algorithms. We refer to this situation as the low-dimensional
setting in the rest of the paper. This motivates us to examine assumptions under which one can
achieve weaker dependence on the dimensionality while optimizing with zeroth-order information.
In a recent work [34], the authors used a functional sparsity assumption, under which the function
f : Rd → R to be optimized depends only on s of the d components, and proposed a LASSO
based algorithm that has poly-logarithmic dependence on the dimensionality when f is convex. We
refer to this situation as the high-dimensional setting. In this work, we perform a refined analysis
under a similar sparsity assumption for both convex and nonconvex objective functions. When the
performance is measured by the size of the gradient, we show in Section 3 that zeroth-order GD
algorithm (without using thresholding or LASSO approach of [34]), has poly-logarithmic dependence
on the dimensionality thereby demonstrating an implicit regularization phenomenon in this setting.
Note that this is applicable for both convex and nonconvex objectives. When the performance is
measured by function values (as in the case of convex objective), we show that a simple thresholded
zeroth-order GD algorithm achieves a poly-logarithmic dependence on dimensionality. This algorithm
is notably less expensive than the algorithm proposed by [34].

Our contributions: To summarize the above discussion, in this paper we make the following contri-
butions to the literature on zeroth-order stochastic optimization: (i) We first analyze a classical version
of CG algorithm in the nonconvex (and convex) setting, under access to zeroth-order information
and provide results on the convergence rates in the low-dimensional setting; (ii) We then propose
and analyze a modified CG algorithm in the convex setting with zeroth-order information and show
that it attains improved rates in the low-dimensional setting; (iii) Finally, we consider a zeroth-order
stochastic gradient algorithm in the high-dimensional nonconvex (and convex) setting and illustrate an
implicit regularization phenomenon. We also show that this algorithm achieves rates that depend only
poly-logarithmically on dimensionality. Our contributions extend the applicability of zeroth-order
stochastic optimization to the constrained and high-dimensional setting and also provide theoretical
insights in the form of rates of convergence. A summary of the results is provided in Table 1.

1.1 Preliminaries
We now list the main assumptions we make in this work. Additional assumptions will be introduced
in the appropriate sections as needed. We start with the assumption on the zeroth-order oracle.
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Assumption 1 Let ‖ · ‖ be a norm on Rd. For any x ∈ Rd, the zeroth-order oracle outputs an
estimator F (x, ξ) of f(x) such that E[F (x, ξ)] = f(x),E[∇F (x, ξ)] = ∇f(x),E[‖∇F (x, ξ) −
∇f(x)‖2∗] ≤ σ2, where ‖ · ‖∗ denotes the dual norm.

It should be noted that in the above assumption, we do not observe∇F (x, ξ) and we just assume that
it is an unbiased estimator of gradient of f and its variance is bounded. Furthermore, we make the
following smoothing assumption about the noisy estimation of f .

Assumption 2 Function F has Lipschitz continuous gradient with constant L, almost surely for any
ξ, i.e., ‖∇F (y, ξ)−∇F (x, ξ)‖∗ ≤ L‖y − x‖, which consequently implies that
|F (y, ξ)− F (x, ξ)− 〈∇F (x, ξ), y − x〉| ≤ L

2 ‖y − x‖
2.

It is easy to see that the above two assumptions imply that f also has Lipschitz continuous gradient
with constant L since

‖∇f(y)−∇f(x)‖∗ ≤ E [‖∇F (y, ξ)−∇F (x, ξ)‖∗] ≤ L‖y − x‖ (1.2)

due the Jensen’s inequality for the dual norm. We now collect some facts about a gradient estimator
based on the above zeroth-order information. Let u ∼ N(0, Id) be a standard Gaussian random vector.
For some ν ∈ (0,∞) consider the smoothed function fν(x) = Eu [f(x+ νu)]. Nesterov [27] has
shown that∇fν(x) =

Eu

[
f(x+ νu)

ν
u

]
= Eu

[
f(x+ νu)− f(x)

ν
u

]
=

1

(2π)d/2

∫
f(x+ νu)− f(x)

ν
u e−

‖u‖22
2 du.

(1.3)

This relation implies that we can estimate gradient of fν by only using evaluations of f . In particular,
one can define stochastic gradient of fν(x) as

Gν(x, ξ, u) =
F (x+ νu, ξ)− F (x, ξ)

ν
u, (1.4)

which is an unbiased estimator of∇fν(x) under Assumption 1 since

Eu,ξ[Gν(x, ξ, u)] = Eu[ f(x+νu)−f(x)ν u] = ∇fν(x).

We leverage some properties of fν due to Nesterov [27] in our proofs later, that we replicate in the
supplementary material (Section A) for convenience. Finally, we define the following criterion which
are used to analyze the complexity of our proposed algorithms.

Definition 1.1 Assume that a solution x̄ ∈ X as output of an algorithm and a target accuracy ε > 0
are given. Then: (i) If f is nonconvex, x̄ is called an ε-stationary point of the unconstrained variant
of problem (1.1) if E[‖∇f(x̄)‖∗] ≤ ε. For the constrained case, x̄ should satisfies E[〈∇f(x̄), x̄−
u〉] ≤ ε for all u ∈ X ; (ii) If f is convex, x̄ is called an ε-optimal point of problem (1.1) if
E[f(x̄)]− f(x∗) ≤ ε, where x∗ denotes an optimal solution of the problem.

It should be pointed out that while the above performance measures are presented in expectation
form, one can also use their high probability counterparts. Since, convergence results in this case
can be obtained by making sub-Gaussian tail assumptions on the output of the zeroth-order oracle
and using the standard two-stage process presented in [9, 19], we do not elaborate more on this
approach. Furthermore, note that the aforementioned measures for evaluating the algorithms are from
the derivative-free optimization point of view. In the literature on optimization with bandit feedback,
the preferred performance measure is the so-called regret of the algorithm [2, 31] which may have a
different behavior than our performance measures.

2 Zeroth-order Stochastic Conditional Gradient Type Method
In this section, we study zeroth-order stochastic conditional gradient (ZSCG) algorithms in the
low-dimensional setting for solving constrained stochastic optimization problems. In particular, we
incorporate a variant of the gradient estimate defined in (1.4) into the framework of the classical CG
method and provide its convergence analysis in Subsection 2.1. We also present improved rates for a
variant of this method in Subsection 2.2 when f is convex. Throughout this section, we assume that
Rd is equipped with the self-dual Euclidean norm i.e., ‖ · ‖ = ‖ · ‖2. We also make the following
natural boundedness assumption.
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Algorithm 1 Zeroth-order Stochastic Conditional Gradient Method
Input: z0 ∈ X , smoothing parameter ν > 0, non-negative sequence αk, positive integer sequence
mk, iteration limit N ≥ 1 and probability distribution PR(·) over {1, . . . , N}.
for k = 1, . . . , N do

1. Generate uk = [uk,1, . . . , uk,mk
], where uk,j ∼ N(0, Id), call the stochastic oracle to

compute mk stochastic gradient Gk,jν according to (1.4) and take their average:

Ḡkν ≡ Ḡν(zk−1, ξk, uk) =
1

mk

mk∑
j=1

F (zk−1 + νuk,j , ξk,j)− F (zk−1, ξk,j)

ν
uk,j . (2.1)

2. Compute

xk = argmin
u∈X

〈Ḡkν , u〉, (2.2)

zk = (1− αk)zk−1 + αkxk. (2.3)

end for
Output: Generate R according to PR(·) and output zR.

Assumption 3 The feasible set X is bounded such that maxx,y∈X ‖y−x‖ ≤ DX for some DX > 0.
Moreover, for all x ∈ X , there exists a constant B > 0 such that ‖∇f(x)‖ ≤ B.

We should point out that under Assumptions 1 and 2, the second statement in Assumption 3 follows
immediately by the first one and choosing B := LDX + ‖∇f(x∗)‖. However, we just use B in our
analysis for simplicity.

2.1 Zeroth-order Stochastic Conditional Gradient Method
The vanilla ZSCG method is formally presented in Algorithm 1 and a few remarks about it follows.
First, note that this algorithm differs from the classical CG method in estimating the gradient using
zeroth-order information and in outputting a random solution from the generated trajectory. This
randomization scheme is the current practice in the literature to provide convergence results for
nonconvex stochastic optimization (see e.g., [9, 28]). Second, Ḡkν is the averaged variant of the
gradient estimator presented in Subsection 1.1 and is still an unbiased estimator of ∇fν(zk−1).
Moreover, it can be easily seen that it has a reduced variance with respect to the individual estimators
i.e.,

E[‖Ḡkν −∇fν(zk−1)‖2] ≤ 1

mk
E[‖Gk,jν −∇fν(zk−1)‖2]. (2.4)

We emphasize that the use of the above variance reduction technique in stochastic CG methods is
standard and has been previously proposed and leveraged in several works (see e.g., [19, 13, 28,
22, 23, 10]). Indeed, when exact gradient is not available, an error term appears in the convergence
analysis which should converge to 0 at a certain rate as the algorithm moves forward. Hence, the
choice of mk plays a key role in the convergence analysis of Algorithm 1. Ḡkν can be also viewed
as a biased estimator for ∇f(zk−1). Finally, since f is possibly nonconvex, we need a different
criteria than the optimality gap to provide convergence analysis of Algorithm 1. The well-known
Frank-Wolfe Gap given by

gk
X
≡ gX (zk−1) := 〈∇f(zk−1), zk−1 − x̂k〉, where x̂k = argmin

u∈X
〈∇f(zk−1), u〉, (2.5)

has been widely use in the literature to show rate of convergence of the CG methods when f is convex
(see e.g., [8, 6, 14]). In this case, it is easy to see that

f(zk−1)− f∗ ≤ gX (zk−1). (2.6)

When f is nonconvex, this criteria is still useful since 〈∇f(zk−1), zk−1 − u〉 ≤ gX (zk−1), ∀u ∈ X ,
which implies that one can obtain an approximate stationary point of problem (1.1) by minimizing
gk
X

, in the view of Definition 1.1. Note that in our setting, this quantity is not exactly computable and
it is only used to provide convergence analysis of Algorithm 1 as shown in the next result.

Theorem 2.1 Let {zk}k≥0 be generated by Algorithm 1 and Assumptions 1, 2, and 3 hold.
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1. Let f be nonconvex, bounded from below by f∗, and let the parameters of the algorithm be
set as

ν =

√
2BLσ

N(d+ 3)3
, αk =

1√
N
, mk = 2BLσ(d+ 5)N, ∀k ≥ 1 (2.7)

for some constantBLσ ≥ max{
√
B2 + σ2/L, 1} and a given iteration boundN ≥ 1. Then

we have

E[gR
X

] ≤ f(z0)− f∗ + LD2
X + 2

√
B2 + σ2

√
N

, (2.8)

where R is uniformly distributed over {1, . . . , N} and gk is defined in (2.5). Hence, the
total number of calls to the zeroth-order stochastic oracle and linear subproblems required
to be solved to find an ε-stationary point of problem (1.1) are, respectively, bounded by

O
(
d

ε4

)
, O

(
1

ε2

)
. (2.9)

2. Let f be convex and let the parameters be set to

ν =

√
2BLσ

N2(d+ 3)3
, αk =

6

k + 5
, mk = 2BLσ(d+ 5)N2, ∀k ≥ 1. (2.10)

Then we have

E[f(zN )]− f∗ + E[gR
X

] ≤ 120[f(z0)− f(x∗)]

(N + 3)3
+

36LD2
X

N + 5
+

√
B2 + σ2

N
(2.11)

where R is random variable from {1, . . . , N} whose probability distribution is given by

PR(R = k) =
αkΓN

2ΓN (1− ΓN )
, Γk =

k∏
i=1

(
1− αi

2

)
, Γ0 = 1. (2.12)

Hence, the total number of calls to the zeroth-order stochastic oracle and linear subproblems
required to be solved to find and ε-optimal solution of problem (1.1) are, respectively,
bounded by

O
(
d

ε3

)
, O

(
1

ε

)
. (2.13)

Remark 1 Observe that the complexity bounds in (2.9), in terms of ε, match the ones obtained in
[10, 28, 23] for stochastic CG method with first-order oracle applied to nonconvex problems. For
convex problems, similar observation can be made for terms in (2.13) which match the ones in
[13, 10]. Note that the linear dependence of our complexity bounds on d is unimprovable due to the
lower bounds for zeorth-order algorithms applied to convex optimization problems [7]. We conjecture
that this is also the case for nonconvex problems.

2.2 Improved Rates for Convex Problems
Our goal in this subsection is to improve the complexity bounds of the ZCSG method when f is
convex. Recall that the ZSCG method presented in Section 2.1 involves two main steps: the gradient
evaluation step and the linear optimization step. Motivated by [19], we now propose a modified
algorithm that allows one to skip the gradient evaluation from time to time. Notice that, as our
gradients are estimated by calling the zeroth-order oracle, this directly reduces the number of calls to
the zeroth-order oracle. We first state a subroutine in Algorithm 2 used in our modified algorithm.
Note that Algorithm 2 is indeed the zeroth-order conditional gradient method for inexactly solving
the following quadratic program

PX (x, g, γ) = argmin
u∈X

{
〈g, u〉+

γ

2
‖u− x‖2

}
, (2.15)

which is the standard subproblem of stochastic first-order methods applied to a minimization problem
when g is an unbiased stochastic gradient of the objective function at x. We now present Algorithm 3
which applies the CG method to inexactly solve subproblems of the stochastic accelerated gradient
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Algorithm 2 Inexact Conditional Gradient (ICG) method
Input: (x, g, γ, µ).
Set ȳ0 = x, t = 1, and κ = 0..
while κ = 0 do

yt = argmin
u∈X

{hγ(u) := 〈g + γ(ȳt−1 − x), u− ȳt−1〉} (2.14)

If hγ(yt) ≥ −µ, set κ = 1.
Else ȳt = t−1

t+1 ȳt−1 + 2
t+1yt and t = t+ 1.

end while
Output ȳt.

method. This way of using CG methods can significantly improve the total number of calls to the
stochastic oracle. Our next result provides convergence analysis of this algorithm.

Algorithm 3 Zeroth-order Stochastic Accelerated Gradient Method with Inexact Updates
Input:z0 = x0 ∈ X , smoothing parameter ν > 0, sequences αk, mk, γk, µk, and iteration limit
N ≥ 1.
for k = 1, . . . , N do

1. Set
wk = (1− αk)zk−1 + αkxk−1 (2.16)

2. Generate uk = [uk,1, . . . , uk,mk
], where uk,j ∼ N(0, Id), call the stochastic oracle mk

times to compute Ḡkν ≡ Ḡν(wk, ξk, uk) as given by (2.1), and set

xk = ICG(xk−1, Ḡ
k
ν , γk, µk), (2.17)

where ICG(·) is the output of Algorithm 2 with input (xk−1, Ḡ
k
ν , γk).

3. Set
zk = (1− αk)zk−1 + αkxk (2.18)

end for
Output: zN

Theorem 2.2 Let {zk}k≥1 be generated by Algorithm 3, the function f be convex, and

αk =
2

k + 1
, γk =

4L

k
, µk =

LD0
X

kN
, ν =

1√
2N

max

{
1

d+ 3
,

√
D0
X

d(N + 1)

}

mk =
k(k + 1)

D0
X

max {(d+ 5)BLσN, d+ 3} , ∀k ≥ 1, (2.19)

and for some constants D0
X ≥ ‖x0 − x∗‖2 and BLσ ≥ max{

√
B2 + σ2/L, 1}. Then under

Assumptions 1, 2, and 3, we have

E[f(zN )− f(x∗)] ≤
12LD0

X

N(N + 1)
. (2.20)

Hence, the total number of calls to the stochastic oracle and linear subproblems solved to find and
ε-stationary point of problem (1.1) are, respectively, bounded by

O
(
d

ε2

)
, O

(
1

ε

)
. (2.21)

Remark 2 Observe that while the number of linear subproblems required to find an ε-optimal
solution of problem (1.1) is the same for both Algorithms 1 and 3, the number of calls to the stochastic
zeroth-order oracle in Algorithm 3 is significantly smaller than that of Algorithm 1. It is also natural
to ask if such an improvement is achievable when f is nonconvex. This situation is more subtle and
the answer depends on the performance measure used to measure the rate of convergence. Indeed, we
can obtain improved complexity bounds for a different performance measure than the Frank-Wolfe
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Algorithm 4 Zeroth-Order Stochastic Gradient Method
Input: x0 ∈ Rd, smoothing parameter ν > 0, iteration limit N ≥ 1, a probability distribution PR
supported on {0, . . . , N − 1}.
for k =1, . . . , N do

Generate uk ∼ N(0, Id), call the stochastic oracle, and compute Gν(xk−1, ξk, uk) as defined
in (1.4) and set xk = xk−1 − γkGν(xk−1, ξk;uk).
end for
Output: Generate R according to PR(·) and output xR.

gap with a modified algorithm. However, the complexity bounds are of the same order as (2.9) in
terms of the Frank-Wolfe gap for the modified algorithm. For the sake of completeness, we add this
algorithm and its convergence analysis in the supplementary material in Section D.

3 Zeroth-order Stochastic Gradient Methods
In this section, we study unconstrained variant of problem 1.1 i.e, X = Rd, under certain sparsity
assumptions on the objective function f to facilitate zeroth-order optimization in high-dimensions.
Recently, [34] considered the convex case and proposed algorithms for high-dimensional zeroth-order
stochastic optimization. Motivated by [34], we make the following assumption.
Assumption 4 For any x ∈ Rd, we have ‖∇f(x)‖0 ≤ s, i.e., the gradient is s-sparse, where s� d.

Note that the above assumption implies ‖∇f(x)‖2 ≤
√
s‖∇f(x)‖∞ and ‖∇f(x)‖1 ≤ s‖∇f(x)‖∞,

for all x ∈ Rd. Furthermore, this assumption also implies that ‖∇fν(x)‖0 ≤ s for all x ∈ Rd since
∇fν(x) = Eu [∇f(x+ νu)]. To exploit the above sparsity assumption, we assume that the primal
space Rd is equipped with the l∞ norm throughout this section. More specifically, we assume that
Assumptions 1 and 2 hold with the choice of ‖ · ‖ = ‖ · ‖∞ and its dual norm ‖ · ‖∗ = ‖ · ‖1. We now
present zeroth-order stochastic gradient methods for solving problem (1.1) when f is nonconvex and
convex, in Subsections 3.1 and 3.2 respectively.

3.1 Zeroth-order Stochastic Gradient Method for Nonconvex Problems
In this subsection, we consider the zeroth-order stochastic gradient method presented in [9] (provided
in Algorithm 4 for convenience) and provide a refined convergence analysis for it under the sparsity
assumption 1, when f is nonconvex. Our main convergence result for Algorithm 4 under the gradient
sparsity assumption is stated below.

Theorem 3.1 Let {xk}k≥0 be generated by Algorithm 4 and stepsizes are chosen such that ∀k ≥ 1,

γk =
1

2LĈ log d
min

 1

12ŝ log d
,

√
D0LĈ

2Nσ2

 , ν ≤ 1√
LĈ log d

min

{√
2σ2

L
,

√
D0

N

}
(3.1)

for some ŝ ≥ s, Ĉ ≥ C (the universal constant defined in Lemma C.1), and D0 ≥ f(x0) − f∗.
Assume that f is nonconvex. Then under Assumptions 1, 2, and 4, we have

Eζ
[
‖∇f(xR)‖21

]
≤ 150LĈD0ŝs(log d)2

N
+

54σ
√

2LĈD0 s log d√
N

, (3.2)

where ζ = {ξ, u,R} and R is uniformly distributed over {0, . . . , N − 1}. Hence, the total number of
calls to the stochastic oracle (number of iterations) required to find an ε-stationary point of problem
(1.1), in the view of Definition 1.1, is bounded by

O
(

(ŝ log d)2

ε4

)
. (3.3)

Remark 3 Note that the above theorem establishes rate of convergence of Algorithm 4 which only
poly-logarithmically depends on the problem dimension d, by just selecting the step-size appropriately,
under additional assumption that the gradient is sparse. This significantly improves the linear
dimensionality dependence of the rate of convergence of this algorithm as presented in [9] for general
nonconvex smooth problems.
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Algorithm 5 Truncated Zeroth-Order Stochastic Gradient Method
Given a positive integer ŝ, replace updating step of Algorithm 4 with

xk = Pŝ (xk−1 − γkGν(xk−1, ξk;uk)) , (3.4)

where Pŝ(x) keeps the top ŝ largest absolute value of components of x and make the others 0.

Remark 4 Remarkably, Algorithm 4 does not require any special operation to adapt to the sparsity
assumption. This demonstrates an implicit regularization phenomenon exhibited by the zeroth-order
stochastic gradient method in the high-dimensional setting when the performance is measured by the
size of the gradient in the dual norm. We emphasize that the choice of the performance measure is
motivated by the fact that we allow f to be nonconvex. Trivially, the result also applies to the case
when f is convex, for the same performance measure.

3.2 Zeroth-order Stochastic Gradient Method for Convex Problems

We now consider the case when the function f is convex. In this setting, a more natural performance
measure is the convergence of optimality gap in terms of the function values. For this situation, we
propose and analyze a truncate variant of Algorithm 4 that demonstrates similar poly-logarithmic
dependence on the dimensionality. To proceed, in addition to Assumption 4, we also make the
following sparsity assumption on the optimal solution of problem (1.1).

Assumption 5 Problem (1.1) has a sparse optimal solution x∗ such that ‖x∗‖0 ≤ s∗, where s∗ ≈ s.

Our algorithm for the convex setting is presented in Algorithm 5. Note that this algorithm could be
considered as a truncated variant of Algorithm 4 and a zeroth-order stochastic variant of the truncated
gradient descent algorithm [17]. In the next result, we present convergence analysis of this algorithm.

Theorem 3.2 Let {xk}k≥1 be generated by Algorithm 4, f is convex, Assumptions 1, 2, 4, and 5
hold. Also assume the stepsizes are chosen such that, ∀k ≥ 1,

γk =
1

4Ĉŝ log d
min

 1

12Lŝ log d
,

√
D0
XĈŝ

3Nσ2

 , ν ≤
√

log dmin

{
σ

log d
,

√
ŝ2D0

X

N

}
(3.5)

for some Ĉ ≥ C, ŝ ≥ max{s, s∗}, and D0
X ≥ ‖x0 − x∗‖2.

E [f(x̄N )− f∗] ≤ 52LĈD0
X ŝ

2(log d)2

N
+

69σ
√

3ĈD0
X ŝ log d

√
N

, (3.6)

where x̄N =
∑N−1

k=0 xk

N . Hence, the total number of calls to the stochastic oracle (number of iterations)
required to find an ε-optimal point of problem (1.1) is bounded by

O

(
ŝ

(
log d

ε

)2
)
. (3.7)

Remark 5 While for convex case, similar to the nonconvex case, the complexity of Algorithm 5
depends poly-logarithmically on d, it only linearly depends on the choice of ŝ, facilitating zeroth-order
stochastic optimization in high-dimensions under sparsity assumptions.

Remark 6 As discussed in detail in [34], both Assumption 4 and 5 are implied when we assume the
function f depends on only s of the d coordinates. But, both Assumption 4 and 5 are comparatively
weaker than that assumption. Furthermore, unlike [34], we do not make any assumption on the
sparsity or smoothness of the second-order derivative of the objective function f for our results.

Remark 7 As mentioned before, [34] considers only the convex case. Furthermore, their gradient
estimator with zeroth-order oracle requires poly(s, s∗, log d) function queries in each iteration
whereas our estimator is based on only one function query per iteration. Moreover, [34] requires
computationally expensive debiased Lasso estimators whereas our method requires only simple
thresholding operations (for convex case) to handle sparsity.
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4 Future Work
Two concrete extensions are possible for future work. First, for our results, we focus on performance
measures common in the optimization setting. It is interesting to extend our results to the bandit
setting, where the performance is measured via regret of the algorithm. Next, the performance
of conditional gradient algorithm in the high-dimensional constrained optimization setting is not
well-explored; the interaction between the geometry of the constraint set, sparsity structure and
zeroth-order information is extremely interesting to explore. Finally, lower bounds can be explored
for the cases considered in this paper when f is nonconvex.
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A Relevant Results from [27]

In this section, for completeness, we replicate relevant results from [27], that are required for our
proofs.

Theorem A.1 The following statements hold for any function f whose gradient is Lipschitz continu-
ous with constant L.

a) The gradient of fν is Lipschitz continuous with constant Lν such that Lν ≤ L.

b) For any x ∈ Rd,

|fν(x)− f(x)| ≤ ν2

2
Ld, (A.8)

‖∇fν(x)−∇f(x)‖ ≤ ν

2
L(d+ 3)

3
2 . (A.9)

c) For any x ∈ Rn,
1

ν2
Eu[{f(x+ νu)− f(x)}2‖u‖2] ≤ ν2

2
L2(d+ 6)3 + 2(d+ 4)‖∇f(x)‖2. (A.10)

B Proofs for Section 2

We present all the proofs for Section 2 below. Recall that, we assumed that ‖ · ‖ = ‖ · ‖2 in Section 2.
In order to prove Theorem 2.1, we need the following result that provides upper bounds for the
variance of our gradient estimator.

Lemma B.1 Let Ḡkν be computed by (2.1). Then under Assumptions 1, 2 and 3, we have

E[‖Ḡkν −∇fν(zk−1)‖2] ≤ 2(d+ 5)(B2 + σ2)

mk
+

ν2

2mk
L2(d+ 3)3, (B.11)

E[‖Ḡkν −∇f(zk−1)‖2] ≤ 4(d+ 5)(B2 + σ2)

mk
+

3ν2

2
L2(d+ 3)3. (B.12)

Proof. First note that using (A.10) for function F instead of f , under Assumptions 1 and 2, we obtain

E[‖Gk,jν ‖2] ≤ ν2L2

2 E
[
‖u‖6

]
+ 2Eξ[‖∇F (zk−1, ξk)‖2]Eu

[
‖u‖4

]
≤ ν2L2

2 (d+ 6)3 + 2
[
‖∇f(zk−1)‖2 + σ2

]
(d+ 4),

where the second inequality follows from the fact that E[‖u‖k] ≤ (d+ k)k/2 for any k ≥ 2 due to
Nesterov [27]. Also noting (1.4), (2.4), and the fact that ‖∇fν‖ ≤ B under Assumption 3, we have

E[‖Ḡkν −∇fν(zk−1)‖2] ≤ 1

mk

(
E[‖Gk,jν ‖2] +B2

)
,

which together with the above relation clearly imply (B.11). We can then obtain (B.12) by noting
(A.9) and the fact that

E[‖Ḡkν −∇f(zk−1)‖2] ≤ 2E[‖Ḡkν −∇fν(zk−1)‖2] + 2E[‖∇fν(zk−1)−∇f(zk−1)‖2].

B.1 Proof of Theorem 2.1

Proof. Denoting ∆k = Ḡkν −∇f(zk−1), noting (1.2), (2.3), and (2.5), we have

f(zk) ≤ f(zk−1) + 〈∇f(zk−1), zk − zk−1〉+
L

2
‖zk − zk−1‖2

= f(zk−1) + αk〈∇f(zk−1), xk − zk−1〉+
Lα2

k

2
‖xk − zk−1‖2

≤ f(zk−1) + αk〈∇f(zk−1), x̂k − zk−1〉+
Lα2

k

2

[
‖xk − zk−1‖2 + ‖xk − x̂k‖2

]
+
‖∆k‖2

2L

≤ f(zk−1)− αkgkX + LD2
Xα

2
k +
‖∆k‖2

2L
, (B.13)
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where the last inequality follows from boundedness of the feasible set, (2.5), and the fact that
〈∇f(zk−1) + ∆k, xk − u〉 ≤ 0 ∀u ∈ X

due to the optimality condition of (2.2). Taking expectation from both sides of the above inequality,
summing them up, rearranging the terms, and noting Lemma B.1, we obtain

N∑
k=1

αkE[gk
X

] ≤ f(z0)− f∗ + LD2
X

N∑
k=1

α2
k +

ν2

2
LN(d+ 3)3 +

2(d+ 5)(B2 + σ2)

L

N∑
k=1

1

mk
.

Hence, choosing αk = α1 and mk = m1 for all k ≥ 1, and noting that R is a uniform random
variable, we have

E[gR
X

] =

∑N
k=1 E[gk

X
]

N
=

∑N
k=1 αkE[gk

X
]∑N

k=1 αk
≤ f(z0)− f∗

Nα1
+ LD2

Xα1 +
ν2

2α1
L(d+ 3)3

+
2(d+ 5)(B2 + σ2)

Lα1m1
,

which together with (2.7) imply (2.8). Hence, (2.9) follows by noting that the total number of calls to
the stochastic oracle is bounded by

∑N
k=1mk.

Now assume that f is convex. Hence, by (2.6) and (B.13), we have

f(zk)− f(x∗) ≤ (1− αk

2 )(f(zk−1 − f(x∗))−
αkg

k
X

2
+ LD2

Xα
2
k +
‖∆k‖2

2L

Taking expectation from both sides of the above inequality, dividing them by Tk, and summing them
up, and noting (2.12), we obtain

E[f(zN )]− f∗

ΓN
+

N∑
k=1

αkE[gk
X

]

2Γk
≤ f(z0)− f∗ + LD2

X

N∑
k=1

α2
k

Γk
+

1

2L

N∑
k=1

E
[
‖∆k‖2

]
Γk

,

which together with the fact that
N∑
k=1

αk
2Γk

=
1− ΓN

ΓN
, 1− Γ1 ≤ 1− ΓN ≤ 1

due to (2.12), imply that

E[f(zN )]− f∗ + E[gR
X

] ≤ ΓN
1− ΓN

[
f(z0)− f∗ + LD2

X

N∑
k=1

α2
k

Γk
+

2(d+ 5)(B2 + σ2)

L

N∑
k=1

1

Γkmk

+
ν2

2
L(d+ 3)3

N∑
k=1

1

Γk

]
(B.14)

Now noting (2.10) and (2.12), we have

Γk =
60

(k + 3)(k + 4)(k + 5)
,

N∑
k=1

α2
k

Γk
≤

N∑
k=1

3(k + 3)

5
=

3N(N + 7)

10
,

ΓN

N∑
k=1

1

Γkmk
≤ 1

4(d+ 5)BLσN
, ΓN

N∑
k=1

1

Γk
≤ N.

Combining the above relations, we get (2.11) and (2.13).

B.2 Proof of Theorem 2.2

Proof. First, note that by (1.2), we have

fν(zk) ≤ fν(wk) + 〈∇fν(wk), zk − wk〉+
L

2
‖zk − wk‖2

≤ (1− αk)fν(zk−1) + αk [fν(wk) + 〈∇fν(wk), xk − wk〉]

+
Lα2

k

2
‖xk − xk−1‖2, (B.15)
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where the second inequality follows from convexity of fν , (2.16), and (2.18). Also note that by (2.14)
and (2.17), we have

−µk ≤ 〈Ḡkν + γk(xk − xk−1), u− xk〉 ∀u ∈ X . (B.16)

Letting u = x∗ in the above inequality and multiplying it by αk, summing it up with (B.15), and
denoting ∆̄k = Ḡkν −∇fν(wk), we obtain

fν(zk) ≤ (1−αk)fν(zk−1)+αkfν(x∗)+αk
[
µk + 〈∆̄k + γk(xk − xk−1), x∗ − xk〉

]
+
Lα2

k

2
‖xk−xk−1‖2,

which together with the facts that

‖xk−1 − x∗‖2 = ‖xk − xk−1‖2 + ‖xk − x∗‖22 + 2〈xk−1 − xk, xk − x∗〉,

αk〈∆̄k, x∗ − xk〉 ≤ αk〈∆̄k, x∗ − xk−1〉+
‖∆̄k‖2

2L
+
Lα2

k

2
‖xk − xk−1‖2,

imply

fν(zk) ≤ (1− αk)fν(zk−1) + αkfν(x∗) + αk

[
µk +

2Lαk − γk
2

‖xk − xk−1‖2 + 〈∆̄k, x∗ − xk−1〉
]

+
αkγk

2

[
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

]
+
‖∆̄k‖2

2L
. (B.17)

Defining

Γ̂k =

k∏
i=2

(1− αi) , Γ̂1 = 1, (B.18)

subtracting fν(x∗) from both sides of the above inequality, diving them by Γ̂k, taking expectation,
summing them up, noting (A.8) assuming that α1 = 1, γk ≥ 2Lαk, and γkαk/Γ̂k is constant for any
k ≥ 1, we obtain

E
[
f(zN )

]
− f(x∗)− ν2Ld
Γ̂N

≤ γ1
2
‖x0−x∗‖2+

N∑
k=1

αkµk

Γ̂k
+

[
(d+ 5)(B2 + σ2)

L
+
ν2L(d+ 3)3

2

] N∑
k=1

1

mkΓ̂k
.

Now noticing that

Γ̂k =
2

k(k + 1)
,

αkγk

Γ̂k
= 4L,

αkµk

Γ̂k
=
LD2

0

N
,

1

mkΓ̂k
≤ 2D2

0

max {(d+ 5)BLσN, d+ 3}

due to (2.19) and (B.18), we obtain (2.20).

Furthermore, note that the function hγ defined in Algorithm 2 is indeed negative the FW-gap of the
CG method applied to problem (2.15). From classical analysis of the CG method and similar to our
result in Theorem 2.1, one can show that the FW-gap is bounded by LD2

X /T if the CG method runs
for T iteration. Since the gradient of the objective function in (2.15) is Lipschitz continuous with
constant γ, we have

−hγk(ȳTk
) ≤ γkD

2
X

Tk
,

which together with the choice of µk and γk in (2.19), imply that at iteration k of Algorithm 1, we need
to run Algorithm 2 for at most Tk = 4D2

XN/D
2
0 iterations. Therefore, the total number of iterations

of Algorithm 2 to find an ε-stationary point of problem (1.1) is bounded by
∑N
k=1 Tk ≤ 48LD2

X /ε
2

due to (2.21).
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C Proofs for Section 3

We now present the proofs for section 3. Recall that, we assumed that ‖ · ‖ = ‖ · ‖∞ in Section 3 We
first present two technical results which play key roles in our convergence analysis.

Lemma C.1 Let u ∼ N(0, Id) be a d-dimensional standard Gaussian vector. Then for all integer
k ≥ 1 and for some universal constant C, we have E

[
‖u‖k∞

]
≤ C(2 log d)k/2.

Proof. Let Z = ‖u‖∞ and denote by p(x) the standard normal pdf. Note that we have

EZk =

∫ ∞
0

kxk−1P (Z > x) dx

≤
∫ xd

0

kxk−1dx+

∫ ∞
xd

xk−2p(x)dx

where we define xd =
√

2 ln d. Now we have∫ xd

0

kxk−1dx = xkd = (2 log d)k/2

and by l’Hospital’s rule, for large d we have∫ ∞
xd

xk−2p(x)dx ≈ xk−3d p(xd)� (log d)(k−3)/2 = o

(
(log d)k/2

d

)
Hence we have for some universal constant C,

E
[
‖u‖k∞

]
≤ C(2 log d)k/2.

Lemma C.2 The following statements hold for function f and its smooth approximation fν .

a) Under Assumptions 1 and 2, gradient of f is Lipschitz continuous with constant L and

|fν(x)− f(x)| ≤ ν2CL log d.

b) If Assumption 4 also holds, we have

‖∇fν(x)−∇f(x)‖2 ≤ CνL
√

2s(log d)3/2

E
[
‖Gν(x, ξ;u)‖2∞

]
≤ 4C(log d)2

[
L2ν2(log d) + 4‖∇f(x)‖21 + 4σ2

]
.

Proof. First note that

|fν(x)− f(x)| = |E [f(x+ νu)− f(x)− ν〈∇f(x), u〉]|
≤ E |f(x+ νu)− f(x)− ν〈∇f(x), u〉|

≤ ν2L

2
E
[
‖u‖2∞

]
≤ Cν2L log d,

where the last inequality follows from Lemma C.1. Second, noting this lemma again, Assumption 4,
and part a), we have

‖∇fν(x)−∇f(x)‖2 ≤
√
s∗‖∇fν(x)−∇f(x)‖∞

≤
√
s

ν(2π)d/2

∫
|f(x+ νu)− f(x)− ν〈∇f(x), u〉| ‖u‖∞e−

‖u‖22
2 du

≤ νL
√
s

2(2π)d/2

∫
‖u‖3∞e−

‖u‖22
2 du ≤ CνL

√
2s(log d)3/2.
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Furthermore, by (1.4), Holder inequality, Lemma C.1, and under Assumption 4 we have

E
[
‖Gν(x, ξ;u)‖2∞

]
=

2

ν2
E
[
|F (x+ νu, ξ)− F (x, ξ)− ν〈∇F (x, ξ), u〉|2‖u‖2∞

]
+ 2E

[
〈∇F (x, ξ), u〉2‖u‖2∞

]
≤ ν2L2

2 E
[
‖u‖6∞

]
+ 2Eξ[‖∇F (x, ξ)‖21]Eu

[
‖u‖4∞

]
≤ 4CL2ν2(log d)3 + 8C(log d)2Eξ[‖∇F (x, ξ)‖21]

≤ 4C(log d)2
[
L2ν2(log d) + 4‖∇f(x)‖21 + 4σ2

]
.

C.1 Proof of Theorem 3.1

Proof. Noting (1.4), Lemma C.2.a), and with the notion of Gν,k ≡ Gν(xk, ξk, uk), we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2∞

≤ f(xk)− γk〈∇f(xk), Gν,k〉+
Lγ2k

2
‖Gν,k‖2∞,

which after taking expectation imply that

E[f(xk+1)] ≤ f(xk)− γk‖∇f(xk)‖22 + γk〈∇f(xk),∇f(xk)−∇fν(xk)〉+
Lγ2k

2
E[‖Gν,k‖2∞]

≤ f(xk)− γk
2
‖∇f(xk)‖22 +

γk
2
‖∇f(xk)−∇fν(xk)‖22 +

Lγ2k
2

E[‖Gν,k‖2∞]

≤ f(xk)− γk
2s

(
1− 16LCs(log d)2γk

)
‖∇f(xk)‖21 + (νLC)2s(log d)3γk

+ 2LC(log d)2
[
L2ν2(log d) + 4σ2

]
γ2k,

where the last inequality follow from Holder inequality and Lemma C.2.b). Summing both sides of
the above inequality over the iterations and rearranging terms, we get

E[‖∇f(xR)‖21] ≤
6s
[
f(x0)− f∗ + (νLC)2s(log d)3

∑N
k=1 γk + 2CL(log d)2

(
L2ν2(log d) + 4σ2

)∑N−1
k=0 γ

2
k

]
∑N−1
k=0 γk

,

where R is uniformly distributed over {0, . . . , N − 1} since

E[‖∇f(xR)‖21] =
1

N

N−1∑
k=0

‖∇f(xk)‖21 =

∑N−1
k=0 γk

(
1− 16LCs(log d)2γk

)
‖∇f(xk)‖21∑N−1

k=0 γk (1− 16LCs(log d)2γk)
,

due to the constant choice of γk in (3.1). Therefore, we have

E[‖∇f(xR)‖21] ≤ 6s

[
f(x0)− f∗

Nγ1
+ (νLC)2s(log d)3 + 2CL(log d)2

(
L2ν2(log d) + 4σ2

)
γ1

]
,

which together with the choice of smoothing parameter in (3.1) imply (3.2).

C.2 Proof of Theorem 3.2

Proof. Denoting the index set of nonzero elements of xk and x∗ by Zk ⊆ Rŝ and Z∗ ⊆ Rs∗ ,
respectively, and Jk = Zk ∪ Zk+1 ∪ Z∗, we have

‖xk+1 − x∗‖22
= ‖xJ

k

k+1 − xJ
k

∗ ‖22 = ‖xJ
k

k − xJ
k

∗ − γkGJ
k

ν,k‖22 = ‖xJ
k

k − xJ
k

∗ ‖22 + γ2k‖GJ
k

ν,k‖22 − 2γk〈xJ
k

k − xJ
k

∗ , γkG
Jk

ν,k〉
≤ ‖xk − x∗‖22 + (2ŝ+ s∗)γ2k‖Gν,k‖2∞ − 2γk〈xk − x∗, Gν,k〉,
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where the inequality follows from the facts that |Jk| ≤ 2ŝ + s∗ and ‖GJk

ν,k‖ ≤ ‖Gν,k‖. Taking
expectation from both sides of the above inequality, summing them up, noting Lemma C.2, convexity
of fν (due to convexity of f ), we have

E
[
‖xN − x∗‖22

]
≤ ‖x0 − x∗‖22 + (2ŝ+ s∗)

N−1∑
k=0

γ2kE
[
‖Gν,k‖2∞

]
− 2

N−1∑
k=0

γk〈xk − x∗,∇fν(xk)〉

≤ ‖x0 − x∗‖22 + 4C(2ŝ+ s∗)(log d)2
N−1∑
k=0

γ2k
[
L2ν2(log d) + 4‖∇f(xk)‖21 + 4σ2

]
− 2

N−1∑
k=0

γk [fν(xk)− fν(x∗)]

≤ ‖x0 − x∗‖22 + 4C(2ŝ+ s∗)(log d)2
N−1∑
k=0

γ2k
[
L2ν2(log d) + 4σ2

]
+ 4ν2CL log d

N−1∑
k=0

γk

− 2

N−1∑
k=0

γk[1− 16LCs(2ŝ+ s∗)(log d)2γk][f(xk)− f(x∗)],

where the last inequality follows from the fact that f(xk)− f(x∗) ≥ 1/(2Ls)‖∇f(xk)‖22 due to the
convexity of f and sparsity of its gradient. Rearranging the terms in the above inequality and noting

that x̄N =
∑N−1

k=0 xk

N , we obtain

f(x̄N )−f(x∗) ≤
‖x0 − x∗‖22 + 4C(2ŝ+ s∗)(log d)2

∑N−1
k=0 γ

2
k

[
L2ν2(log d) + 4σ2

]
+ 4ν2CL log d

∑N−1
k=0 γk

2
∑N−1
k=0 γk[1− 16LCs(2ŝ+ s∗)(log d)2γk]

since

x̄N =

∑N−1
k=0 xk
N

=
γk[1− 16LCs(2ŝ+ s∗)(log d)2γk]xk∑N−1
k=0 γk[1− 16LCs(2ŝ+ s∗)(log d)2γk]

due to the constant choice of γk in (3.5). Hence, (3.6) follows by using the choice of parameters in
(3.5) into the above relation.

D Zeroth-order Stochastic Gradient Method with Inexact
Updates-Nonconvex case

In this section, we present a zeroth-order stochastic gradient method which applies the CG method
to solve the subproblems. This algorithm shares the main idea of Algorithm 3, but for nonconvex
problems. We show while this algorithm enjoys better complexity bound than Algorithm 3, it possess
the same one when the same performance measure is employed.

Algorithm 6 Zeroth-order Stochastic Gradient Method with Inexact Updates
Input: x0 ∈ X , smoothing parameter ν > 0, positive integer sequence mk, and sequences γk and
µk and a probability distribution PR(·) over {0, . . . , N − 1}
for k = 1, . . . , N do

Generate uk = [uk,1, . . . , uk,mk
], where uk,j ∼ N(0, Id), call the stochastic oracle mk times,

compute Ḡkν ≡ Ḡν(xk−1, ξk, uk) as given by (2.1), and set xk to (2.17).
end for
Output: Generate R according to PR(·) and output xR.

Since we are now using the CG method for inexactly solving (2.15), we can provide an alternative
termination criterion than the FW-gap given in (2.5) to provide our convergence analysis. In particular,
we use the gradient mapping defined as

GPX (x, g, γ) = γ(x− PX (x, g, γ)), (D.19)
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where PX is the solution to (2.15). This quantity which has been widely used in the literature as a
convergence criteria for solving nonconvex problems (see, e.g., [24, 25]), plays an analogues role of
the gradient in constrained problems. Next result provides some properties for this criteria.

Lemma D.1 Let PX (·) be defined in (2.15), γ > 0, and x ∈ X are given.

a) for and ĝ ∈ Rd, we have

‖PX (x, g, γ)− PX (x, ĝ, γ)‖ ≤ ‖g − ĝ‖
γ

.

b) Let PµX be the inexact solution of (2.15) such that

〈g + γ(PµX (x, g, γ)− x), u− PµX (x, g, γ)〉 ≥ −µ ∀u ∈ X (D.20)

for some µ ≥ 0. Then, we have

‖PX (x, g, γ)− PµX (x, g, γ)‖2 ≤ µ

γ
.

c) Let gX (·) be the Frank-Wolfe gap defined in (2.5). Then we have

‖GPX (x,∇f(x), γ)‖2 ≤ gX (x).

Moreover, under Assumption 3, we have

gX (x) ≤ (B/γ +DX )‖GPX (x,∇f(x), γ)‖.

Proof. First note that (2.15) implies

‖PX (x, g, γ)− PX (x, ĝ, γ)‖ = ‖ΠX (x− g/γ)−ΠX (x− ĝ/γ)‖ ≤ ‖g − ĝ‖
γ

,

where the last inequality follows from Lipschitz continuity of the Euclidian projection over the
feasible set ΠX . Second, by optimality condition of (2.15), we have

〈g + γ(PX (x, g, γ)− x), u− PX (x, g, γ)〉 ≥ 0 ∀ũ ∈ X . (D.21)

Letting ũ = PµX (x, g, γ) in the above inequality and u = PX (x, g, γ) and g = ∇f(x) in (D.20) and
summing them up, we clear get the result in part b). Third, letting ũ = x in (D.21), we have

‖GPX (x,∇f(x), γ)‖2 ≤ γ〈∇f(x), x− PX (x,∇f(x), γ)〉 ≤ γgX (x),

where the last inequality follows from (2.5). Furthermore, (D.21) also implies that

gX (x) +
1

γ
‖GPX (x,∇f(x), γ)‖2 ≤ 〈∇f(x) + γ(x− u), x− PX (x,∇f(x), γ)〉

≤ (B/γ +DX )‖GPX (x,∇f(x), γ)‖,
where the last inequality follows from Assumption 3.

Now we are ready to state the main result for the nonconvex case.

Theorem D.1 Let {xk} be generated by Algorithm 6, the function f be nonconvex, and

ν =

√
1

2N(d+ 3)3
, γk = 2L, µk =

1

4N
, mk = 6(d+ 5)N, ∀k ≥ 1. (D.22)

Then under Assumptions 1, 2, and 3, we have

E[‖GPX (xR,∇f(xR), γR)‖2] ≤ 8L

N

(
f(x0)− f∗ + L+B2 + σ2

)
. (D.23)

where R is uniformly distributed over {0, . . . , N − 1} and gX is defined in (D.19). Hence, the total
number of calls to the stochastic oracle and linear subproblems solved to find and ε-stationary point
of problem (1.1) are, respectively, bounded by

O
(
d

ε2

)
, O

(
1

ε2

)
. (D.24)
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Proof. First note that by (1.2), we have

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2.

Letting u = xk−1 in (B.16), summing it up with the above inequality, and denoting ∆k = Ḡkν −
∇f(xk−1), we obtain

f(xk) ≤ f(xk−1)− γk
(

1− L

2γk

)
‖xk − xk−1‖2 + 〈∆k, xk−1 − xk〉+ µk

≤ f(xk−1)− γk
(

1− L

γk

)
‖xk − xk−1‖2 +

‖∆k‖2

2L
+ µk.

Taking expectation from the above inequalities, summing them up, re-arranging the terms, and in the
view of Lemma B.1, we have

N∑
k=1

γk

(
1− L

γk

)
E[‖xk − xk−1‖2]

≤ f(x0)− f∗ +

N∑
k=1

µk +
ν2L(d+ 3)3N

2
+

2(d+ 5)(B2 + σ2)

L

N∑
k=1

1

mk
,

which together with the facts that xk = Pµk

X (xk−1, Ḡ
k
ν , γk) and

1

γ2k
‖GPX (xk−1,∇f(xk−1), γk)‖2

= ‖xk−1 − PX (xk−1,∇f(xk−1), γk)‖2

≤ 2‖xk − xk−1‖2 +
4µk
γk

+
4ν2L2(d+ 3)3

γ2k
+

16(d+ 5)(B2 + σ2)

γ2kmk
,

imply that

N∑
k=1

(
γk − L

2γ2k

)
E[‖GPX (xk−1,∇f(xk−1), γk)‖2] ≤ f(x0)− f∗ +

N∑
k=1

(
3γk − 2L

γk

)
µk

+
ν2L(d+ 3)3

2

N∑
k=1

(
1 +

4L(γk − L)

γ2k

)
+

2(d+ 5)(B2 + σ2)

L

N∑
k=1

1

mk

(
1 +

8L(γk − L)

γ2k

)
.

Hence, noting (D.22), we obtain

E[‖GPX (xR,∇f(xR), γR)‖2]

≤ 8L[f(x0)− f∗]
N

+ 16L2µ1 + 8ν2L2(d+ 3)3 +
48(d+ 5)(B2 + σ2)

m1
,

which implies (D.23). Rest of the proof is similar to that of Theorem 2.2 and hence we skip the
details.

Remark 8 We point out that while the complexity bounds in (D.24) are better than those in (2.9) in
terms of dependence on the target accuracy ε, they have been obtained for a different performance
measure. Indeed, if only the Frank-Wolfe gap is considered then it is easy to see that both bounds are
of the same order of magnitude due to part c of Lemma D.1.
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