
A Related works

Given the large body of relevant literature, even surveying the work on Q-learning in a satisfactory
manner is beyond the scope of this paper. Here we only mention the most relevant prior works, and
compare them to ours in terms of the assumptions needed, the algorithmic approaches considered, and
the performance guarantees provided. Table 1 provides key representative works from the literature
and contrasts them with our result.

Q-learning has been studied extensively for finite-state MDPs. [43] and [22] are amongst the first to
establish its asymptotic convergence. Both of them cast Q-learning as a stochastic approximation
scheme — we utilize this abstraction as well. More recent work studies non-asymptotic performance
of Q-learning; see, e.g., [41], [18], and [24]. Many variants of Q-learning have also been proposed
and analyzed, including Double Q-learning [20], Speedy Q-learning [3], Phased Q-learning [23] and
Delayed Q-learning [40].

A standard approach for continuous-state MDPs with known transition kernels, is to construct a
reduced model by discretizing state space and show that the new finite MDP approximates the original
one. For example, Chow and Tsitsiklis establish approximation guarantees for a multigrid algorithm
when the state space is compact [10, 11]. This result is recently extended to average-cost problems
and to general Borel state and action spaces in [37]. To reduce the computational complexity, Rust
proposes a randomized version of the multigrid algorithm and provides a bound on its approximation
accuracy [36]. Our approach bears some similarities to this line of work: we also use state space
discretization, and impose similar continuity assumptions on the MDP model. However, we do not
require the transition kernel to be known, nor do we construct a reduced model; rather, we learn the
action-value function of the original MDP directly by observing its sample path.

The closest work to this paper is by Szepesvari and Smart [42], wherein they consider a variant of
Q-learning combined with local function approximation methods. The algorithm approximates the
optimal Q-values at a given set of sample points and interpolates it for each query point. Follow-up
work considers combining Q-learning with linear function approximation [28]. Despite algorithmic
similarity, their results are distinct from ours: they establish asymptotic convergence of the algorithm,
based on the assumption that the data-sampling policy is stochastic stationary. In contrast, we provide
finite-sample bounds, and our results apply for arbitrary sample paths (including non-stationary
policies). Consequently, our analytical techniques are also different from theirs.

Some other closely related work is by Ormoneit and coauthors on model-free reinforcement learning
for continuous state with unknown transition kernels [33, 32]. Their approach, called KBRL,
constructs a kernel-based approximation of the conditional expectation that appears in the Bellman
operator. Value iteration can then be run using the approximate Bellman operator, and asymptotic
consistency is established for the resulting fixed points. A subsequent work demonstrates applicability
of KBRL to practical large-scale problems [4]. Unlike our approach, KBRL is an offline, batch
algorithm in which data is sampled at once and remains the same throughout the iterations of the
algorithm. Moreover, the aforementioned work does not provide convergence rate or finite-sample
performance guarantee for KBRL. The idea of approximating the Bellman operator by an empirical
estimate, has also been used in the context of discrete state-space problems [19]. The approximate
operator is used to develop Empirical Dynamic Programming (EDP) algorithms including value and
policy iterations, for which non-asymptotic error bounds are provided. EDP is again an offline batch
algorithm; moreover, it requires multiple, independent transitions to be sampled for each state, and
hence does not apply to our setting with a single sample path.

In terms of theoretical results, most relevant is the work in [30], who also obtain finite-sample
performance guarantees for continuous space problems with unknown transition kernels. Extension
to the setting with a single sample path is considered in [1]. The algorithms considered therein,
including fitted value iteration and Bellman-residual minimization based fitted policy iteration, are
different from ours. In particular, these algorithms perform updates in a batch fashion and require
storage of all the data throughout the iterations.

There are other papers that provide finite-sample guarantees, such as [25, 12]; however, their
settings (availability of i.i.d. data), algorithms (TD learning) and proof techniques are very different
from ours. The work by Bhandari et al. [8] also provides a finite sample analysis of TD learning
with linear function approximation, for both the i.i.d. data model and a single trajectory. We
also note that the work on PAC-MDP methods [34] explores the impact of exploration policy on
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learning performance. The focus of our work is estimation of Q-functions rather than the problem
of exploration; nevertheless, we believe it is an interesting future direction to study combining our
algorithm with smart exploration strategies.

B Proof of Lemma 1

Proof. Let D be the set of all functions u : X ⇥A ! R such that kuk1  Vmax. Let L be the set
of all functions u : X ⇥ A ! R such that u(·, a) 2 Lip(X ,Mr + �VmaxMp), 8a 2 A. Take any
u 2 D, and fix an arbitrary a 2 A. For any x 2 X , we have

|(Fu)(x, a)| =
����r(x, a) + �E


max
b2A

u(Z, b)|x, a
�����  Rmax + �Vmax = Vmax,

where the last equality follows from the definition of Vmax. This means that Fu 2 D. Also, for any
x, y 2 X , we have

|(Fu)(x, a)� (Fu)(y, a)| =
����r(x, a)� r(y, a) + �E


max
b2A

u(Z, b)|x, a
�
� �E


max
b2A

u(Z, b)|y, a
�����

 |r(x, a)� r(y, a)|+ �

����
Z

X
max
b2A

u(z, b) (p(z|x, a)� p(z|y, a))�(dz)
����

 Mr⇢(x, y) + �

Z

X

����max
b2A

u(z, b) (p(z|x, a)� p(z|y, a))
�����(dz)

 Mr⇢(x, y) + � kuk1 ·
Z

X
|p(z|x, a)� p(z|y, a)|�(dz)

 [Mr + �VmaxMp] ⇢(x, y).

This means that (Fu)(·, a) 2 Lip (X ,Mr + �VmaxMp), so Fu 2 L. Putting together, we see that F
maps D to D \L, which in particular implies that F maps D \L to itself. Since D \L is closed and
F is �-contraction, both with respect to k·k1, the Banach fixed point theorem guarantees that F has
a unique fixed point Q⇤ 2 D \ L. This completes the proof of the lemma.

C Examples of Nearest Neighbor Regression Methods

Below we describe three representative nearest neighbor regression methods, each of which corre-
sponds to a certain choice of the kernel function K in the averaging procedure (2).

• k-nearest neighbor (k-NN) regression: For each x 2 X , we find its k nearest neighbors in
the subset Xh and average their Q-values, where k 2 [n] is a pre-specified number. Formally,
let c(i)(x) denote the i-th closest data point to x amongst the set Xh. Thus, the distance of
each state in Xh to x satisfies ⇢(x, c(1)(x))  ⇢(x, c(2)(x))  · · ·  ⇢(x, c(n)(x)). Then the
k-NN estimate for the Q-value of (x, a) is given by (�NNq)(x, a) =

1
k

P
k

i=1 q
�
c(i)(x), a

�
.

This corresponds to using in (2) the following weighting function

K(x, ci) =
1

k
1
�
⇢(x, ci)  ⇢(x, c(k)(x))

 
.

Under the definition of Xh in Section 3.1, the assumption (4) is satisfied if we use k = 1.
For other values of k, the assumption holds with a potentially different value of h.

• Fixed-radius near neighbor regression: We find all neighbors of x up to a threshold
distance h > 0 and average their Q-values. The definition of Xh ensures that at least
one point ci 2 Xh is within the threshold distance h, i.e., 8x 2 X , 9ci 2 Xh such that
⇢(x, ci)  h. We then can define the weighting function function according to

K (x, ci) =
1{⇢(x, ci)  h}P
n

j=1 1{⇢(x, cj)  h}
.

• Kernel regression: Here the Q-values of the neighbors of x are averaged in a weighted
fashion according to some kernel function [31, 48]. The kernel function � : R+ ! [0, 1]
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takes as input a distance (normalized by the bandwidth parameter h) and outputs a similarity
score between 0 and 1. Then the weighting function K(x, ci) is given by

K(x, ci) =
�
⇣

⇢(x,ci)
h

⌘

P
n

j=1 �
⇣

⇢(x,cj)
h

⌘ .

For example, a (truncated) Gaussian kernel corresponds to �(s) = exp
⇣
� s

2

2

⌘
1{s  1}.

Choosing �(s) = 1{s  1} reduces to the fixed-radius NN regression described above.

D Bounds on Covering time

D.1 Proof of Proposition 1

Proof. Without loss of generality, we may assume that the balls {Bi, i 2 [n]} are disjoint, since the
covering time will only become smaller if they overlap with each other. Note that under "-greedy
policy, equation (6) implies that 8t � 0, 8x 2 X , 8a 2 A,

Pr (xm+t 2 ·, am+t = a|xt = x) � "

|A| ⌫(·). (10)

First assume that the above assumption holds with m = 1. Let M , n |A| be the total number of
ball-action pairs. Let (P1, . . . ,PM ) be a fixed ordering of these M pairs. For each integer t � 1, let
Kt be the number of ball-action pairs visited up to time t. Let T , inf {t � 1 : Kt = M} be the first
time when all ball-action pairs are visited. For each k 2 {1, 2, . . . ,M}, let Tk , {t � 1 : Kt = k}
be the the first time when k pairs are visited, and let Dk , Tk � Tk�1 be the time to visit the k-th
pair after k � 1 pairs have been visited. We use the convention that T0 = D0 = 0. By definition, we
have T =

P
M

k=1 Dk.

When k � 1 pairs have been visited, the probability of visiting a new pair is at least

min
I✓[M ],|I|=M�k+1

Pr

✓
(xTk�1+1, aTk�1+1) 2

[

i2I

Pi|xTk�1

◆

= min
I✓[M ],|I|=M�k+1

X

i2I

Pr
�
(xTk�1+1, aTk�1+1) 2 Pi|xTk�1

�

�(M � k + 1) min
i2[M ]

Pr⇡
�
(xTk�1+1, aTk�1+1) 2 Pi|xTk�1

�

�(M � k + 1) · '⌫min · "

|A| ,

where the last inequality follows from Eq. (10). Therefore, Dk is stochastically dominated by a
geometric random variable with mean at most |A|

(M�k+1)"'⌫min
. It follows that

ET =
MX

k=1

EDk 
MX

k=1

|A|
(M � k + 1)"'⌫min

= O

✓
|A|

"'⌫min
logM

◆
.

This prove the proposition for m = 1.

For general values of m, the proposition follows from a similar argument by considering the MDP
only at times t = m, 2m, 3m, . . . .

D.2 Proof of Proposition 2

Proof. We shall use a line of argument similar to that in the proof of Proposition 1. We assume that
the balls {Bi, i 2 [n]} are disjoint. Note that under "-greedy policy ⇡, for all t � 0, for all x 2 X ,
we have

Pr⇡ (at = â1, . . . , at+m�1 = âm|xt = x) �
⇣

"

|A|

⌘m
. (11)
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The equation (7) implies that
Pr⇡ (xt+m 2 ·|xt = x)

�Pr (xt+m 2 ·|xt = x, at = â1, . . . , at+m�1 = âm)⇥ Pr⇡ (at = â1, . . . , at+m�1 = âm|xt = x)

� ⌫(·)
✓
"

|A|

◆m

.

Thus for each a 2 A,

Pr⇡ (xt+m 2 ·, at+m = a|xt = x) �  ⌫(·)
⇣

"

|A|

⌘m+1
. (12)

We first consider the case m = 1 and use the same notation as in the proof of Proposition 1. When
k � 1 pairs have been visited, the probability of visiting a new pair is at least

min
I✓[M ],|I|=M�k+1

Pr

✓
(xTk�1+1, aTk�1+1) 2

[

i2I

Pi|xTk�1

◆

�(M � k + 1) min
i2[M ]

Pr⇡
�
(xTk�1+1, aTk�1+1) 2 Pi|xTk�1

�

�(M � k + 1) · '⌫min ·
✓
"

|A|

◆2

,

where the last inequality follows from Eq. (12). Therefore, Dk, the time to visit the k-th pair after
k � 1 pairs have been visited, is stochastically dominated by a geometric random variable with mean
at most (|A|/")2

(M�k+1)'⌫min
. It follows that

ET =
MX

k=1

EDk 
MX

k=1

(|A| /")2

(M � k + 1)'⌫min
= O

 
(|A| /")2

'⌫min
logM

!
.

This prove the proposition for m = 1.

For general values of m, the proposition follows from a similar argument by considering the MDP
only at times t = m, 2m, 3m, . . . .

E Proof of the Main Result: Theorem 1

The proof of Theorem 1 consists of three key steps summarized as follows.

Step 1. Stochastic Approximation. Since the nearest-neighbor approximation of the Bellman
operator induces a biased update for qk at each step, the key step in our proof is to analyze a
Stochastic Approximation (SA) algorithm with biased noisy updates. In particular, we establish its
finite-sample convergence rate in Theorem 3, which does not follow from available convergence
theory. This result itself may be of independent interest.

Step 2. Properties of NNQL. To apply the stochastic approximation result to NNQL, we need
to characterize some key properties of NNQL, including (i) the stability of the algorithm (i.e., the
sequence qk stays bounded), as established in Lemma 3; (ii) the contraction property of the joint
Bellman-NN operator, as established in Lemma 4; and (iii) the error bound induced by discretization
of the state space, as established in Lemma 5.

Step 3. Apply SA to NNQL. We apply the stochastic approximation result to establish the finite-
sample convergence of NNQL. In particular, step 2 above ensures that NNQL satisfies the assumptions
in Theorem 3. Applying this theorem, we prove that NNQL converges to a neighborhood of q⇤

h
, the

fixed point of the Joint Bellman-NN operator G, after a sufficient number of iterations. The proof
of Theorem 1 is completed by relating q⇤

h
to the true optimal Q-function Q⇤, and by bounding the

number of time steps in terms of the the number of iterations and the covering time.

E.1 Stochastic Approximation

Consider a generic iterative stochastic approximation algorithm, where the iterative update rule is has
the following form: let ✓t denote the state at time t, then it is updated as

✓t+1 = ✓t + ↵t

�
F (✓t)� ✓t + wt+1

�
, (13)
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where ↵t 2 [0, 1] is a step-size parameter, wt+1 is a noise term and F is the functional update of
interest.
Theorem 3. Suppose that the mapping F : Rd ! Rd has a unique fixed point ✓⇤ with k✓⇤k1  V,
and is a �-contraction with respect to the `1 norm in the sense that

kF (✓)� F (✓0)k1  � k✓ � ✓0k1
for all ✓, ✓0 2 Rd, where 0 < � < 1. Let {F t} be an increasing sequence of �-fields so that ↵t

and wt are F t-measurable random variables, and ✓t be updated as per (13). Let �1, �2,M, V be
non-negative deterministic constants. Suppose that the following hold with probability 1:

1. The bias �t+1 = E
⇥
wt+1 | F t

⇤
satisfies

���t+1
��
1  �1 + �2 k✓tk1, for all t � 0;

2.
��wt+1 ��t+1

��
1  M, for all t � 0;

3. k✓tk1  V, for all t � 0.

Further, we choose

↵t =
�

� + t
, (14)

where � = 1
1��

. Then for each 0 < " < min{2V �, 2M�2}, after

T =
48VM2�4

"3
log

✓
32dM2�4

�"2

◆
+

6V (� � 1)

"

iterations of (13), with probability at least 1� �, we have
��✓T � ✓⇤

��
1  �(�1 + �2V ) + ".

Proof. We define two auxiliary sequences: for i 2 [d], let u0
i
= ✓0

i
, r0

i
= 0 and

ut+1
i

= (1� ↵t)u
t

i
+ ↵t (w

t+1
i

��t+1
i

)
| {z }

w̄
t+1
i

,

rt+1
i

= ✓t+1
i

� ut+1
i

.

By construction, ✓t = ut + rt for all t. We first analyze the convergence rate of the (ut) sequence.
One has

ut+1
i

= (1� ↵t)u
t

i
+ ↵tw̄

t+1
i

= (1� ↵t)(1� ↵t�1)u
t�1
i

+ (1� ↵t)↵t�1w̄
t

i
+ ↵tw̄

t+1
i

=
t+1X

j=1

⌘t+1,jw̄j

i
,

where we define

⌘t+1,j := ↵j�1 ·
tY

l=j

(1� ↵l).

Note that the centered noise w̄t+1
i

:= wt+1
i

��t+1
i

satisfies

E
⇥
w̄t+1

i
|F t
⇤
= E

⇥
wt+1

i
|F t
⇤
��t+1

i
= 0,

E
⇥��w̄t+1

i

�� |F t
⇤
= E

⇥��wt+1
i

��t+1
i

�� |F t
⇤
 M. (15)

Now

E
h
⌘t+1,jw̄j

i
| Fj�1

i
= ⌘t+1,jE

h
w̄j

i
| Fj�1

i
= 0. (16)

With the linear learning rate defined in Eq. (14), and the fact that � = 1
1��

> 1, 8j 2 [1, t+ 1], we
have

⌘t+1,j =
�

j � 1 + �
·

tY

l=j

l

l + �
<
�

j

tY

l=j

l

l + 1
=

�

t+ 1
. (17)
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Since the centered noise sequence {w̄1
i
, w̄2

i
, . . . , w̄t+1

i
} is uniformly bounded by M > 0, it follows

that
���⌘t+1,jw̄j

i

��� 
M�

t+ 1
. (18)

Define, for 1  s  t+ 1,

zt+1,i
s

:=
sX

j=1

⌘t+1,jw̄j

i
, (19)

and zt+1,i
0 = 0. Then it follows that

E
⇥
zt+1,i
s+1 |Fs

⇤
= zt+1,i

s
. (20)

And from (16)-(18), it follows that

|zt+1,i
s+1 � zt+1,i

s
|  M�

t+ 1
. (21)

That is, zt+1,i
s

is a Martingale with bounded differences. And ut+1
i

= zt+1,i
t+1 . This, using Azuma-

Hoeffding’s inequality, will provide us desired bound on |ut+1
i

|. To that end, let us recall the
Azuma-Hoeffding’s inequality.

Lemma 2 (Azuma-Hoeffding). Let Xj be Martingale with respect to filtration Fj , i.e. E[Xj+1|Fj ] =
Xj for j � 1 with X0 = 0. Further, let |Xj �Xj�1|  cj with probability 1 for all j � 1. Then for
all " � 0,

Pr [|Xn| � "]  2 exp

 
� "2

2
P

n

j=1 c
2
j

!
.

Applying the lemma to zt+1,i
j

for j � 0 with zt+1,i
0 = 0, (21) and the fact that ut+1

i
= zt+1,i

t+1 , we
obtain that

Pr
���ut+1

i

�� > "
�
 2 exp

✓
� (t+ 1)"2

2M2�2

◆
. (22)

Therefore, by union bound we obtain

Pr
�
9t � T1 such that

��ut

i

�� > "
�


1X

t=T1

Pr
���ut

i

�� > "
�

 2
1X

t=T1

exp

✓
� t"2

2M2�2

◆

=
2 exp

⇣
� T1"

2

2M2�2

⌘

1� exp
⇣
� "2

2M2�2

⌘

 8M2�2

"2
exp

✓
� T1"2

2M2�2

◆
,

where the last step follows from the fact that e�x  1� x

2 for 0  x  1
2 , and "  M�. By a union

bound over all i 2 [d], we deduce that

Pr
�
9t � T1 such that

��ut
��
1 > "

�

X

i2[d]

Pr
�
9t � T1 such that

��ut

i

�� > "
�

 8dM2�2

"2
exp

✓
� T1"2

2M2�2

◆
. (23)
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Next we focus on the residual sequence (rt). Assume that 8t � T1, kutk1  "1, where 0 < "1 <
min{V,M�}. For each i 2 [d] and t � T1, we get
��rt+1

i
� ✓⇤

i

��

=
��✓t+1

i
� ut+1

i
� ✓⇤

i

�� by definition

=
��✓t

i
+ ↵t

�
Fi(u

t + rt)� ut

i
� rt

i
+ wt+1

i

�
� ut

i
� ↵t

�
�ut

i
+ wt+1

i
��t+1

i

�
� ✓⇤

i

�� by definition

=
��rt

i
+ ↵t

�
Fi(u

t + rt)� rt
i

�
� ✓⇤

i
+ ↵t�

t+1
i

�� rearranging

=
��(1� ↵t)(r

t

i
� ✓⇤

i
) + ↵t

�
Fi(u

t + rt)� ✓⇤
i

�
+ ↵t�

t+1
i

�� rearranging

(1� ↵t)
��rt

i
� ✓⇤

i

��+ ↵t�
��ut + rt � ✓⇤

��
1 + ↵t

���t+1
��
1 F is �-contraction

(1� ↵t)
��rt

i
� ✓⇤

i

��+ ↵t�
��rt � ✓⇤

��
1 + ↵t�"1 + ↵t

�
�1 + �2

��✓t
��
1
� ��ut

��
1  "1, 8t � T1

(1� ↵t)
��rt

i
� ✓⇤

i

��+ ↵t�
��rt � ✓⇤

��
1 + ↵t (�"1 + �1 + �2V )

��✓t
��
1  V

Taking the maximum over i 2 [d] on both sides, we obtain
��rt+1 � ✓⇤

��
1  (1� ↵t)

��rt � ✓⇤
��
1 + ↵t�

��rt � ✓⇤
��
1 + ↵t (�"1 + �1 + �2V )

=
⇣
1� (1� �)| {z }

1
�

↵t

⌘��rt � ✓⇤
��
1| {z }

Dt

+↵t (�"1 + �1 + �2V )| {z }
H

, 8t � T1.

For any "2 > 0, we will show that after at most

T2 , 3V (T1 + � � 1)

"2
iterations, we have ��rT2 � ✓⇤

��
1  H� + "2.

If for some T 2 [T1,1) there holds DT  H� + "2, then we have

DT+1 
✓
1� ↵t

�

◆
(H� + "2) + ↵tH ↵t  �

 H� + "2

Indeed by induction, we have
Dt  H� + "2, 8t � T.

Let bT , sup {t � T1 : Dt > H� + "2} be the last time that Dt exceeds H� + "2. For each
T1  t  bT , the above argument implies that we must have Dt > H� + "2. We can rewrite the
iteration for DbT as follows:

DbT �H� 
⇣
DbT�1 �H�

⌘✓
1�

↵bT�1

�

◆

 (DT1 �H�)

bT�1Y

j=T1

✓
1� ↵j

�

◆
Iteration, Dt �H� > "2 > 0

= (DT1 �H�)
T1 + � � 1
bT + � � 1

↵j =
�

j + �
.

But we have the bound

DT1 = krT1 � ✓⇤k1
= k✓T1 � uT1 � ✓⇤k1
 k✓T1k1 + kuT1k1 + k✓⇤k1
 3V,

where the last step holds because k✓T1k1  V, k✓⇤k  V and kuT1k  "1  V by assumption. It
follows that

DbT �H�  3V (T1 + � � 1)
bT

.
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Using the fact that "2  DbT �H�, we get that

bT  T2 =
3V (T1 + � � 1)

"2
.

Therefore, for each "2 > 0, conditioned on the event
�
8t � T1,

��ut

i

��  "1
 
,

after at most T2 iterations, we have
��rT2 � ✓⇤

��
1  H� + "2.

It then follows from the relationship ✓t = ut + rt that
��✓T2 � ✓⇤

��
1 

��rT2 � ✓⇤
��
1 +

��uT2
��
1  H� + "1 + "2 = �(�1 + �2V ) + �"1 + "2.

By (23), taking

� =
8dM2�2

"21
exp

✓
� T1"21
2M2�2

◆
,

i.e.,

T1 =
2M2�2

"21
log

✓
8dM2�2

�"21

◆
,

we are guaranteed that
Pr
�
8t � T1,

��ut
��
1  "1

�
� 1� �.

By setting "1 = "

2�  min{V,M�}, and T2 = 3V (T1+��1)
"2

, i.e.,

T2 =
48VM2�4

"3
log

✓
32dM2�4

�"2

◆
+

6V (� � 1)

"
,

we obtain that the desire result.

E.2 Properties of NNQL

We first introduce some notations. Let Yk be the set of all samples drawn at iteration k of the NNQL
algorithms and Fk be the filtration generated by the sequence Y0,Y1, . . . ,Yk�1. Thus {Fk} is an
increasing sequence of �-fields. We denote by Yk(ci, a) = {Yt 2 Yk|Yt 2 Bi, at = a} the set of
observations Yt that fall into the neighborhood Bi of ci and with action at = a at iteration k. Thus
the biased estimator Gk (8) for the joint Bellman-NN operator at the end of iteration k can be written
as

(Gkq)(ci, a) =
1

|Yk(ci, a)|
X

Yt2Yk(ci,a)


Rt + �max

b2A
(�NNq

k)(Yt+1, b)

�
.

The updater rule of NNQL (9) can be written as

qk+1(ci, a) = qk(ci, a) + ↵k

⇥
(Gqk)(ci, a)� qk(ci, a) + wk+1(ci, a)

⇤
,

where

wk+1(ci, a) = (Gkqk)(ci, a)� (Gqk)(ci, a)

=
1

|Yk(ci, a)|
X

Yt2Yk(ci,a)


Rt + �max

b2A
(�NNq

k)(Yt+1, b)

�

� r(ci, a)� �E

max
b2A

(�NNq
k)(x0, b) | ci, a,Fk

�
.
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E.2.1 Stability of NNQL

We first show the stability of NNQL, which is summarized in the following Lemma.
Lemma 3 (Stability of NNQL). Assume that the immediate reward is uniformly bounded by Rmax

and define � = 1
1��

and Vmax = �Rmax. If the initial action-value function q0 is uniformly bounded
by Vmax, then we have��qk

��
1  Vmax, and

��wk+1(ci, a)� E
⇥
wk+1(ci, a) | Fk

⇤��  2Vmax, 8k � 0.

Proof. We first prove that
��qk
��
1  Vmax by induction. For k = 0, it holds by the assumption. Now

assume that for any 0  ⌧  k, kq⌧k1  Vmax. Thus
��qk+1(ci, a)

��

=
��qk(ci, a) + ↵k

⇥
(Gkqk)(ci, a)� qk(ci, a)

⇤��

=

������
(1� ↵k) q

k(ci, a) +
↵k

|Yk(ci, a)|
X

Yt2Yk(ci,a)


Rt + �max

b2A
(�NNq

k)(Yt+1, b)

�������


��(1� ↵k) q

k(ci, a)
��+ ↵k

|Yk(ci, a)|
X

Yt2Yk(ci,a)

✓
|Rt|+ �

����max
b2A

(�NNq
k)(Yt+1, b)

����

◆

= (1� ↵k)
��qk(ci, a)

��+ ↵k

|Yk(ci, a)|
X

Yt2Yk(ci,a)

0

@|Rt|+ �max
b2A

������

nX

j=1

K(Yt+1, cj)q
k(cj , b)

������

1

A

 (1� ↵k)Vmax + ↵k

0

@Rmax + �max
b2A

������

nX

j=1

K(Yt+1, cj)

������
Vmax

1

A

= Vmax,

where the last equality follows from the fact that
P

n

j=1 K(Yt+1, cj) = 1. Therefore, for all k � 0,��qk
��
1  Vmax. The bound on wk+1 follows from

��wk+1(ci, a)� E
⇥
wk+1(ci, a) | Fk

⇤��

=
��(Gkqk)(ci, a)� (Gqk)(ci, a)� E

⇥
(Gkqk)(ci, a)� (Gqk)(ci, a) | Fk

⇤��

=
��(Gkqk)(ci, a)� E

⇥
(Gkqk)(ci, a) | Fk

⇤��

=

�����
1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

h
Rt + �max

b2A
(�NNq

k)(Yt+1, b)
i

� E

2

4 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

h
Rt + �max

b2A
(�NNq

k)(Yt+1, b)
i
| Fk

3

5
�����

2Rmax +
1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

�

������
max
b2A

nX

j=1

K(Yt+1, cj)q
k(cj , b)

������

+ �

������
E

2

4 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

max
b2A

nX

j=1

K(Yt+1, cj)q
k(cj , b) | ci, a,Fk

3

5

������

2Rmax + 2�Vmax

=2Vmax.

E.2.2 A contraction operator

The following Lemma states that the joint Bellman-NN operator G is a contraction with modulus �,
and has a unique fixed point that is bounded.
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Lemma 4 (Contraction of the Joint-Bellman-NN operator). For each fixed h > 0, the operator G
defined in Eq. (5) is a contraction with modulus � with the supremum norm. There exists a unique
function q⇤

h
such that

(Gq⇤
h
)(ci, a) = q⇤

h
(ci, a), 8(ci, a) 2 Zh,

where kq⇤
h
k1  Vmax.

Proof. Let D be the set of all functions q : Xh ⇥A ! R such that kqk1  Vmax. We first show that
the operator G maps D into itself. Take any q 2 D, and fix an arbitrary a 2 A. For any ci 2 Xh, we
have

|(Gq)(ci, a)| =
����r(ci, a) + �E


max
b2A

(�NNq)(x
0, b)|ci, a

�����

 |r(ci, a)|+ �

������

Z

X

2

4max
b2A

0

@
NhX

j=1

K(y, cj)q(cj , b)

1

A

3

5 p(y|cia)�(dy)

������

 |r(ci, a)|+ �

Z

X

2

4max
b2A

NhX

j=1

K(y, cj) |q(cj , b)|

3

5 p(y|cia)�(dy)

 Rmax + �Vmax

= Vmax,

where the last step follows from the definition of Vmax. This means that Gq 2 D, so G maps D to
itself.

Now, by the definition of G in Eq. (5), 8q, q0 2 D, we have

kGq �Gq0k1 = max
i2[n],a2A

|(Gq)(ci, a)� (Gq0)(ci, a)|

 � max
i2[n],a2A

������
E

2

4max
b2A

0

@
nX

j=1

K(x0, cj) (q(cj , b)� q0(cj , b))

1

A | ci, a

3

5

������

 � max
i2[n],a2A

E

2

4max
b2A

0

@
nX

j=1

K(x0, cj) |q(cj , b)� q0(cj , b)|

1

A | ci, a

3

5

 � max
i2[n],a2A

E

2

4max
b2A

0

@
nX

j=1

K(x0, cj) kq � q0k1

1

A | ci, a

3

5

 � kq � q0k1
Therefore G is indeed a contraction on D with respect to the supremum norm. The Banach fixed
point theorem guarantees that G has a unique fixed point q⇤

h
2 D. This completes the proof.

E.2.3 Discretization error

For each q 2 C(Zh), we can obtain an extension to the original continuous state space via the Nearest
Neighbor operator. That is, define

Q(x, a) = (�NNq)(x, a), 8(x, a) 2 Z.

The following lemma characterizes the distance between the optimal action-value function Q⇤ and
the extension of the fixed-point of the joint NN-Bellman operator G to the space Z.

Lemma 5 (Discretization error). Define

Q⇤
h
= �NNq

⇤
h
.

Let Q⇤ be the optimal action-value function for the original MDP. Then we have

kQ⇤
h
�Q⇤k  �Ch,

where C = Mr + �VmaxMp and � = 1
1��

.
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Proof. Consider an operator H on C(Z) defined as follows:
(HQ)(x, a) = (�NN(FQ))(x, a)

=
nX

i=1

K(x, ci)

⇢
r(ci, a) + �E


max
b2A

Q(x0, b) | ci, a
��

(24)

We can show that H is a contraction operator with modulus �.
kHQ1 �HQ2k1 = max

a2A
sup
x2X

|(HQ1)(x, a)� (HQ2)(x, a)|

= �max
a2A

sup
x2X

�����E
"
max
b2A

 
nX

i=1

K(x, ci) (Q1(x
0, b)�Q2(x

0, b))

!
| ci, a

#�����

 �max
a2A

sup
x2X

E
"
max
b2A

 
nX

i=1

K(x, ci) |Q1(x
0, b)�Q2(x

0, b)|
!

| ci, a
#

 �max
a2A

sup
x2X

E
"
max
b2A

 
nX

i=1

K(x, ci) kQ1 �Q2k1

!
| ci, a

#

= � kQ1 �Q2k1
We can conclude that H is a contraction operator mapping C(Z) to C(Z). Thus H has a unique
fixed point Q̃ 2 C(Z). Note that

H(�NNq) = �NN(F (�NNq)) = �NN(Gq),

we thus have
HQ⇤

h
= H (�NNq

⇤
h
) = �NN(Gq⇤

h
) = �NN(q

⇤
h
) = Q⇤

h
.

That is, the fixed point of H is exactly the extension of the fixed point of G to Z. Therefore, we have
kQ⇤

h
�Q⇤k1 = kHQ⇤

h
�HQ⇤ +HQ⇤ �Q⇤k1

 kHQ⇤
h
�HQ⇤k1 + kHQ⇤ �Q⇤k1

 � kQ⇤
h
�Q⇤k1 + kHQ⇤ �Q⇤k1 .

It follows that

kQ⇤
h
�Q⇤k1  1

1� �
kHQ⇤ �Q⇤k1

=
1

1� �
k�NN(FQ⇤)�Q⇤k1

=
1

1� �
k�NN(Q

⇤)�Q⇤k1

=
1

1� �
sup
x2X

max
a2A

�����

nX

i=1

K(x, ci)Q
⇤(ci, a)�Q⇤(x, a)

�����

Recall that Q⇤(·, a) is Lipschitz with parameter C = Mr + �VmaxMp (see Lemma 1), i.e., for each
a 2 A,

|Q⇤(x, a)�Q⇤(y, a)|  C⇢(x, y).

From the state space discretization step, we know that the finite grid {ci}Nh
i=1 is an h-net in X .

Therefore, for each x 2 X , there exists ci 2 Xh such that
⇢(x, ci)  h.

Thus
P

n

i=1 K(x, ci) = 1. Recall our assumption that the weighting function satisfies K(x, y) = 0 if
⇢(x, y) � h. For each a 2 A, then we have

sup
x2X

�����

nX

i=1

K(x, ci)Q
⇤(ci, a)�Q⇤(x, a)

����� = sup
x2X

������

X

ci2Bx,h

K(x, ci)Q
⇤(ci, a)�Q⇤(x, a)

������

 sup
x2X

X

ci2Bx,h

K(x, ci) |Q⇤(ci, a)�Q⇤(x, a)|

 Ch

This completes the proof.
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E.3 Applying the Stochastic Approximation Theorem to NNQL

We first apply Theorem 3 to establish that NNQL converges to a neighborhood of q⇤
h

, the fixed
point of the Joint Bellman-NN operator G, after a sufficiently large number of iterations. This is
summarized in the following theorem.

Theorem 4. Let Assumptions 1 and 2 hold. Then for each 0 < " < 2Vmax�, after

k =
192V 3

max�
4

"3
log

✓
128dV 2

max�
4

�"2

◆
+

4Vmax(� � 1)

"

iterations of Nearest-Neighbor Q-learning, with probability at least 1� �, we have

��qk � q⇤
h

��
1  �(�1 + �2Vmax) + ".

Proof. We will show that NNQL satisfies the assumptions of Theorem 3. It follows from Lemma 4
that the operator G is a �-contraction with a unique fixed point kq⇤

h
k1  Vmax. For each Yt 2

Yk(ci, a), we have ⇢(Yt, ci)  h, at = a. Thus

��E
⇥
wk+1(ci, a)|Fk

⇤��

=

����E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

h
Rt + �max

b2A
(�NNq

k)(Yt+1, b)
i
| Fk

i

� r(ci, a)� �E
h
max
b2A

(�NNq
k)(x0, b) | ci, a,Fk

i����


����E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

Rt � r(ci, a) | Fk

i����

+ �

����E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

max
b2A

(�NNq
k)(Yt+1, b) | Fk

i
� E

h
max
b2A

(�NNq
k)(x0, b) | ci, a,Fk

i����.

We can bound the first term on the RHS by using Lipschitz continuity of the reward function:

����E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

Rt � r(ci, a)
�� Fk

i����

=

����E

E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

�
Rt � r(ci, a)

� �� Yk,Fk

i ��� Fk

�����

=

����E


1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

�
r(Yt, a)� r(ci, a)

� ��� Fk

�����

 E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

��r(Yt, a)� r(ci, a)
��
��� Fk

i

 E
h 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

Mr⇢(Yt, ci)
��� Fk

i
Lipschitz continuity of r(·, a)

 Mrh ⇢(Yt, ci)  h
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The second term on the right hand side can be bounded as follows:
������
E

2

4 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)

max
b2A

(�NNq
k)(Yt+1, b) | Fk
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�������
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|Yk(ci, a)|
X
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Z
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|p(y | Yt, a)� p(y | ci, a)|�(dy) | Fk

3
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cj2Xh
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Z

X
Wp(y)⇢(Yt, ci)�(dy) | Fk

3

5


��qk
��
1 ⇥ E

2

4 1

|Yk(ci, a)|
X

Yt2Yk(ci,a)
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Wp(y)h�(dy) | Fk

3

5


��qk
��
1 hMp.

Putting together, we have
��E
⇥
wk+1(ci, a) | Fk

⇤��  h(Mr + �Mp

��qk
��
1), 8(ci, a) 2 Zh.

Hence the noise wk+1 satisfies Assumption 1 of Theorem 3 with

�1 = hMr, �2 = h�Mp.

From Lemma 3, we have
��wk+1(ci, a)� E

⇥
wk+1(ci, a) | Fk

⇤��  2Vmax, 8(ci, a) 2 Zh,��qk
��
1  Vmax.

Therefore, the remaining Assumptions 2–3 of Theorem 3 are satisfied. And the update algorithm uses
the learning rate suggested in Theorem 3. Therefore, we conclude that for each 0 < " < 2Vmax�
(since � � 1 and hence 2Vmax�  min{2Vmax�, 4Vmax�2}), after

k =
192V 3

max�
4

"3
log

✓
128Nh |A|Vmax�4

�"2

◆
+

6Vmax(� � 1)

"

iterations of (9), with probability at least 1� �, we have
��qk � q⇤

h

��
1  �h(Mr + �MpVmax) + ".

To prove Theorem 1, we need the following result which bounds the number of time steps required to
visit all ball-actions k times with high probability.
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Lemma 6. (Lemma 14 in [2], rephrased) Let Assumption 2 hold. Then for all initial state x0 2 X ,
and for each integer k � 4, after a run of T = 8kLh log

1
�

steps, the finite space Zh is covered at
least k times under the policy ⇡ with probability at least 1� � for any � 2 (0, 1

e
).

Now we are ready to prove Theorem 1.

Proof. We denote by Q̃k

h
the extension of qk to Z via the nearest neighbor operation, i.e., Q̃k

h
=

�NNqk. Recall that Q⇤
h

is the extension of q⇤
h

(the fixed point of Gq = q) to Z. We have
���Q̃k

h
�Q⇤

���
1


���Q̃k

h
�Q⇤

h

���
1

+ kQ⇤
h
�Q⇤k1

=
���NNq

k � �NNq
⇤
h

��
1 + kQ⇤

h
�Q⇤k1


��qk � q⇤

h

��
1 + kQ⇤

h
�Q⇤k1 �NN is non-expansive


��qk � q⇤

h

��
1 + �Ch Lemma 5

It follows from Theorem 4 that, after

k =
192V 3

max�
4

"30
log

✓
128Nh |A|V 2

max�
4

�"20

◆
+

6Vmax(� � 1)

"0

iterations, with probability at least 1� �, we have
���Q̃k

h
�Q⇤

���
1

 �h(Mr + �MpVmax) + �Ch+ "0 = 2�Ch+ "0.

By setting "0 = "

2 and h⇤(") = "

4�C , we have
���Q̃k

h
�Q⇤

���
1

 ". Let Nh⇤ be the h⇤-covering
number of the metric space (X , ⇢). Plugging the result of Lemma 6 concludes the proof of Theorem 1.

F Proof of Corollary 1

Proof. Since the probability measure ⌫ is uniform over X , we have ⌫min , mini2[Nh⇤ ] ⌫(Bi) =
O( 1

Nh⇤ ). By Proposition 1, the expected covering time of a purely random policy is upper bounded
by

Lh⇤ = O

✓
mNh⇤ |A|

 
log(Nh⇤ |A|)

◆
.

By Proposition 4.2.12 in [46], the covering number Nh⇤ of X = [0, 1]d scales as O
�
(1/h⇤)d

�
, which

is O
�
(�/")d

�
with h⇤ = "

4�C .

From Theorem 1, with probability at least 1� � we have
��QT

h⇤ �Q⇤
��
1  ", after at most

T = O

 ��A
���d+7

"d+3
log

✓
2

�

◆
log

✓��A
���d

"d

◆
log

 ��A
���d+6

�"d+2

!!

steps. Corollary 1 follows after absorbing the dependence on |A|, d,� into  ⌘ (|A|, d,�) and
doing some algebra.

G Proof of Theorem 2

We prove Theorem 2 by connecting the problem of estimating the value function in MDPs to the
problem of non-parametric regression, and then leveraging known minimax lower bound for the
latter. In particular, we show that a class of non-parametric regression problem can be embedded
in an MDP problem, so any algorithm for the latter can be used to solve the former. Prior work on
non-parametric regression[45, 39] establishes that a certain number of observations is necessary to
achieve a given accuracy using any algorithms, hence leading to a corresponding necessary condition
for the sample size of estimating the value function in an MDP problem.
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We now provide the details.

Step 1. Non-parametric regression

Consider the following non-parametric regression problem: Let X := [0, 1]d and assume that we
have T independent pairs of random variables (x1, y1), . . . , (xT , yT ) such that

E [yt|xt] = f(xt), xt 2 X (25)

where xt ⇠ uniform(X ) and f : X ! R is the unknown regression function. Suppose that the
conditional distribution of yt given xt = x is a Bernoulli distribution with mean f(x). We also
assume that f is 1-Lipschitz continuous with respect to the Euclidean norm, i.e.,

|f(x)� f(x0)|  |x� x0|, 8x, x0 2 X .

Let F be the collection of all 1-Lipschitz continuous function on X , i.e.,

F = Lip (X , 1) = {h|h is a 1-Lipschitz function on X} ,
where Lip(·, ·) is as defined in Section 2. The goal is to estimate f given the observations
(x1, y1), . . . , (xT , yT ) and the prior knowledge that f 2 F .

It is easy to verify that the above problem is a special case of the non-parametric regression problem
considered in the work by Stone [39] (in particular, Example 2 therein). Let f̂T denote an arbitrary
(measurable) estimator of f based on the training samples (x1, y1), . . . , (xT , yT ). By Theorem 1
in [39], we have the following result: there exists a c > 0 such that

lim
T!1

inf
f̂T

sup
f2F

Pr

✓��f̂T � f
��
1 � c

⇣ log T
T

⌘ 1
2+d

◆
= 1, (26)

where infimum is over all possible estimators f̂T .

Translating this result to the non-asymptotic regime, we obtain the following theorem.
Theorem 5. Under the above assumptions, for any number � 2 (0, 1), there exits some numbers
c > 0 and T� such that

inf
f̂n

sup
f2F

Pr

✓��f̂T � f
��
1 � c

⇣ log T
T

⌘ 1
2+d

◆
� �, for all T � T�.

Step 2. MDP

Consider a class of (degenerate) discrete-time discounted MDPs (X ,A, p, r, �) where

X = [0, 1]d,

A is finite,
p(·|x, a) = p(·|x) is uniform on X for all x, a,
r(x, a) = r(x) for all a,

� 2 (0, 1).

In words, the transition is uniformly at random and independent of the current state and the actions
taken, and the expected reward is independent on the action taken but dependent on the current state.

Let Rt be the observed reward at step t. We assume that the distribution of Rt given xt is
Bernoulli

�
r(xt)

�
, independently of (x1, x2, . . . , xt�1). The expected reward function r(xt) =

E [R(xt)|xt] is assumed to be 1-Lipschitz and bounded.

It is easy to see that for all x 2 X , a 2 A,

Q⇤(x, a) = V ⇤(x) = r(x) + �E [V ⇤(X 0)|x]

= r(x) + �

Z

X
V ⇤(y)p(y|x)dy

= r(x) + �

Z

X
V ⇤(y)dy

| {z }
C

, (27)
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where the last step holds because p(·|x) is uniform. Integrating both sides over X , we obtain

C =

Z

X
r(x)dx+ �C,

whence

C =
1

1� �

Z

X
r(x)dx.

It follows from equation (27) that

V ⇤(x) = r(x) +
�

1� �

Z

X
r(y)dy, 8x 2 X , (28)

and
r(x) = V ⇤(x)� �

Z

X
V ⇤(y)dy, 8x 2 X . (29)

Regardless of the exploration policy used, the sample trajectory (x1, x2, . . . , xT ) is i.i.d. and uni-
formly random over X , and the observed rewards (R1, R2, . . . , RT ) are independent.

Step 3. Reduction from regression to MDP

Given a non-parametric regression problem as described in Step 1, we may reduce it to the problem
of estimating the value function V ⇤ of the MDP described in Step 2. To do this, we set

r(x) = f(x)� �

Z

X
f(y)dy, 8x 2 X

and

Rt = yt, t = 1, 2, . . . , T.

In this case, it follows from equations (28) and (29) that the value function is given by V ⇤ = f .
Moreover, the expected reward function r(·) is 1-Lipschitz as it is just f(·) minus a constant, so the
assumptions of the MDP in Step 2 are satisfied. This reduction shows that the MDP problem is at
least as hard as the nonparametric regression problem, so a lower bound for the latter is also a lower
bound for the former. Applying Theorem 5 yields the result stated in Theorem 2.
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