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Abstract

We propose a Bayesian decision making framework for control of Markov Deci-
sion Processes (MDPs) with unknown dynamics and large, possibly continuous,
state, action, and parameter spaces in data-poor environments. Most of the exist-
ing adaptive controllers for MDPs with unknown dynamics are based on the re-
inforcement learning framework and rely on large data sets acquired by sustained
direct interaction with the system or via a simulator. This is not feasible in many
applications, due to ethical, economic, and physical constraints. The proposed
framework addresses the data poverty issue by decomposing the problem into an
offline planning stage that does not rely on sustained direct interaction with the
system or simulator and an online execution stage. In the offline process, parallel
Gaussian process temporal difference (GPTD) learning techniques are employed
for near-optimal Bayesian approximation of the expected discounted reward over
a sample drawn from the prior distribution of unknown parameters. In the online
stage, the action with the maximum expected return with respect to the posterior
distribution of the parameters is selected. This is achieved by an approximation
of the posterior distribution using a Markov Chain Monte Carlo (MCMC) algo-
rithm, followed by constructing multiple Gaussian processes over the parameter
space for efficient prediction of the means of the expected return at the MCMC
sample. The effectiveness of the proposed framework is demonstrated using a
simple dynamical system model with continuous state and action spaces, as well
as a more complex model for a metastatic melanoma gene regulatory network
observed through noisy synthetic gene expression data.

1 Introduction

Dynamic programming (DP) solves the optimal control problem for Markov Decision Processes
(MDPs) with known dynamics and finite state and action spaces. However, in complex applications
there is often uncertainty about the system dynamics. In addition, many practical problems have
large or continuous state and action spaces. Reinforcement learning is a powerful technique widely
used for adaptive control of MDPs with unknown dynamics [1]. Existing RL techniques developed
for MDPs with unknown dynamics rely on data that is acquired via interaction with the system or
via simulation. While this is feasible in areas such as robotics or speech recognition, in other appli-
cations such as medicine, materials science, and business, there is either a lack of reliable simulators
or inaccessibility to the real system due to practical limitations, including cost, ethical, and physical
considerations. For instance, recent advances in metagenomics and neuroscience call for the devel-
opment of efficient intervention strategies for disease treatment. However, these systems are often
modeled with MDPs with continuous state and action spaces, with limited access to expensive data.
Thus, there is a need for control of systems with unknown dynamics and large or continuous state,
action, and parameter spaces in data-poor environments.
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Related Work: Approximate dynamic programming (ADP) techniques have been developed for
problems in which the exact DP solution is not achievable. These include parametric and non-
parametric reinforcement learning (RL) techniques for approximating the expected discounted re-
ward over large or continuous state and action spaces. Parametric RL techniques include neural
fitted Q-iteration [2], deep reinforcement learning [3], and kernel-based techniques [4]. A popular
class of non-parametric RL techniques is Gaussian process temporal difference (GPTD) learning [5],
which provides a Bayesian representation of the expected discounted return. However, all afore-
mentioned methods involve approximate offline planning for MDPs with known dynamics or online
learning by sustained direct interaction with the system or a simulator. The multiple model-based
RL (MMRL) [6] is a framework that allows the extension of the aforementioned RL techniques
to MDPs with unknown dynamics represented over a finite parameter space, and therefore cannot
handle large or continuous parameter spaces.

In addition, there are several Bayesian reinforcement learning techniques in the literature [7]. For
example, Bayes-adaptive RL methods assume a parametric family for the MDP transition matrix
and simultaneously learn the parameters and policy. A closely related method in this class is the
Beetle algorithm [8], which converts a finite-state MDP into a continuous partially-observed MDP
(POMDP). Then, an approximate offline algorithm is developed to solve the POMDP. The Beetle
algorithm is however capable of handling finite state and action spaces only. Online tree search
approximations underlie a varied and popular class of Bayesian RL techniques [9–16]. In particular,
the Bayes-adaptive Monte-Carlo planning (BAMCP) algorithm [16] has been shown empirically
to outperform the other techniques in this category. This is due to the fact that BAMCP uses a
rollout policy during the learning process, which effectively biases the search tree towards good
solutions. However, this class of methods applies to finite-state MDPs with finite actions; application
to continuous state and action spaces requires discretization of these spaces, rendering computation
intractable in most cases of interest.

Lookahead policies are a well-studied class of techniques that can be used for control of MDPs with
large or continuous state, action, and parameter spaces [17]. However, ignoring the long future hori-
zon in their decision making process often results in poor performance. Other methods to deal with
systems carrying other sources of uncertainty include [18, 19].

Main Contributions: The goal of this paper is to develop a framework for Bayesian decision mak-
ing for MDPs with unknown dynamics and large or continuous state, action and parameter spaces
in data-poor environments. The framework consists of offline and online stages. In the offline stage,
samples are drawn from a prior distribution over the space of parameters. Then, parallel Gaussian
process temporal difference (GPTD) learning algorithms are applied for Bayesian approximation of
the expected discounted reward associated with these parameter samples. During the online process,
a Markov Chain Monte Carlo (MCMC) algorithm is employed for sample-based approximation of
the posterior distribution. For decision making with respect to the posterior distribution, Gaussian
process regression over the parameter space based on the means and variances of the expected re-
turns obtained in the offline process is used for prediction of the expected returns at the MCMC
sample points. The proposed framework offers several benefits, summarized as follows:

• Risk Consideration: Most of the existing techniques try to estimate fixed values for approx-
imating the expected Q-function and make a decision upon that, while the proposed method
is capable of Bayesian representation of the Q-function. This allows risk consideration during
action selection, which is required by many real-world applications, such as cancer drug design.

• Fast Online Decision Making: The proposed method is suitable for problems with tight time-
limit constraints, in which the action should be selected relatively fast. Most of the computational
effort spent by the proposed method is in the offline process. By contrast, the online process used
by Monte-Carlo based techniques is often very slow, especially for large MDPs, in which a large
number of trajectories must be simulated for accurate estimation of the Q-functions.

• Continuous State/Action Spaces: Existing Bayesian RL techniques can handle continuous state
and action spaces to some extent (e.g., via discretization). However, the difficulty in picking a
proper quantization rate, which directly impacts accuracy, and the computational intractability
for large MDPs make the existing methods less attractive.

• Generalization: Another feature of the proposed method is the ability to serve as an initialization
step for Monte-Carlo based techniques. In fact, if the expected error at each time point is large
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(according to the Bayesian representation of the Q-functions), Monte-Carlo techniques can be
employed for efficient online search using the available results of the proposed method.

• Anytime Planning: The Bayesian representation of the Q-function allows starting the online
decision making process at anytime to improve the offline planning results. In fact, while the
online planning is undertaken, the accuracy of the Q-functions at the current offline samples can
be improved or the Q-functions at new offline samples from the posterior distribution can be
computed.

2 Background

A Markov decision process (MDP) is formally defined by a 5-tuple 〈S,A, T,R, γ〉, where S is the
state space, A is the action space, T : S × A × S is the state transition probability function such
that T (s,a, s′) = p(s′ | s,a) represents the probability of moving to state s′ after taking action a in
state s, R : S × A → R is a bounded reward function such that R(s,a) encodes the reward earned
when action a is taken in state s, and 0 < γ < 1 is a discount factor.

A deterministic stationary policy π for an MDP is a mapping π : S→ A from states to actions. The
expected discounted reward function at state s ∈ S after taking action a ∈ A and following policy π
afterward is defined as:

Qπ(s,a) = E

[ ∞∑
t=0

γtR(st,at) | s0 = s,a0 = a

]
. (1)

The optimal action-value function, denoted by Q∗, provides the maximum expected return Q∗(s,a)
that can be obtained after executing action a in state s. An optimal stationary policy π∗, which
attains the maximum expected return for all states, is given by π∗(s) = maxa∈AQ

∗(s,a).

An MDP is said to have known dynamics if the 5-tuple 〈S,A, T,R, γ〉 is fully specified, otherwise
it is said to have unknown dynamics. For an MDP with known dynamics and finite state and action
spaces, planning algorithms such as Value Iteration or Policy Iteration [20] can be used to compute
the optimal policy offline. Several approximate dynamic programming (ADP) methods have been
developed for approximating the optimal stationary policy over continuous state and action spaces.
However, in this paper, we are concerned with large MDP with unknown dynamics in data-poor
environments.

3 Proposed Bayesian Decision Framework

Let the unknown parts of the dynamics be encoded into a finite dimensional vector θ, where θ takes
value in a parameter space Θ ⊂ Rm. Notice that each θ ∈ Θ specifies an MDP with known
dynamics. Assuming (a0:k−1, s0:k) be the sequence of taken actions and observed states up to time
step k during the execution process, the proposed method selects an action according to:

ak = argmax
a∈A

Eθ|s0:k,a0:k−1
[Q∗θ(sk,a)] , (2)

where the expectation is taken relative to the posterior distribution p(θ | s0:k,a0:k−1), and Q∗θ
characterizes the optimal expected return for the MDP associated with θ.

Two main issues complicate finding the exact solution in (2). First, computation of the posterior
distribution might not have a closed-form solution, and one needs to use techniques such as Markov-
Chain Monte-Carlo (MCMC) for sample-based approximation of the posterior. Secondly, the exact
computation of Q∗θ for any given θ is not possible, due to the large or possibly continuous state
and action spaces. However, for any θ ∈ Θ, the expected return can be approximated with one of
the many existing techniques such as neural fitted Q-iteration [2], deep reinforcement learning [3],
and Gaussian process temporal difference (GPTD) learning [5]. On the other hand, all the afore-
mentioned techniques can be extremely slow over an MCMC sample that is sufficiently large to
achieve accurate results. In sum, computation of the expected returns associated with samples of the
posterior distribution during the execution process is not practical.

In the following paragraphs, we propose efficient offline and online planning processes capable of
computing an approximate solution to the optimization problem in (2).
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3.1 Offline Planner

The offline process starts by drawing a sample Θprior = {θprior
i }Nprior

i=1 ∼ p(θ) of size Nprior from
the parameter prior distribution. For each sample point θ ∈ Θprior, one needs to approximate
the optimal expected return Q∗θ over the entire state and action spaces. We propose to do this by
using Gaussian process temporal difference (GPTD) learning [5]. The detailed reasoning behind
this choice will be provided when the online planner is discussed.

GP-SARSA is a GPTD algorithm that provides a Bayesian approximation of Q∗θ for given θ ∈
Θprior. We describe the GP-SARSA algorithm over the next several paragraphs. Given a policy
πθ : S→ A for an MDP corresponding to θ, the discounted return at time step t can be written as:

U t,πθθ (st,at) = E

[ ∞∑
r=t

γr−tRθ(sr+1,ar+1)

]
, (3)

where sr+1 ∼ p (s′ | sr,ar = πθ(sr), θ), and U t,πθθ (st,at) is the expected accumulated reward for
the system corresponding to parameter θ obtained over time if the current state and action are st and
at and policy πθ is followed afterward.

In the GPTD method, the expected discounted return U t,πθθ (st,at) is approximated as:

U t,πθθ (st = s,at = a) ≈ Qπθθ (s,a) + ∆Qπθθ , (4)

whereQπθθ (s,a) is a Gaussian process [21] over the space S×A and ∆Qπθθ is a zero-mean Gaussian
residual with variance σ2

q . A zero-mean Gaussian process is usually considered as a prior:

Qπθθ (s,a) = GP (0, kθ ((s,a), (s′,a′))) , (5)

where kθ(·, ·) is a real-valued kernel function, which encodes our prior belief on the correlation be-
tween (s,a) and (s′,a′). One possible choice is considering decomposable kernels over the state and
action spaces: kθ ((s,a), (s′,a′)) = kS,θ (s, s′)×kU,θ (a,a′). A proper choice of the kernel function
depends on the nature of the state and action spaces, e.g., whether they are finite or continuous.

Let Bθ
t = [(s0,a0), . . . , (st,at)]

T be the sequence of observed joint state and action pairs simulated
by a policy πθ from an MDP corresponding to θ, with the corresponding immediate rewards rθt =
[Rθ(s0,a0), . . . , Rθ(st,at)]

T . The posterior distribution of Qπθθ (s,a) can be written as [5]:

Qπθθ (s,a) | rθt ,Bθ
t ∼ N

(
Qθ(s,a), covθ ((s,a), (s,a))

)
, (6)

where
Qθ(s,a)=K(s,a),Bθt

HT
t (HtKBθt ,B

θ
t
HT
t + σ2

qHtH
T
t )−1rθt ,

covθ((s,a), (s,a))=kθ((s,a), (s,a))−K(s,a),Bθt
HT
t (HtKBθt ,B

θ
t
HT
t + (σqθ)

2HtH
T
t )−1HtK

T
(s,a),Bθt

(7)
with

Ht=


1 −γ 0 . . . 0 0
0 1 −γ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −γ
0 0 0 . . . 0 1

,KB,B′=

kθ((s0,a0), (s′0,a
′
0)) . . . kθ((s0,a0), (s′n,a

′
n))

...
. . .

...
kθ((sm,am), (s′0,a

′
0)) . . . kθ((sm,am), (s′n,a

′
n))

,
(8)

for B = [(s0,a0), . . . , (sm,am)]T and B′ = [(s′0,a
′
0), . . . , (s′n,a

′
n)]T .

The hyper-parameters of the kernel function can be estimated by maximizing the likelihood of the
observed reward [22]:

rθt | Bθ
t ∼ N

(
0,Ht

(
KBθt ,B

θ
t

+ (σθq )2ItH
T
t

))
, (9)

where It is the identity matrix of size t× t.
The choice of policy for gathering data has significant impact on the proximity of the estimated
discounted return to the optimal one. A well-known option, which uses Bayesian representation of
the expected return and adaptively balances exploration and exploitation, is given by [22]:

πθ(s)=argmax
a∈A

qa, qa∼N
(
Qθ(s,a), covθ ((s,a), (s,a))

)
. (10)
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The GP-SARSA algorithm approximates the expected return by simulating several trajectories based
on the above policy. Running Nprior parallel GP-SARSA algorithms for each θ ∈ Θprior leads to
Nprior near-optimal approximations of the expected reward functions.

3.2 Online Planner

Let Q̂θ(s,a) be the Gaussian process approximating the optimal Q-function for any s ∈ S and a ∈ A
computed by a GP-SARSA algorithm associated with parameter θ ∈ Θprior. One can approximate
(2) as:

ak ≈ argmax
a∈A

Eθ|s0:k,a0:k−1

[
E
[
Q̂θ(sk,a)

]]
= argmax

a∈A
Eθ|s0:k,a0:k−1

[
Qθ(sk,a)

]
. (11)

While the value of Qθ(sk,a) at values θ ∈ Θprior drawn from the prior distribution is available, the
expectation in (11) is over the posterior distribution.

Rather than restricting ourselves to parametric families, we compute the expectation in (11) by a
Markov Chain Monte-Carlo (MCMC) algorithm for generating i.i.d. sample values from the pos-
terior distribution. For simplicity, and without loss of generality, we employ the basic Metropolis
Hastings MCMC [23] algorithm. Let the last accepted MCMC sample in the sequence of samples
be θpost

j , generated at the j-th iteration. A candidate MCMC sample point θcand is drawn accord-
ing to a symmetric proposal distribution q(θ | θpost

j ). The candidate MCMC sample point θcand is
accepted with probability α given by:

α = min

{
1,
p(s0:k,a0:k−1 | θcand) p(θcand)

p(s0:k,a0:k−1 | θpost
j ) p(θpost

j )

}
, (12)

otherwise it is rejected, where p(θ) denotes the prior probability of θ. Accordingly, the (j + 1)th
MCMC sample point is:

θpost
j+1 =

{
θn with probability α
θpost
j otherwise

(13)

Repeating this process leads to a sequence of MCMC sample points. The positivity of the pro-
posal distribution (i.e. q(θ | θpost

j ) > 0, for any θpost
j ) is a sufficient condition for ensur-

ing an ergodic Markov chain whose steady-state distribution is the posterior distribution p(θ |
s0:k, a0:k−1) [24]. Removing a fixed number of initial “burn-in” sample points, the MCMC sample
Θpost = (θpost

1 , . . . , θpost
Npost) is approximately a sample from the posterior distribution.

The last step towards the computation of (11) is the approximation of the mean of the predicted
expected return Qθ(., .) at values of the MCMC sample Θpost. We take advantage of the Bayesian
representation of the expected return computed by the offline GP-SARSAs for this, as described
next.

Let fask = [Qθprior
1

(sk,a), . . . , Qθprior
Nprior

(sk,a)]T and va
sk

= [covθprior1
((sk,a), (sk,a)), . . .,

covθprior

Nprior
((sk,a), (sk,a))]T be the means and variances of the predicted expected returns com-

puted based on the results of offline GP-SARSAs at current state sk for a given action a ∈ A. This
information can be used for constructing a Gaussian process for predicting the expected return over
the MCMC sample:

Qθpost
1

(sk,a)
...

Qθpost

Npost
(sk,a)

=ΣΘpost,Θprior

(
ΣΘprior,Θprior +Diag(va

k)
)−1

fask , (14)

where

ΣΘm,Θn =

 k(θ1, θ
′
1) . . . k(θ1, θ

′
n)

...
. . .

...
k(θm, θ

′
n) . . . k(θm, θ

′
n)

 ,
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for Θm = {θ1, . . . , θm} and Θn = {θ′1, . . . , θ′n}, and k(θ, θ′) denotes the correlation between
sample points in the parameter space. The parameters of the kernel function can be inferred by
maximizing the marginal likelihood:

fak | Θprior ∼ N
(
0,ΣΘprior,Θprior + Diag(va

k)
)
. (15)

The process is summarized in Figure 1(a). The red vertical lines represent the expected returns at
sample points from the posterior. It can be seen that only a single offline sample point is in the area
covered by the MCMC samples, which illustrates the advantage of the constructed Gaussian process
for predicting the expected return over the posterior distribution.

Offline	Planner

Online	Planner

prior

posterior

Figure 1: (a) Gaussian process for prediction of the expected returns at posterior sample points based
on prior sample points. (b) Proposed framework.

The GP is constructed for any given a ∈ A. For a large or continuous action space, one needs to draw
a finite set of actions {a1, . . . , aM} from the space, and compute Qθ(sk,a) for a ∈ {a1, . . . , aM}
and θ ∈ Θpost. It should be noted that the uncertainty in the expected return of the offline sample
points is efficiently taken into account for predicting the mean expected error at the MCMC sample
points. Thus, equation (11) can be written as:

ak ≈ argmax
a∈A

Eθ|s0:k,a0:k−1

[
Qθ(sk,a)

]
≈ argmax

a∈{a1,...,aM}

1

Npost

∑
θ∈Θpost

Qθ(sk,a) . (16)

It is shown empirically in numerical experiments that as more data are observed during execution, the
proposed method becomes more accurate, eventually achieving the performance of a GP-SARSA
trained on data from the true system model. The entire proposed methodology is summarized in
Algorithm 1 and Figure 1(b) respectively.

Notice that the values of Nprior and Npost should be chosen based on the size of the MDP, the
availability of computational resources, and presence of time constraints. Indeed, largeNprior means
that larger parameter samples must be obtained in the offline process, while largeNpost is associated
with larger MCMC samples in the posterior update step.

4 Numerical Experiments

The numerical experiments compare the performance of the proposed framework with two other
methods: 1) Multiple Model-based RL (MMRL) [6]: the parameter space in this method is quan-
tized into a finite set Θquant according to its prior distribution and the results of offline parallel
GP-SARSA algorithms associated with this set are used for decision making during the execution
process via: aMMRL

k = argmaxa∈A
∑
θ∈Θquant Qθ(sk,ak = a)P (θ | s0:k,a0:k−1). 2) One-step

lookahead policy [17]: this method selects the action with the highest expected immediate reward:
aseq
k = argmaxa∈A Eθ|s0:k,a0:k−1

[R(sk,ak = a)]. As a baseline for performance, the results of the
GP-SARSA algorithm tuned to the true model are also displayed.
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Algorithm 1 Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor Environments.

Offline Planning

1: Draw Nprior parameters from the prior distribution: Θprior = {θ1, . . . , θNprior} ∼ p(θ).

2: Run Nprior parallel GP-SARSAs:

Q̂θ ← GP-SARSA(θ), θ ∈ Θprior.

Online Planning
3: Initial action selection:

a0 = arg max
a∈A

1

Nprior

∑
θ∈Θprior

Qθ(s0,a).

4: for k = 1, . . . do
5: Take action ak−1, record the new state sk.
6: Given s0:k,a0:k−1, run MCMC and collect Θpost

k .
7: for a ∈ {a1, . . . ,aM} do
8: Record the means and variances of offline GPs at (sk,a):

fask =[Qθ1(sk,a), . . . , Q
θ
prior

Nprior
(sk,a)]T ,

va
sk =[covθ1((sk,a), (sk,a)), . . . , cov

θ
prior

Nprior
((sk,a), (sk,a))]T.

9: Construct a GP using fask ,v
a
sk over Θprior.

10: Use the constructed GP to compute Qθ(sk,a), for θ ∈ Θpost.

11: end for
12: Action selection:

ak = arg max
a∈{a1,...,aM}

1

Npost

∑
θ∈Θpost

Qθ(sk,a).

13: end for

Simple Continuous State and Action Example: The following simple MDP with unknown dy-
namics is considered in this section:

sk = bound[sk−1 − θsk−1(0.5− sk−1) + 0.2ak−1 + nk] , (17)

where sk ∈ S = [0, 1] and ak ∈ A = [−1, 1] for any k ≥ 0, nk ∼ N (0, 0.05), θ is the unknown
parameter with true value θ∗ = 0.2 and bound maps the argument to the closest point in state space.
The reward function is R(s, a) = −10 δs<0.1 − 10 δs>0.9 − 2 |a|, so that the cost is minimum when
the system is in the interval [0.1, 0.9]. The prior distribution is p(θ) ∼ N (0, 0.2). The decomposable
squared exponential kernel function is used over the state and action spaces. The offline and MCMC
sample sizes are 10 and 1000, respectively.

Figures 2(a) and (b) plot the optimal actions in the state and parameter spaces and the Q-function
over state and action spaces for the true model θ∗, obtained by GP-SARSA algorithms. It can be seen
that the decision is significantly impacted by the parameter, especially in regions of the state space
between 0.5 to 1. The Bayesian approximation of the Q-function is represented by two surfaces
that define 95%-confidence intervals for the expected return. The average reward per step over
100 independent runs starting from different initial states are plotted in Figure 2(c). As expected,
the maximum average reward is obtained by the GP-SARSA associated with the true model. The
proposed framework significantly outperforms both MMRL and one-step lookahead techniques.
One can see that the average reward for the proposed algorithm converges to the true model results
after less than 20 actions while the other methods do not. The very poor performance of the one-step
lookahead method is due to the greedy heuristics involved in its decision making process, which do
not factor in long-term rewards.
Melanoma Gene Regulatory Network: A key goal in genomics is to find proper intervention
strategies for disease treatment and prevention. Melanoma is the most dangerous form of skin
cancer, the gene-expression behavior of which can be represented through the Boolean activities of
7 genes displayed in Figure 3. Each gene expression can be 0 or 1, corresponding to gene inactivation
or activation, respectively. The gene states are assumed to be updated at each discrete time through
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Figure 2: Small example results.

the following nonlinear signal model:

xk = f (xk−1) ⊕ ak−1 ⊕ nk , (18)

where xk = [WNT5Ak, pirink,S100Pk,RET1k,MART1k, HADHBk,STC2k] is the state vector at
time step k, action ak−1 ∈ A ⊂ {0, 1}7, such that ak−1(i) = 1 flips the state of the ith gene, f is
the Boolean function displayed in Table 1, in which the ith binary string specifies the output value
for the given input genes, “⊕” indicates component-wise modulo-2 addition and nk ∈ {0, 1}7 is
Boolean transition noise, such that P (nk(i) = 1) = p, for i = 1, . . . , 7.

Figure 3: Melanoma regulatory network

Table 1: Boolean functions for the melanoma GRN.
Genes Input Gene(s) Output

WNT5A HADHB 10
pirin prin, RET1,HADHB 00010111
S100P S100P,RET1,STC2 10101010
RET1 RET1,HADHB,STC2 00001111
MART1 pirin,MART1,STC2 10101111
HADHB pirin,S100P,RET1 01110111
STC2 pirin,STC2 1101

In practice, the gene states are observed through gene expression technologies such as cDNA mi-
croarray or image-based assay. A Gaussian observation model is appropriate for modeling the gene
expression data produced by these technologies:

yk(i) ∼ N (20 xk(i) + θ, 10) , (19)

for i = 1, . . . , 7; where parameter θ is the baseline expression in the inactivated state with the true
value θ∗ = 30. Such a model is known as a partially-observed Boolean dynamical system in the
literature [25, 26].

It can be shown that for any given θ ∈ R, the partially-observed MDP in (18) and (19) can be
transformed into an MDP in a continuous belief space [27, 28]:

sk = g(sk−1,ak−1, θ)

∝ p(yk | xk, θ)P (xk | xk−1,ak) sk−1 ,
(20)
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Figure 4: Melanoma gene regulatory network results.

where “∝" indicates that the right-hand side must be normalized to add up to 1. The belief state is a
vector of length 128 in a simplex of size 127.

In [29, 30], the expression of WNT5A was found to be highly discriminatory between cells
with properties typically associated with high metastatic competence versus those with low
metastatic competence. Hence, an intervention that blocked the WNT5A protein from activat-
ing its receptor could substantially reduce the ability of WNT5A to induce a metastatic pheno-
type. Thus, we consider the following immediate reward function in belief space: R(s,a) =

50
∑128
i=1 s(i) δxi(1)=0 − 10||a||1. Three actions are available for controlling the system: A =

{[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0]}.
The decomposable squared exponential and delta Kronecker kernel functions are used for Gaussian
process regression over the belief state and action spaces, respectively. The offline and MCMC
sample sizes are 10 and 3000, respectively. The average reward per step over 100 independent runs
for all methods is displayed in Figure 4. Uniform and Gaussian distributions with different variances
are used as prior distributions in order to investigate the effect of prior peakedness. As expected, the
highest average reward is obtained for GP-SARSA tuned to the true parameter θ∗. The proposed
method has higher average reward than the MMRL and one-step lookahead algorithms. In fact,
the expected return produced by the proposed method converges to the GP-SARSA tuned to the
true parameter faster for peaked prior distributions. As more actions are taken, the performance of
MMRL approaches, but not quite reaches, the baseline performance of the GP-SARSA tuned to the
true parameter. The one-step lookahead method performs poorly in all cases as it does not account
for long-term rewards in the decision making process.

5 Conclusion

In this paper, we introduced a Bayesian decision making framework for control of MDPs with un-
known dynamics and large or continuous state, actions and parameter spaces in data-poor environ-
ments. The proposed framework does not require sustained direct interaction with the system or a
simulator, but instead it plans offline over a finite sample of parameters from a prior distribution over
the parameter space and transfers this knowledge efficiently to sample parameters from the posterior
during the execution process. The methodology offers several benefits, including the possibility of
handling large and possibly continuous state, action, and parameter spaces; data-poor environments;
anytime planning; and dealing with risk in the decision making process.
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