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Abstract

Despite their impressive performance on diverse tasks, neural networks fail catas-
trophically in the presence of adversarial inputs—imperceptibly but adversarially
perturbed versions of natural inputs. We have witnessed an arms race between
defenders who attempt to train robust networks and attackers who try to construct
adversarial examples. One promise of ending the arms race is developing certified
defenses, ones which are provably robust against all attackers in some family. These
certified defenses are based on convex relaxations which construct an upper bound
on the worst case loss over all attackers in the family. Previous relaxations are loose
on networks that are not trained against the respective relaxation. In this paper,
we propose a new semidefinite relaxation for certifying robustness that applies to
arbitrary ReLU networks. We show that our proposed relaxation is tighter than pre-
vious relaxations and produces meaningful robustness guarantees on three different
foreign networks whose training objectives are agnostic to our proposed relaxation.

1 Introduction

Many state-of-the-art classifiers have been shown to fail catastrophically in the presence of small
imperceptible but adversarial perturbations. Since the discovery of such adversarial examples [25],
numerous defenses have been proposed in attempt to build classifiers that are robust to adversarial
examples. However, defenses are routinely broken by new attackers who adapt to the proposed defense,
leading to an arms race. For example, distillation was proposed [22] but shown to be ineffective [5].
A proposed defense based on transformations of test inputs [20] was broken in only five days [2].
Recently, seven defenses published at ICLR 2018 fell to the attacks of Athalye et al. [3].

A recent body of work aims to break this arms race by training classifiers that are certifiably robust to
all attacks within a fixed attack model [13, 23, 29, 8]. These approaches construct a convex relaxation
for computing an upper bound on the worst-case loss over all valid attacks—this upper bound serves
as a certificate of robustness. In this work, we propose a new convex relaxation based on semidefinite
programming (SDP) that is significantly tighter than previous relaxations based on linear programming
(LP) [29, 8, 9] and handles arbitrary number of layers (unlike the formulation in [23], which was
restricted to two). We summarize the properties of our relaxation as follows:

1. Our new SDP relaxation reasons jointly about intermediate activations and captures interactions
that the LP relaxation cannot. Theoretically, we prove that there is a square root dimension gap between
the LP relaxation and our proposed SDP relaxation for neural networks with random weights.

2. Empirically, the tightness of our proposed relaxation allows us to obtain tight certificates for
foreign networks—networks that were not specifically trained towards the certification procedure.
For instance, adversarial training against the Projected Gradient Descent (PGD) attack [21] has led
to networks that are “empirically” robust against known attacks, but which have only been certified
against small perturbations (e.g. ε=0.05 in the `∞-norm for the MNIST dataset [9]). We use our SDP
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to provide the first non-trivial certificate of robustness for a moderate-size adversarially-trained model
on MNIST at ε=0.1.

3. Furthermore, training a network to minimize the optimum of particular relaxation produces
networks for which the respective relaxation provides good robustness certificates [23]. Notably and
surprisingly, on such networks, our relaxation provides tighter certificates than even the relaxation
that was optimized for during training.

Related work. Certification methods which evaluate the performance of a given network against all
possible attacks roughly fall into two categories. The first category leverages convex optimization
and our work adds to this family. Convex relaxations are useful for various reasons. Wong and
Kolter [29], Raghunathan et al. [23] exploited the theory of duality to train certifiably robust networks
on MNIST. In recent work, Dvijotham et al. [8], Wong et al. [30] extended this approach to train
bigger networks with improved certified error and on larger datasets. Solving a convex relaxation for
certification typically involves standard techniques from convex optimization. This enables scalable
certification by providing valid upper bounds at every step in the optimization [9].

The second category draws techniques from formal verification such as SMT [16, 17, 7, 14], which
aim to provide tight certificates for any network using discrete optimization. These techniques, while
providing tight certificates on arbitrary networks, are often very slow and worst-case exponential in
network size. In prior work, certification would take up to several hours or longer for a single example
even for a small network with around 100 hidden units [7, 16]. However, in concurrent work, Tjeng
and Tedrake [26] impressively scaled up exact verification through careful preprocessing and efficient
pruning that dramatically reduces the search space. In particular, they concurrently obtain non-trivial
certificates of robustness on a moderately-sized network trained using the adversarial training objective
of [21] on MNIST at perturbation level ε=0.1.

2 Setup

Our main contribution is a semidefinite relaxation of an optimization objective that arises in certification
of neural networks against adversarial examples. In this section, we set up relevant notation and present
the optimization objective that will be the focus of the rest of the paper.

Notation. For a vector z ∈Rn, we use zi to denote the ith coordinate of z. For a matrix Z ∈Rm×n,
Zi∈Rn denotes the ith row. For any function f :R→R and a vector z∈Rn, f(z) is a vector in Rn with
(f(z))i=f(zi), e.g., z2∈Rn represents the function that squares each component. For z,y∈Rn, z�y
denotes that zi≥yi for i=1,2,...,n. We use z1�z2 to represent the elementwise product of the vectors
z1 and z2. We useBε(x̄)

def
= {x |‖x−x̄‖∞≤ε} to denote the `∞ ball around x̄. When it is necessary to

distinguish vectors from scalars (in Section 4.1), we use~x to represent a vector inRn that is semantically
associated with the scalarx. Finally, we denote the vector of all zeros by0 and the vector of all ones by1.

Multi-layer ReLU networks for classification. We focus on multi-layer neural networks with ReLU
activations. A network f with L hidden layers is defined as follows: let x0 ∈ Rd denote the input
and x1, ... ,xL denote the activation vectors at the intermediate layers. Suppose the network has
mi units in layer i. xi is related to xi−1 as xi = ReLU(W i−1xi−1) = max(W i−1xi−1,0), where
W i−1∈Rmi×mi−1 are the weights of the network. For simplicity of exposition, we omit the bias terms
associated with the activations (but consider them in the experiments). We are interested in neural
networks for classification where we classify an input into one of k classes. The output of the network
is f(x0)∈Rk such that f(x0)j = c>j x

L represents the score of class j. The class label y assigned to
the input x0 is the class with the highest score: y=argmaxj=1,...,kf(x0)j .

Attack model and certificate of robustness. We study classification in the presence of an attackerA
that takes a clean test input x̄∈Rd and returns an adversarially perturbed inputA(x̄). In this work, we
focus on attackers that are bounded in the `∞ norm: A(x̄)∈Bε(x̄) for some fixed ε>0. The attacker
is successful on a clean input label pair (x̄,ȳ) if f(A(x̄)) 6= ȳ, or equivalently if f(A(x̄))y>f(x0)ȳ
for some y 6= ȳ.

We are interested in bounding the error against the worst-case attack (we assume the attacker has full
knowledge of the neural network). Let `?y(x̄,ȳ) denote the worst-case margin of an incorrect class
y that can be achieved in the attack model:

`?y(x̄,ȳ)
def
= max
A(x)∈Bε(x̄)

(f(A(x))y−f(A(x))ȳ). (1)
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A network is certifiably robust on (x̄,ȳ) if `?y(x̄,ȳ)<0 for all y 6= ȳ. Computing `?y(x̄,ȳ) for a neural
network involves solving a non-convex optimization problem, which is intractable in general. In this
work, we study convex relaxations to efficiently compute an upper boundLy(x̄,ȳ)≥`?y(x̄,ȳ). When
Ly(x̄,ȳ)<0, we have a certificate of robustness of the network on input (x̄,ȳ).

Optimization objective. For a fixed class y, the worst-case margin `?y(x̄,ȳ) of a neural network f
with weights W can be expressed as the following optimization problem. The decision variable is
the inputA(x), which we denote here by x0 for notational convenience. The quantity we are interested
in maximizing is f(x0)y− f(x0)ȳ = (cy− cȳ)>xL, where xL is the final layer activation. We set
up the optimization problem by jointly optimizing over all the activations x0,x1,x2,...xL, imposing
consistency constraints dictated by the neural network, and restricting the input x0 to be within the
attack model. Formally,

`?y(x̄,ȳ)= max
x0,...,xL

(cy−cȳ)>xL (2)

subject to xi=ReLU(W i−1xi−1) for i=1,2,...,L (Neural network constraints)

‖x0
j−x̄j‖∞≤ε for j=1,2,...,d (Attack model constraints)

Computing `?y is computationally hard in general. In the following sections, we present how to relax
this objective to a convex semidefinite program and discuss some properties of this relaxation.

3 Semidefinite relaxations

In this section, we present our approach to obtaining a computationally tractable upper bound to the
solution of the optimization problem described in (2).

Key insight. The source of the non-convexity in (2) is the ReLU constraints. Consider a ReLU
constraint of the form z = max(x,0). The key observation is that this constraint can be expressed
equivalently as the following three linear and quadratic constraints between z and x: (i) z(z−x)=0,
(ii) z≥x, and (iii) z≥0. Constraint (i) ensures that z is equal to either x or 0 and constraints (ii) and
(iii) together then ensure that z is at least as large as both. This reformulation allows us to replace
the non-linear ReLU constraints of the optimization problem in 2 with linear and quadratic constraints,
turning it into a quadratically constrained quadratic program (QCQP). We first show how this QCQP
can be relaxed to a semidefinite program (SDP) for networks with one hidden layer. The relaxation
for multiple layers is a straightforward extension and is presented in Section 5.

3.1 Relaxation for one hidden layer

Consider a neural network with one hidden layer containing m nodes. Let the input be denoted
by x ∈ Rd. The hidden layer activations are denoted by z ∈ Rm and related to the input x as
z=ReLU(Wx) for weightsW ∈Rm×d.

Suppose that we have lower and upper bounds l,u ∈ Rd on the inputs such that lj ≤ xj ≤ uj . For
example, in the `∞ attack model we have l= x̄−ε1 and u= x̄+ε1 where x̄ is the clean input. For the
multi-layer case, we discuss how to obtain these bounds for the intermediate activations in Section 5.2.
We are interested in optimizing a linear function of the hidden layer: f(x)=c>z, where c∈Rm. For
instance, while computing the worst case margin of an incorrect label y over true label ȳ, c=cy−cȳ .

We use the key insight that the ReLU constraints can be written as linear and quadratic constraints,
allowing us to embed these constraints into a QCQP. We can also express the input constraint
lj≤xj≤uj as a quadratic constraint, which will be useful later. In particular, lj≤xj≤uj if and only
if (xj−lj)(xj−uj)≤0, thereby yielding the quadratic constraint x2

j≤(lj+uj)xj−ljuj . This gives
us the final QCQP below:

`?y(x̄,ȳ)=fQCQP =max
x,z

c>z (3)

s.t. z≥0, z≥Wx, z2 =z�(Wx) (ReLU constraints)

x2≤(l+u)�x−l�u (Input constraints)
We now relax the non-convex QCQP (3) to a convex SDP. The basic idea is to introduce a new set
of variables representing all linear and quadratic monomials in x and z; the constraints in (3) can then
be written as linear functions of these new variables.
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(a) (b)

Figure 1: (a) Plot showing the feasible regions for the vectors~x (green) and~z (red). The input constraints
restrict ~x to lie within the green circle. The ReLU constraint ~z⊥~z−~x forces ~z to lie on the dashed red
circle and the constraint ~z ·~e≥~x·~e restricts it to the solid arc. (b) For a fixed value of input ~x·~e, when the
angle made by~xwith~e increases, the arc spanned by~z has a larger projection on~e and leading to a looser
relaxation. Secondly, for a fixed value of ~x·~e, as θ increases, the norm ‖~x‖ increases and vice versa.

In particular, let v def
=

[
1
x
z

]
. We define a matrix P def

= vv> and use symbolic indexing P [·] to index

the elements of P , i.e P =

 P [1] P [x>] P [z>]
P [x] P [xx>] P [xz>]
P [z] P [zx>] P [zz>]

.

The SDP relaxation of (3) can be written in terms of the matrix P as follows.

fSDP =max
P

c>P [z] (4)

s.t P [z]≥0, P [z]≥WP [x], diag(P [zz>])=diag(WP [xz>]) (ReLU constraints)

diag(P [xx>])≤(l+u)�P [x]−l�u (Input constraints)
P [1]=1, P �0 (Matrix constraints).

When the matrix P admits a rank-one factorization vv>, the entries of the matrix P exactly correspond
to linear and quadratic monomials in x and z. In this case, the ReLU and input constraints of the SDP
are identical to the constraints of the QCQP. However, this rank-one constraint on P would make the
feasible set non-convex. We instead consider the relaxed constraint on P that allows factorizations of
the formP =V V >, where V can be full rank. Equivalently, we consider the set of matricesP such that
P �0. This set is convex and is a superset of the original non-convex set. Therefore, the above SDP
is a relaxation of the QCQP in 3 with fSDP≥fQCQP, providing an upper bound on `?y(x̄,ȳ) that could
serve as a certificate of robustness. We note that this SDP relaxation is different from the one proposed
in [23], which applies only to neural networks with one hidden layer. In contrast, the construction
presented here naturally generalizes to multiple layers, as we show in Section 5. Moreover, we will see
in Section 6 that our new relaxation often yields substantially tighter bounds than the approach of [23].

4 Analysis of the relaxation

Before extending the SDP relaxation defined in (4) to multiple layers, we will provide some geometric
intuition for the SDP relaxation.

4.1 Geometric interpretation

First consider the simple case where m= d= 1 and W = c= 1, so that the problem is to maximize
z subject to z=ReLU(x) and l≤x≤u. In this case, the SDP relaxation of (4) is as follows:

fSDP =max
P

P [z] (5)

s.t P [z]≥0, P [z]≥P [x], P [z2]=P [xz] (ReLU constraints)

P [x2]≤(l+u)P [x]−lu (Input constraints)
P [1]=1, P �0 (Matrix constraints).
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(a) (b) (c)

Figure 2: (a) Visualization of the LP and SDP for a single ReLU unit with input x and output z. The LP
is bounded by the line joining the extreme points. (b) Let z1 =ReLU(x1+x2) and z2 =ReLU(x1−x2).
On fixing the inputs x1 and x2 (both equal to 0.5ε), we plot the feasible activations of the LP and SDP
relaxation. The LP feasible set is a simple product over the independent sets, while the SDP enforces
joint constraints to obtain a more complex convex set. (c) We plot the set (z1,z2) across all feasible
inputs (x1,x2) for the same setup as (b) and the objective of maximizing z1+z2. We see that fSDP<fLP.

The SDP operates on a PSD matrix P and imposes linear constraints on the entries of the matrix. Since
feasible P can be written as V V >, the entries of P can be thought of as dot products between vectors,

and constraints as operating on these dot products. For the simple example above, V def
=

[ ←~e→
←~x→
←~z→

]
for

some vectors ~e,~x,~z∈R3. The constraint P [1]=1, for example, imposes ~e·~e=1 i.e., ~e is a unit vector.
The linear monomials P [x],P [z] correspond to projections on this unit vector, ~x ·~e and ~z ·~e. Finally,
the quadratic monomials P [xz], P [x2] and P [z2] correspond to ~x·~z, ‖~x‖2 and ‖~z‖2 respectively. We
now reason about the input and ReLU constraints and visualize the geometry (see Figure 1a).

Input constraints. The input constraint P [x2] ≤ (l + u)P [x]− lu equivalently imposes ‖~x‖2 ≤
(l+u)(~x ·~e)− lu. Geometrically, this constrains vector ~x on a sphere with center at 1

2 (l+u)~e and
radius 1

2 (l−u). Notice that this implicitly bounds the norm of ~x. This is illustrated in Figure 1a where
the green circle represents the space of feasible vectors ~x, projected onto the plane containing ~e and ~x.

ReLU constraints. The constraint on the quadratic terms (P [z2] =P [zx]) is the core of the SDP. It
says that the vector ~z is perpendicular to ~z−~x. We can visualize ~z on the plane containing ~x and ~e
in Figure 1a; the component of ~z perpendicular to this plane is not relevant to the SDP, because it’s
neither constrained nor appears in the objective. The feasible ~z trace out a circle with 1

2~x as the center
(because the angle inscribed in a semicircle is a right angle). The linear constraints restrict ~z to the
arc that has a larger projection on ~e than ~x, and is positive.

Remarks. This geometric picture allows us to make the following important observation about the
objective value max

(
~z ·~e
)

of the SDP relaxation. The largest value that ~z ·~e can take depends on the
angle θ that ~x makes with ~e. In particular, as θ decreases, the relaxation becomes tighter and as the
vector deviates from ~e, the relaxation gets looser. Figure 1b provides an illustration. For large θ, the
radius of the circle that ~z traces increases, allowing ~z ·~e to take large values.

That leads to the natural question: For a fixed input value ~x ·~e (corresponding to x), what controls
θ? Since ~x·~e=‖~x‖cosθ, as the norm of ~x increases, θ increases. Hence a constraint that forces ‖~x‖
to be close to ~x·~ewill cause the output ~z ·~e to take smaller values. Porting this intuition into the matrix
interpretation, this suggests that constraints forcing P [x2]=‖~x‖2 to be small lead to tighter relaxations.

4.2 Comparison with linear programming relaxation

In contrast to the SDP, another approach is to relax the objective and constraints in (2) to a linear
program (LP) [18, 10, 9]. As we will see below, a crucial difference from the LP is that our SDP can
“reason jointly” about different activations of the network in a stronger way than the LP can. We briefly
review the LP approach and then elaborate on this difference.

Review of the LP relaxation. We present the LP relaxation for a neural network with one hidden
layer, where the hidden layer activations z ∈Rm are related to the input x∈Rd as z= ReLU(Wx).
As before, we have bounds l,u∈Rd such that l≤x≤u.
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In the LP relaxation, we replace the ReLU constraints at hidden node j with a convex outer envelope as
illustrated in Figure 2a. The envelope is lower bounded by the linear constraints z≥Wx and z≥0. In
order to construct the upper bounding linear constraints, we compute the extreme points s= min

l≤x≤u
Wx

and t = max
l≤x≤u

Wx and construct lines that connect (s, ReLU(s)) and (t, ReLU(t)). The final LP

for the neural network is then written by constructing the convex envelopes for each ReLU unit and
optimizing over this set as follows:

fLP =max c>z (6)
s.t z≥0, z≥Wx, (Lower bound lines)

z≤
(ReLU(t)−ReLU(s)

t−s

)
·(Wx−s)+ReLU(s), (Upper bound lines)

l≤x≤u (Input constraints).

The extreme points s and t are the optima of a linear transformation (byW ) over a box in Rd and can
be computed using interval arithmetic. In the `∞ attack model where l= x̄−ε1 and u= x̄+ε1, we
have sj=Wx̄−ε‖Wj‖1 and tj=Wx̄+ε‖Wj‖1 for j=1,2,...m.

From Figure 2a, we see that for a single ReLU unit taken in isolation, the LP is tighter than the SDP.
However, when we have multiple units, the SDP is tighter than the LP. We illustrate this with a simple
example in 2 dimensions with 2 hidden nodes (See Figure 2b).

Simple example to compare the LP and SDP. Consider a two dimensional example with input
x= [x1,x2] and lower and upper bounds l= [−ε,−ε] and u= [ε,ε], respectively. The hidden layer
activations z1 and z2 are related to the input as z1 = ReLU(x1 +x2) and z2 = ReLU(x1−x2). The
objective is to maximize z1+z2.

The LP constrains z1 and z2 independently. To see this, let us set the input x to a fixed value and look
at the feasible values of z1 and z2. In the LP, the convex outer envelope that bounds z1 only depends on
the input x and the bounds l and u and is independent of the value of z2. Similarly, the outer envelope
of z2 does not depend on the value of z1, and the feasible set for (z1,z2) is simply the product of the
individual feasible sets.

In contrast, the SDP has constraints that couple z1 and z2. As a result, the feasible set of (z1,z2) is a
strict subset of the product of the individual feasible sets. Figure 2b plots the LP and SDP feasible sets
[z1,z2] for x=[ ε2 ,

ε
2 ]. Recall from the geometric observations (Section 4.1) that the arc of ~z1 depends

on the configuration of ~x1 + ~x2, while that of ~z2 depends on ~x1− ~x2. Since the vectors ~x1 + ~x2 and
~x1− ~x2 are dependent, the feasible sets of ~z1 and ~z2 are also dependent on each other. An alternative
way to see this is from the matrix constraint that P � 0 in 4. This matrix constraint does not factor
into terms that decouple the entries P [z1] and P [z2], hence z1 and z2 cannot vary independently.

When we reason about the relaxation over all feasible points x, the joint reasoning of the SDP allows
it to achieve a better objective value. Figure 2c plots the feasible sets [z1,z2] over all valid x where
the optimal value of the SDP, fSDP, is less than that of the LP, fLP.

We can extend the preceding example to exhibit a dimension-dependent gap between the LP and the
SDP for random weight matrices. In particular, for a random network withm hidden nodes and input
dimension d, with high probability, fLP =Θ(md) while fSDP =Θ(m

√
d+d
√
m). More formally:

Proposition 1. Suppose that the weight matrixW ∈Rm×d is generated randomly by sampling each
element Wij uniformly and independently from {−1,+1}. Also let the output vector c be the all-1s
vector, 1. Take x̄=0 and ε=1. Then, for some universal constant γ,

fLP≥
1

2
md almost surely,while

fSDP≤γ ·(m
√
d+d
√
m) with probability 1−exp(−(d+m)).

We defer the proof of this to Section A.

5 Multi-layer networks

The SDP relaxation to evaluate robustness for multi-layer networks is a straightforward generalization
of the relaxation presented for one hidden layer in Section 3.1.
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Grad-NN [23] LP-NN [29] PGD-NN
PGD-attack 15% 18% 9%
SDP-cert (this work) 20% 20% 18%
LP-cert 97% 22% 100%
Grad-cert 35% 93% n/a

Table 1: Fraction of non-certified examples on MNIST. Different certification techniques (rows) on
different networks (columns). SDP-cert is consistently better than other certificates. All numbers
are reported for `∞ attacks at ε=0.1.

5.1 General SDP

The interactions between xi−1 and xi in (2) (via the ReLU constraint) are analogous to the interaction
between the input and hidden layer for the one layer case. Suppose we have bounds li−1,ui−1∈Rmi−1

on the inputs to the ReLU units at layer i such that li−1≤xi−1≤ui−1. We discuss how to obtain these
bounds and their significance in Section 5.2. Writing the constraints for each layer iteratively gives
us the following SDP:

fSDP
y (x̄,ȳ)=max

P
(cy−cȳ)>P [xL] (7)

s.t. for i=1,...,L

P [xi]≥0, P [xi]≥W i−1P [xi−1],

diag(P [xi(xi)>])=diag(WP [xi−1(xi)>]), (ReLU constraints for layer i)

diag(P [xi−1(xi−1)>])≤(li−1+ui−1)�P [xi−1]−li−1�ui−1, (Input constraints for layer i)

P [1]=1, P �0 (Matrix constraints).

5.2 Bounds on intermediate activations

From the geometric interpretation of Section 4.1, we made the important observation that adding
constraints that keep P [x2] small aid in obtaining tighter relaxations. For the multi-layer case, since
the activations at layer i−1 act as input to the next layer i, adding constraints that restrict P [(xij)

2]
will lead to a tighter relaxation for the overall objective. The SDP automatically obtains some bound on
P [(xij)

2] from the bounds on the input, hence the SDP solution is well-defined and finite even without
these bounds. However, we can tighten the bound on P [(xij)

2] by relating it to the linear monomial
P [(xij)] via bounds on the value of the activation xij . One simple way to obtain bounds on activations
xij is to treat each hidden unit separately, using simple interval arithmetic to obtain

l0 = x̄−ε1 (Attack model), u0 = x̄+ε1 (Attack model), (8)

li=[W i−1]+l
i−1+[W i−1]−u

i−1, ui=[W i−1]+u
i−1+[W i−1]−l

i−1,

where ([M ]+)ij=max(Mij ,0) and ([M ]−)ij=min(Mij ,0).

In our experiments on real networks (Section 6), we observe that these simple bounds are sufficient
to obtain good certificates. However tighter bounds could potentially lead to tighter certificates.

6 Experiments

In this section, we evaluate the performance of our certificate (7) on neural networks trained using
different robust training procedures, and compare against other certificates in the literature.

Networks. We consider feedforward networks that are trained on the MNIST dataset of handwritten
digits using three different robust training procedures.

1. Grad-NN. We use the two-layer network with 500 hidden nodes from [23], obtained by using
an SDP-based bound on the gradient of the network (different from the SDP presented here) as a
regularizer. We obtained the weights of this network from the authors of [23].

2. LP-NN. We use a two-layer network with 500 hidden nodes (matching that of Grad-NN) trained
via the LP-based robust training procedure of [29]. The authors of [29] provided the weights.
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Figure 3: Histogram of PGD margins for (a) points that are certified by the SDP and (b) points that
are not certified by the SDP.

3. PGD-NN. We consider a fully-connected network with four layers containing 200,100 and 50
hidden nodes (i.e., the architecture is 784-200-100-50-10). We train this network using adversarial
training [12] against the strong PGD attack [21]. We train to minimize a weighted combination
of the regular cross entropy loss and adversarial loss. We tuned the hyperparameters based on the
performance of the PGD attack on a holdout set. The stepsize of the PGD attack was set to 0.1, number
of iterations to 40, perturbation size ε=0.3 and weight on adversarial loss to 1

3 .

The training procedures for SDP-NN and LP-NN yield certificates of robustness (described in their
corresponding papers), but the training procedure of PGD-NN does not. Note that all the networks
are “foreign networks” to our SDP, as their training procedures do not incorporate the SDP relaxation.

Certification procedures. Recall from Section 2 that an upper bound on the maximum incorrect
margin can be used to obtain certificates. We consider certificates from three different upper bounds.

1. SDP-cert. This is the certificate we propose in this work. This uses the SDP upper bound that we
defined in Section 5. The exact optimization problem is presented in (7) and the bounds on intermediate
activations are obtained using the interval arithmetic procedure presented in (8).

2. LP-cert. This uses the upper bound based on the LP relaxation discussed in Section 4.2 which
forms the basis for several existing works on scalable certification [9, 10, 28, 29]. The LP uses
layer-wise bounds for intermediate nodes, similar to li,ui in our SDP formulation (7). For Grad-NN
and LP-NN with a single hidden layer, the layerwise bounds can be computed exactly using interval
arithmetic. For the four-layer PGD-NN, in order to have a fair comparison with SDP-cert, we use
the same procedure (interval arithmetic) (8).

3. Grad-cert. We use the upper bound proposed in [23]. This upper bound is based on the maximum
norm of the gradient of the network predictions and only holds for two-layer networks.

Table 1 presents the performance of the three different certification procedures on the three networks.
For each certification method and network, we evaluate the associated upper bounds on the same
1000 random test points and report the fraction of points that were not certified. Computing the exact
worst-case adversarial error is not computationally tractable. Therefore, to provide a comparison,
we also compute a lower bound on the adversarial error—the error obtained by the PGD attack.

Performance of proposed SDP-cert. SDP-cert provides non-vacuous certificates for all networks
considered. In particular, we can certify that the four layer PGD-NN has an error of at most 18% at
ε= 0.1. To compare, a lower bound on the robust error (PGD attack error) is 9%. On the two-layer
networks, SDP-cert improves the previously-known bounds. For example, it certifies that Grad-NN
has an error of at most 20% compared to the previously known 35%. Similarly, SDP-cert improves
the bound for LP-NN from 22% to 20%.

The gap between the lower bound (PGD) and upper bound (SDP) is because of points that cannot
be misclassified by PGD but are also not certified by the SDP. In order to further investigate these
points, we look at the margins obtained by the PGD attack to estimate the robustness of different points.
Formally, let xPGD be the adversarial example generated by the PGD attack on clean input x̄with true
label ȳ. We compute min

y 6=ȳ
[f(xPGD)ȳ−f(xPGD)y], the margin of the closest incorrect class. A small

value indicates that the xPGD was close to being misclassified. Figure 3 shows the histograms of the
above PGD margin. The examples which are not certified by the SDP have much smaller margins
than those examples that are certified: the average PGD margin is 1.2 on points that are not certified

8



and 4.5 on points that are certified. From Figure 3, we see that a large number of the SDP uncertified
points have very small margin, suggesting that these points might be misclassified by stronger attacks.

Remark. As discussed in Section 5, we could consider a version of the SDP that does not include the
constraints relating linear and quadratic terms at the intermediate layers of the network. Empirically,
such an SDP produces vacuous certificates (>90% error). Therefore, these constraints at intermediate
layers play a significant role in improving the empirical performance of the SDP relaxation.

Comparison with other certification approaches. From Table 1, we observe that SDP-cert
consistently performs better than both LP-cert and Grad-cert for all three networks.

Grad-cert and LP-cert provide vacuous (> 90% error) certificates on networks that are not trained
to minimize these certificates. This is because these certificates are tight only under some special cases
that can be enforced by training. For example, LP-cert is tight when the ReLU units do not switch
linear regions [29]. While a typical input causes only 20% of the hidden units of LP-NN to switch
regions, 75% of the hidden units of Grad-NN switch on a typical input. Grad-cert bounds the gradient
uniformly across the entire input space. This makes the bound loose on arbitrary networks that could
have a small gradient only on the data distribution of interest.

Comparison to concurrent work [26]. A variety of robust MNIST networks are certified by Tjeng
and Tedrake [26]. On Grad-NN, their certified error is 30% which is looser than our SDP certified error
(20%). They also consider the CNN counterparts of LP-NN and PGD-NN, trained using the procedures
of [29] and [21]. The certified errors are 4.4% and 7.2% respectively. This reduction in the errors is
due to the CNN architecture. Further discussion on applying our SDP to CNNs appears in Section 7.

Optimization setup. We use the YALMIP toolbox [19] with MOSEK as a backend to solve the
different convex programs that arise in these certification procedures. On a 4-core CPU, the average
SDP computation took around 25 minutes and the LP around 5 minutes per example.

7 Discussion

In this work, we focused on fully connected feedforward networks for computational efficiency. In
principle, our proposed SDP can be directly used to certify convolutional neural networks (CNNs);
unrolling the convolution would result in a (large) feedforward network. Naively, current off-the-shelf
solvers cannot handle the SDP formulation of such large networks. Robust training on CNNs leads
to better error rates: for example, adversarial training against the PGD adversary on a four-layer
feedforward network has error 9% against the PGD attack, while a four-layer CNN trained using a
similar procedure has error less than 3% [21]. An immediate open question is whether the network
in [21], which has so far withstood many different attacks, is truly robust on MNIST. We are hopeful
that we can scale up our SDP to answer this question, perhaps borrowing ideas from work on highly
scalable SDPs [1] and explicitly exploiting the sparsity and structure induced by the CNN architecture.

Current work on certification of neural networks against adversarial examples has focused on
perturbations bounded in some norm ball. In our work, we focused on the common `∞ attack because
the problem of securing multi-layer ReLU networks remains unsolved even in this well-studied attack
model. Different attack models lead to different constraints only at the input layer; our SDP framework
can be applied to any attack model where these input constraints can be written as linear and quadratic
constraints. In particular, it can also be used to certify robustness against attacks bounded in `2 norm.
[13] provide alternative bounds for `2 norm attacks based on the local gradient.

Guarantees for the bounded norm attack model in general are sufficient but not necessary for robustness
against adversaries in the real world. Many successful attacks involve inconspicious but clearly visible
perturbations [11, 24, 6, 4], or large but semantics-preserving perturbations in the case of natural
language [15]. These perturbations do not currently have well-defined mathematical models and
present yet another layer of challenge. However, we believe that the mathematical ideas we develop
for the bounded norm will be useful building blocks in the broader adversarial game.
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A Proof of Proposition 1

We first lower bound the LP value fLP, and then upper bound the SDP value fSDP.

Part 1: Lower-bounding fLP. It suffices to exhibit a feasible solution for the constraints. Note that
for a given hidden unit i, we have si=−‖Wi‖1 and ti=‖Wi‖1. In particular, at x=0 a feasible value
for zi is 1

2‖Wi‖2.

For this feasible value of (x,z), we get that c>z=
∑m
i=1

1
2‖Wi‖1 = 1

2

∑
i,j |Wij |. In other words, fLP

is at least half the element-wise `1-norm ofW . SinceW is a random sign matrix we have |Wij |=1
for all i,j, hence fLP≥ 1

2mdwith probability 1.

Part 2: Upper-bounding fSDP. We start by exhibiting a general upper bound on fSDP implied by the
constraints:
Lemma 1. For any weight matrices W and c, we have fSDP ≤

√
d‖W‖2‖c‖2, where ‖W‖2 is the

operator norm ofW .

The proof of Lemma 1 is given later in this section. To apply the lemma, note that in our case ‖c‖2 =
√
m,

while ‖W‖2≤γ ·(
√
m+
√
d+
√

log(1/δ)) with probability 1−δ, for some universal constant γ (see
Theorem 5.39 of [27]). Therefore, Lemma 1 yields the bound fSDP≤γ ·

√
md·(

√
m+
√
d+
√
m+d)≤

2γ ·(m
√
d+d
√
m) with probability 1−exp(−(m+d)), as claimed.

A.1 Proof of Lemma 1

First note that since
[
P [1] P [z>]
P [z] P [zz>]

]
� 0, we have P [z]P [z]> � P [zz>] by Schur complements,

and in particular ‖P [z]‖22≤trP [zz>] (by taking the trace of both sides).

Using this, and letting ‖·‖∗ denote the nuclear norm (sum of singular values), we have

c>P [z]≤‖c‖2‖P [z]‖2 (9)

≤‖c‖2
√

trP [zz>]. (10)

But we also have

trP [zz>]=

m∑
i=1

P [z2i ] (11)

=

m∑
i=1

W>i P [xzi] (12)

=tr(WP [xz>]) (13)
(i)

≤‖W‖2‖P [xz>]‖∗ (14)
(ii)

≤ ‖W‖2
√

tr(P [xx>])tr(P [zz>]) (15)

(iii)

≤ ‖W‖2
√
d
√

trP [xx>]. (16)

Here (i) is Hölder’s inequality, and (iii) uses the fact that P [x2j ]≤ 1 for all j (due to the constraints
imposed by l and u).

Solving for trP [zz>], we obtain the bound trP [zz>]≤ ‖W‖22d. Plugging back into the preceding
inequality, we obtain c>P [z]≤‖c‖2‖W‖2

√
d, as was to be shown.
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