
A Omitted proofs

A.1 Proof of Lemma 3.2

Proof of Lemma 3.2. We have

〈X − µF , u〉 = 〈X − µD, u〉+ ε〈∆, u〉 , and
〈X − µF , u〉 = 〈X − µW , u〉 − (1− ε)〈∆, u〉 .

Thus if we let t = ε |〈∆, v〉|+ σ√
ε

, we have

Pr
X∼D

[|〈X − µF , v〉| > t] ≤ Pr
X∼D

[
|〈X − µD, v〉| >

σ√
ε

]
≤ ε

α2
,

by (1) and

Pr
X∼W

[|〈X − µF , v〉| < t] ≤ Pr
X∼W

[
|〈X − µW , v〉| > 〈∆, v〉 −

ασ√
ε

]
(a)

≤ Pr
X∼W

[
|〈X − µW , v〉| >

(α− 1)σ√
ε

]
(b)

≤ ε

(α− 1)2
,

where (a) follows from assumption, and (b) follows from (2).

A.2 Proof of Lemma 3.3

Proof of Lemma 3.3. By explicit computation, we have

EX∼D
[
(X − µF )(X − µF )>

]
= ΣD + ε2∆∆> ,

EX∼W
[
(X − µW )(X − µW )>

]
= ΣW + (1− ε)2∆∆> .

Therefore overall if ΣF is the covariance of F , we have

ΣF = (1− ε)ΣD + εΣW + ε(1− ε)∆∆> ,

so in particular we have ΣF � ε(1− ε)∆∆>. Thus ‖ΣF ‖2 ≥ ε(1− ε)‖∆‖22.

Then we have

ε(1− ε)‖∆‖22 ≤ v>ΣF v
>

= (1− ε)v>ΣDv + εv>ΣW v + ε(1− ε)〈v,∆〉2

≤ σ2 + ε(1− ε)〈v,∆〉2 .

Since by assumption σ2 ≤ ε
6
‖∆‖22, we have

〈v,∆〉2 ≥
(

1− 1

6(1− ε)

)
‖∆‖22

(a)

≥ 2

3
‖∆‖22 ≥

2σ2

ε
,

where (a) follows by our assumption that ε < 1/2. The desired conclusion follows from taking square roots.

A.3 A variation of Lemma 3.1 with finite sample bounds

As noted in Section 3, Lemma 3.1 as written may not directly apply to the situations we are interested in, simply
because we ultimately care about applying this lemma to the training data. Thus to directly apply our guarantees
to this setting, we require the same bounds, but over the empirical distribution. To do so, we use the following
concentration bound:

Theorem A.1 ([33], Theorem 5.6.1). Fix n ≥ 1. Let X be a random vector over Rd, and assume ‖X‖2 ≤
K(E[‖X‖22])1/2 almost surely. Let M = E[XX>]. Let X1, . . . , Xn be m i.i.d. copies of X , and let
M̂ = 1

n

∑n
i=1XiX

>
i . Then, there exists a universal constant C > 1 so that with probability 99/100, we have

‖M̂ −M‖2 ≤ C

(√
K2d log d

n
+
K2d log d

n

)
‖M‖2 .

As a simple corollary of this, we can give a finite-sample version of Lemma 3.1:
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Corollary A.2. Fix 1/4 > ε > 0, and let K > 0. Let D,W be distributions over Rd with mean µD, µW and
covariances ΣD,ΣW � σ2I , so that if X ∼ D (resp. X ∼W ), then ‖X − µD‖2 ≤ K(E[‖X − µD‖22])1/2

(resp ‖X − µW ‖2 ≤ K(E[‖X − µW ‖22])1/2) almost surely. Let F = (1− ε)D+ εW be the mixture of D,W
with mixing weights (1− ε) and ε, respectively. Let X1, . . . , Xn be n i.i.d. draws from F , where

n = Ω

(
d logn

ε

)
.

Let X be the subset ofX1, . . . , Xn drawn fromD, and letW be the subset ofX1, . . . , Xn drawn fromW . Then,
if ‖µD − µW ‖22 ≥ 10σ2

ε
, then if µF is the mean of X1, . . . , Xn and v is the top eigenvector of the empirical

covariance, there exists t ∈ R>0 so that

Pr
X∼X

[|〈X − µF , v〉| > t] < ε

Pr
X∼X

[|〈X − µF , v〉| < t] < ε ,

with probability at least 9/10.

Proof. By a Chernoff bound, with probability ≥ 99/100, we have that |X | ≥ (1 − 2ε)n and |W| ≥ ε
2
n.

Condition on this event for the rest of the proof. Let µ̂D = 1
|X|
∑
i∈X Xi be the empirical mean of the samples

in X , and let µ̂W be defined similarly for the samples inW . Let Σ̂D = 1
|X|
∑
i∈X (Xi − µ̂D)(Xi − µ̂D)> be

the empirical covariance of the points in X , and let Σ̂W be defined similarly for the samples inW . Finally,
let M̂D = 1

|X|
∑
i∈X (Xi − µD)(Xi − µD)> be the empirical second moment with the actual mean of the

distribution, and again define M̂W analogously. By Theorem A.1, by our choice of n, we have

‖M̂D − ΣD‖2 ≤
1

4
‖ΣD‖2 , and

‖M̂W − ΣW ‖2 ≤
1

4
‖ΣW ‖2 ,

both with probability at least 99/100. Thus, by a union bound, all these events happen simultaneously with
probability at least 9/10. Condition on the event that all these events occur. Then this implies that

‖M̂D‖2 ≤
5

4
σ2 , and ‖M̂W ‖2 ≤

5

4
σ2 .

Since Σ̂D � M̂D and Σ̂W � M̂W , we conclude that

‖Σ̂D‖2 ≤
5

4
σ2 , and ‖Σ̂W ‖2 ≤

5

4
σ2 .

The result then follows by applying Lemma 3.1 to the empirical distributions over X andW , respectively.
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B Additional Experiments

In this section, we provide various additional experiments. First, in Table 4, we provide a wider variety of attack
parameters for our main experimental setup. Then, in Table 5, we present our results training a VGG model
instead of a Resnet model.
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Table 4: Full table of accuracy and number of poisoned images left for different attack parameters.
For each attack to target label pair, we provide a few experimental runs with different backdoor.

Sample Target Epsilon Nat 1 Pois 1 # Pois Left Nat 2 Pois 2 Std Pois

bird
5% 92.27% 74.20% 57 92.64% 2.00%

1.20%
10% 92.32% 89.80% 7 92.68% 1.50%

bird
5% 92.49% 98.50% 0 92.76% 2.00%

1.90%
10% 92.55% 99.10% 0 92.89% 0.60%

bird
5% 92.66% 89.50% 14 92.59% 1.40%

1.10%
10% 92.63% 95.50% 2 92.77% 0.90%

cat
5% 92.45% 83.30% 24 92.24% 0.20%

0.10%
10% 92.39% 92.00% 0 92.44% 0.00%

cat
5% 92.60% 95.10% 1 92.51% 0.10%

0.10%
10% 92.83% 97.70% 1 92.42% 0.00%

cat
5% 92.80% 96.50% 0 92.77% 0.10%

0.00%
10% 92.74% 99.70% 0 92.71% 0.00%

dog
5% 92.91% 98.70% 0 92.59% 0.00%

0.00%
10% 92.51% 99.30% 0 92.66% 0.10%

dog
5% 92.17% 89.80% 7 93.01% 0.00%

0.00%
10% 92.55% 94.30% 1 92.64% 0.00%

horse
5% 92.38% 96.60% 0 92.87% 0.80%

0.80%
10% 92.72% 99.40% 0 93.02% 0.40%

horse
5% 92.60% 99.80% 0 92.57% 1.00%

0.80%
10% 92.26% 99.80% 0 92.63% 1.20%

cat
5% 92.68% 97.60% 1 92.72% 8.20%

7.20%
10% 92.59% 99.00% 4 92.80% 7.10%

cat
5% 92.86% 98.60% 0 92.79% 8.30%

8.00%
10% 92.29% 99.10% 0 92.57% 8.20%

deer
5% 92.68% 99.30% 0 92.68% 1.10%

1.00%
10% 92.68% 99.90% 0 92.74% 1.60%

deer
5% 93.25% 97.00% 1 92.75% 2.60%

1.10%
10% 92.31% 97.60% 1 93.03% 1.60%

frog
5% 92.87% 88.80% 10 92.61% 0.10%

0.30%
10% 92.82% 93.70% 3 92.74% 0.10%

frog
5% 92.79% 99.60% 0 92.71% 0.20%

0.20%
10% 92.49% 99.90% 0 92.58% 0.00%

bird
5% 92.52% 97.90% 0 92.69% 0.00%

0.00%
10% 92.68% 99.30% 0 92.45% 0.50%

bird
5% 92.51% 87.80% 1 92.66% 0.20%

0.00%
10% 92.74% 94.40% 0 92.91% 0.10%
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Table 5: Full table of accuracy and number of poisoned images left for different attack parameters
for a VGG model. For each attack to target label pair, we provide a few experimental runs with
different backdoors. Here, we present results for ε = 10% because unlike our results for Resnet, in
many cases 5% poisoned images was not enough to install the backdoor.

Sample Target Epsilon Nat 1 Pois 1 # Pois Left Nat 2 Pois 2 Std Pois

bird 10% 92.82% 83.50% 23 92.64% 2.00% 1.30%

bird 10% 93.73% 98.40% 0 93.17% 1.00% 1.40%

bird 10% 93.30% 96.60% 1 93.63% 0.90% 0.80%

cat 10% 93.39% 82.90% 12 92.24% 0.20% 0.30%

cat 10% 93.16% 99.10% 0 93.43% 0.10% 0.20%

cat 10% 92.90% 99.40% 0 93.17% 0.00% 0.60%

dog 10% 93.21% 99.90% 0 93.35% 0.00% 0.10%

dog 10% 93.20% 92.20% 2 93.32% 0.10% 0.00%

horse 10% 93.12% 99.60% 0 93.28% 0.40% 0.50%

horse 10% 92.95% 99.90% 0 93.13% 1.00% 0.80%

cat 10% 93.15% 97.20% 0 93.12% 7.20% 7.60%

cat 10% 93.15% 99.80% 0 93.27% 6.90% 8.60%

deer 10% 93.18% 99.30% 0 93.10% 1.80% 1.40%

deer 10% 93.26% 99.20% 0 93.04% 1.50% 1.20%

frog 10% 93.33% 89.80% 9 93.51% 0.30% 0.00%

frog 10% 92.90% 99.80% 0 93.24% 0.10% 0.00%

bird 10% 93.47% 98.40% 0 93.44% 0.00% 0.10%

bird 10% 93.20% 93.40% 0 92.95% 0.00% 0.10%
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