Scalable Coordinated Exploration in
Concurrent Reinforcement Learning

Maria Dimakopoulou Ian Osband Benjamin Van Roy

Stanford University Google DeepMind Stanford University

madima@stanford.edu iosband@google.com bvr@stanford.edu
Abstract

We consider a team of reinforcement learning agents that concurrently operate
in a common environment, and we develop an approach to efficient coordinated
exploration that is suitable for problems of practical scale. Our approach builds on
seed sampling|/1] and randomized value function learning [[11]. We demonstrate
that, for simple tabular contexts, the approach is competitive with previously
proposed tabular model learning methods [[1]]. With a higher-dimensional problem
and a neural network value function representation, the approach learns quickly
with far fewer agents than alternative exploration schemes.

1 Introduction

Consider a farm of robots operating concurrently, learning how to carry out a task, as studied in
[3]]. There are benefits to scale, since a larger number of robots can gather and share larger volumes
of data that enable each to learn faster. These benefits are most dramatic if the robots explore
in a coordinated fashion, diversifying their learning goals and adapting appropriately as data is
gathered. Web services present a similar situation, as considered in [[18]. Each user is served by an
agent, and the collective of agents can accelerate learning by intelligently coordinating how they
experiment. Considering its importance, the problem of coordinated exploration in reinforcement
learning has received surprisingly little attention; while [3]] and [18]] consider teams of agents that
gather data in parallel, they do not address coordination of data gathering, though this can be key to
team performance. Dimakopolou and Van Roy [1] recently identified properties that are essential
to efficient coordinated exploration and proposed suitable tabular model learning methods based on
seed sampling. Though this represents a conceptual advance, the methods do not scale to meet the
needs of practical applications, which require generalization to address intractable state spaces. In
this paper, we develop scalable reinforcement learning algorithms that aim to efficiently coordinate
exploration and we present computational results that establish their substantial benefit.

Work on coordinated exploration builds on a large literature that addresses efficient exploration in
single-agent reinforcement learning (see, e.g., [6 5, 121]]). A growing segment of this literature studies
and extends posterior sampling for reinforcement learning (PSRL) [[19]], which has led to statistically
efficient and computationally tractable approaches to exploration [10} 12, [13]]. The methods we will
propose leverage this line of work, particularly the use of randomized value function learning [[14].

The problem we address is known as concurrent reinforcement learning [18} [15, 4} [16} [1]]. A
team of reinforcement learning agents interact with the same unknown environment, share data
with one another, and learn in parallel how to operate effectively. To learn efficiently in such
settings, the agents should coordinate their exploratory effort. Three properties essential to efficient
coordinated exploration, identified in [[L], are real-time adaptivity to shared observations, commitment
to carry through with action sequences that reveal new information, and diversity across learning
opportunities pursued by different agents. That paper demonstrated that upper-confidence-bound
(UCB) exploration schemes for concurrent reinforcement learning (concurrent UCRL), such as those

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

discussed in [15} 4} [16], fail to satisfy the diversity property due to their deterministic nature. Further,
a straightforward extension of PSRL to the concurrent multi-agent setting, in which each agent
independently samples a new MDP at the start of each time period, as done in [[7], fails to satisfy the
commitment property because the agents are unable to explore the environment thoroughly [17]. As
an alternative, [1]] proposed seed sampling, which extends PSRL in a manner that simultaneously
satisfies the three properties. The idea is that each concurrent agent independently samples a
random seed, a mapping from seed to the MDP is determined by the prevailing posterior distribution.
Independence among seeds diversifies exploratory effort among agents. If the mapping is defined
in an appropriate manner, the fact that each agent maintains a consistent seed ensures a sufficient
degree of commitment, while the fact that the posterior adapts to new data allows each agent to react
intelligently to new information.

Algorithms presented in [1]] are tabular and hence do not scale to address intractable state spaces.
Further, computational studies carried out in [[1] focus on simple stylized problems designed to
illustrate the benefits of seed sampling. In the next section, we demonstrate that observations made
in these stylized contexts extend to a more realistic problem involving swinging up and balancing a
pole. Subsequent sections extend the seed sampling concept to operate with generalizing randomized
value functions [14], leading to new algorithms such as seed temporal-difference learning (seed TD)
and seed least-squares value iteration (seed LSVI). We show that on tabular problems, these scalable
seed sampling algorithms perform as well as the tabular seed sampling algorithms of [1]]. Finally, we
present computational results demonstrating effectiveness of one of our new algorithms applied in
conjunction with a neural network representation of the value function on another pole balancing
problem with a state space too large to be addressed by tabular methods.

2 Seeding with Tabular Representations

This section shows that the advantages of seed sampling over alternative exploration schemes
extend beyond the toy problems with known transition dynamics and a handful of unknown rewards
considered in [1]]. We consider a problem that is more realistic and complex, but of sufficiently small
scale to be addressed by tabular methods, in which a group of agents learn to swing-up and balance a
pole. We demonstrate that seed sampling learns to achieve the goal quickly and with far fewer agents
than other exploration strategies.

In the classic problem [20], a pole is attached to a cart that moves on a frictionless rail. We modify
the problem so that deep exploration is crucial to identifying rewarding states and thus learning
the optimal policy. Unlike the traditional cartpole problem, where the interaction begins with the
pole stood upright and the agent must learn to balance it, in our problem the interaction begins with
the pole hanging down and the agent must learn to swing it up. The cart moves on an infinite rail.
Concretely the agent interacts with the environment through the state s; = (¢, ¢;) € R?, where ¢; is

the angle of the pole from the vertical, upright position ¢ = 0 and ¢; is the respective angular velocity.
The cart is of mass M = 1 and the pole has mass m = 0.1 and length | = 1, with acceleration due to
gravity g = 9.8. At each timestep the agent can apply a horizontal force F; to the cart. The second

. i —cos Fi+L? sin(¢y)
order differential equation governing the system is ¢, = Z5nled—cos(@n_ o Fats0;
q & & Y d)t %(%7 7n1L1vI Cos(d’f)z) Tt m+M

[11]]. We discretize the evolution of this second order differential equation with timescale At = 0.02

and present a choice of actions F; = {—10, 0,10} for all ¢. At each timestep the agent pays a cost

1‘55(‘) for its action but can receive a reward of 1 if the pole is balanced upright (cos(¢;) > 0.75) and

steady (angular velocity less than 1). The interaction ends after 1000 actions, i.e. at t = 20. The
environment is modeled as a time-homogeneous MDP, which is identified by M = (S, A, R, P, p),
where S is the discretized state space [0, 2] x [—2m, 27], A = {—10, 0, 10} is the action space, R
is the reward model, P is the transition model and p is the initial state distribution.

Consider a group of K agents, who explore and learn to operate in parallel in this common environ-
ment. Each kth agent begins at state s, o = (, 0) + wy, where each component of wy, is uniformly
distributed in [—0.05, 0.05]. Each agent k takes an action at arrival times tx 1, ¢k 2, - . ., tx, zr Of an
independent Poisson process with rate x = 1. At time 1 ,,,, the agent takes action ay,,, transitions
from state s ,—1 to state sy ,, and observes reward r, ,,. The agents are uncertain about the transi-
tion structure P and share a common Dirichlet prior over the transition probabilities associated with
each state-action pair (s,a) € S x A with parameters (s, a,s’) = 1, for all s’ € S. The agents
are also uncertain about the reward structure R and share a common Gaussian prior over the reward

PSRL
5001 =—— seed sampling
concurrent UCRL

Start Goal 400 Thompson resampling

reward of evaluation episode
w
(=3
=3

=}

0 100 200 300 400
number of parallel agents in learning episode

Figure 1: Performance of PSRL (no adaptivity), concurrent UCRL (no diversity), Thompson resam-
pling (no commitment) and seed sampling in the tabular problem of learning how to swing and keep
upright a pole attached to a cart that moves left and right on an infinite rail.

associated with each state-action pair (s,a) € S x A with parameters p(s,a) = 0,03(s,a) = 1.
Agents share information in real time and update their posterior beliefs.

We compare seed sampling with three baselines, PSRL, concurrent UCRL and Thompson resampling.
In PSRL, each agent k samples an MDP M, o from the common prior at time 5 ¢ and computes the
optimal policy 7y o (-) with respect to M, o, which does not change throughout the agent’s interaction
with the environment. Therefore, the PSRL agents do not adapt to the new information in real-time.
On the other hand, in concurrent UCRL, Thompson resampling and seed sampling, at each time ¢, ,,,,
the agent k generates a new MDP M, ,,, based on the data gathered by all agents up to that time,
computes the optimal policy 7y, ,,, for My, ,,, and takes an action ay yn, = Tk, m (Sk,m—1) according to
the new policy. Concurrent UCRL is a deterministic approach according to which all the parallel
agents construct the same optimistic MDP conditioned on the common shared information up to that
time. Therefore, the concurrent UCRL agents do not diversify their exploratory effort. Thompson
resampling has each agent independently sample a new MDP at each time period from the common
posterior distribution conditioned on the shared information up to that time. Resampling an MDP
independently at each time period breaks the agent’s intent to pursue a sequence of actions revealing
the rare reward states. Therefore, the Thompson resampling agents do not commit. Finally, in seed
sampling, at the beginning of the experiment, each agent k samples a random seed w;, with two
components that remain fixed throughout the experiment. The first component is |S|?|.A| sequences
of independent and identically distributed Exp(1) random variables; the second component is |S||.A|
independent and identically distributed (0, 1) random variables. At each time ¢y ,,, agent k maps
the data gathered by all agents up to that time and its seed wy, to an MDP M, ,,, by combining the
Exponential-Dirichlet seed sampling and the standard-Gaussian seed sampling methods described
in [1]]. Independence among seeds diversifies exploratory effort among agents. The fact that the
agent maintains a consistent seed leads to a sufficient degree of commitment, while the fact that the
posterior adapts to new data allows the agent to react intelligently to new information.

After the end of the learning interaction, there is an evaluation of what the group of K agents learned.
The performance of each algorithm is measured with respect to the reward achieved during this
evaluation, where a greedy agent starts at so = (, 0), generates the expected MDP of the cartpole
environment based on the posterior beliefs formed by the K parallel agents at the end of their learning,
and interacts with the cartpole as dictated by the optimal policy with respect to this MDP. Figure I]
plots the reward achieved by the evaluation agent for increasing number of PSRL, seed sampling,
concurrent UCRL and Thompson resampling agents operating in parallel in the cartpole environment.
As the number of parallel learning agents grows, seed sampling quickly increases its evaluation
reward and soon attains a high reward only within 20 seconds of learning. On the other hand, the
evaluation reward achieved by episodic PSRL (no adaptivity), concurrent UCRL (no diversity), and
Thompson resampling (no commitment) does not improve at all or improves in a much slower rate as
the number of parallel agents increases.

3 Seeding with Generalizing Representations

As we demonstrated in Section 2} seed sampling can offer great advantage over other exploration
schemes. However, our examples involved tabular learning and the algorithms we considered do

not scale gracefully to address practical problems that typically pose enormous state spaces. In
this section, we propose an algorithmic framework that extends the seeding concept from tabular to
generalizing representations. This framework supports scalable reinforcement learning algorithms
with the degrees of adaptivity, commitment, and intent required for efficient coordinated exploration.

We consider algorithms with which each agent is instantiated with a seed and then learns a parameter-
ized value function over the course of operation. When data is insufficient, the seeds govern behavior.
As data accumulates and is shared across agents, each agent perturbs each observation in a manner
distinguished by its seed before training its value function on the data. The varied perturbations of
shared observations result in diverse value function estimates and, consequently, diverse behavior. By
maintaining a constant seed throughout learning, an agent does not change his interpretation of the
same observation from one time period to the next, and this achieves the desired level of commitment,
which can be essential in the presence of delayed consequences. Finally, by using parameterized
value functions, agents can cope with intractably large state spaces. Section [3.1]offers a more detailed
description of our proposed algorithmic framework, and Section [3.2] provides examples of algorithms
that fit this framework.

3.1 Algorithmic Framework

There are K agents, indexed 1, ..., K. The agents operate over H time periods in identical envi-
ronments, each with state space S and action space .A. Denote by ¢y ,,, the time at which agent k
applies its mth action. The agents may progress synchronously (¢ ., = tx’ m) or asynchronously
(tk,m # ti’,m). Each agent k begins at state s, o. At time ¢}, ,,,, agent k is at state s, ,,, takes action
ak,m, observes reward ry, ,,, and transitions to state sy ,,+1. In order for the agents to adapt their
policies in real-time, each agent has access to a buffer B with observations of the form (s, a,r, s').
This buffer stores past observations of all /& agents. Denote by B; the content of this buffer at time t.
With value function learning, agent k uses a family Q. of state action value functions indexed by a set
of parameters ©. Each § € ©, defines a state-action value function Q¢ : S x A — R. The value

Qk’e(& a) could be, for example, the output of a neural network with weights 6 in response to an
input (s, a). Initially, the agents may have prior beliefs over the parameter 6, such as the expectation,
0, or the level of uncertainty, A, on 6.

Agents diversify their behavior through a seeding mechanism. Under this mechanism, each agent & is
instantiated with a seed wy. Seed wy, is intrinsic to agent k and differentiates how agent k interprets
the common history of observations in the buffer 5. A form of seeding is that each agent k can
independently and randomly perturb observations in the buffer. For example, different agents k, k'
can add different noise terms zj, ; and zj/ ; of variance v, which are determined by seeds wy, and wy,
respectively, to rewards from the same jth observation (s;, a;, r;, s;) in the buffer B, as discussed
in [[14] for the single-agent setting. This induces diversity by creating modified training sets from
the same history among the agents. Based on the prior distribution for the parameter 6, agent k can
initialize the value function with a sample 6y, from this distribution, with the seed wy, providing the
source of randomness. These independent value function parameter samples diversify the exploration
in initial stages of operation. The seed wy, remains fixed throughout the course of learning. This
induces a level of commitment in agent &, which can be important in reinforcement learning settings
where delayed consequences are present.

At time t, ,,, before taking the mth action, agent £ fits its generalized representation model on
the history (or a subset thereof) of observations (s;,a;,;, 39) perturbed by the noise seeds z ;,

Jj=1,...,|B.,. |- The initial parameter seed 0}, can also play a role in subsequent stages of learning,
other than the first time period, by influencing the model fitting. An example of employing the initial

parameter seed 6}, in the model fitting of subsequent time periods is by having a function (-) as a
regularization term in which 6}, appears. By this model fitting, agent k obtains parameters 6y, ,,, at

time period ¢, ,,,. These parameters define a state-action value function Q4 g, ,, (-, -) based on which
a policy is computed. Based on the obtained policy and its current state s, ,,,, the agent takes a greedy
action ay, ,,, observes reward 7, ,,, and transitions to state sy .,,4-1. The agent & stores this observation
(Sk,m» @k.ms Th,m> Sk,m+1) in the buffer B so that all agents can access it next time they fit their
models. For learning problems with large learning periods, it may be practical to cap the common
buffer to a certain capacity C' and once this capacity is exceeded to start overwriting observations at

random. In this case, the way observations are overwritten can also be different for each agent and
determined by seed wy, (e.g. by wy, also defining random permutation of indices 1, ..., C).

The ability of the agents to make decisions in the high-dimensional environments of real systems,
where the number of states is enormous or even infinite, is achieved through the value function
representations, while coordinating the exploratory effort of the group of agents is achieved through
the way that the seeding mechanism controls the fitting of these generalized representations. As the
number of parallel agents increases, this framework enables the agents to learn to operate and achieve
high rewards in complex environments very quickly.

3.2 Examples of Algorithms

We now present examples of algorithms that fit the framework of Section[3.1]
In our proposed algorithms, agents share a Gaussian prior over unknown parameters 0* ~ N'(6, \I)
and a Gaussian likelihood, A (0, v). Each agent k samples independently noise seeds zj, ; ~ N (0, v)

for each observation j in the buffer and initial parameter seeds 0, ~ N (6, \I). These seeds remain
fixed throughout learning. We now explain how the algorithms we propose satisfy the three properties
of efficient coordinated exploration.

1. Adaptivity: The key idea behind randomized value functions is that fitting a model to a randomly
perturbed prior and randomly perturbed observations can be used to generate posterior samples
or approximate posterior samples. Consider the data (X,y) = ({z;},,{y;}}L,). where

y; = 0*Tx; + ¢, with IID ¢; ~ N(0,v). Let fo = 672, 6 ~ N(,\I) and z; ~ N(0,v).
Then, the solution to argminy (% > Wi+ 2z — fo (z:))? + 16— éH%) is a sample from the
posterior of 6* given (X, y) [14]. This sample can be computed for non-linear fy as well, although
it will not be from the exact posterior. In the concurrent setting, when each agent k draws initial

parameter seed ék ~ N(é, AI) and noise seeds zj 1, 25,2, - ~ N(0,v) at each time period it
can solve this value-function optimization problem to obtain a posterior parameter sample based
on the high-dimensional observations gathered by all agents so far.

2. Diversity: The independence of the initial parameter seeds 0y, and noise seeds Z),j among agents
diversifies exploration both when there are no available observations and when the agents have
access to the same shared observations.

3. Commitment: Each agent k applies the same perturbation z;, ; to each jth observation and uses
the same regularization 6y, throughout learning; this provides the requisite level of commitment.

3.2.1 Seed Least Squares Value Iteration (Seed LSVI)

LSVI computes a sequence of value functions parameters reflecting optimal expected rewards over
an expanding horizon based on observed data. In seed LSVI, each kth agent’s initial parameter 6y, ¢

is set to ;. Before its mth action, agent k uses the buffer of observations gathered by all K agents
up to that time, or a subset thereof, and the random noise terms zj, to carry out LSVI, initialized with

0 = 0, where H is the LSVI planning horizon:

2
.) 1 - - R
0y, = argmin | - Z (rj + max Qb (85:0) + 205 — Qk.ﬂ(«%‘»%‘)) + (8, 0k)
(s5,a5,75,87)
forh = H —1,...,0, where (6, 6) is a regularization penalty (e.g. (6, 6;) = 16— 012
After setting 0, ,, = 90, agent k applies action ay, ,, = argmax,¢ 4 Qk,gkml (Sk.m,a). Note that the
agent’s random seed can be viewed as wy = (ék, 21y Zh,2s -)

3.2.2 Seed Temporal-Difference Learning (Seed TD)

When the dimension of 6 is very large, significant computational time may be required to produce an
estimate with LSVI, and using first-order algorithms in the vein of stochastic gradient descent, such

as TD, can be beneficial. In seed TD, each kth agent’s initial parameter 0}, ¢ is set to ék Before its

mth action, agent k uses the buffer of observations gathered by all K agents up to that time to carry
out IV iterations of stochastic gradient descent, initialized with 8y = 0y, ,—1:

én = én—l - OéVgL(én_1>

2
L(0) = % > (Tj + 71513}@1@,@",1(5}7&) + 2,5 — Qk,0(5j7aj)> + (0, 0)
(85,a5:75,55)
forn =1,..., N, where « is the TD learning rate, £(6) is the loss function, ~ is the discount rate
and (0, 0;,) is a regularization penalty (e.g. ¥(6,0)) = 116 — 01]12). After setting 0y, = O,
agent k applies action ay, ,, = argmax,¢ 4 Qkﬁk’m (Sk,m,@). Note that the agent’s random seed can
be viewed as wy, = (ék, 21y Zh,25 -)

3.2.3 Seed Ensemble

When the number of parallel agents is large, instead of having each one of the K agents fit a separate
value function model (e.g. K separate neural networks), we can have an ensemble of £ models,
E < K, to decrease computational requirements. Each model e = 1,..., E is initialized with
e ~ N (6, \) from the common prior belief on parameters @, which is fixed and specific to model e
of the ensemble. Moreover model e is trained on the buffer of observations 3 according to one of the
methods of Sectionor Each observation (s;, a;,7;,s}) € B is perturbed with noise z ;,
which is also fixed and specific to model e of the ensemble. Note that the agent’s k random seed, wy,
is arandomly drawn index e = 1, ..., ¥ associated with a model from the ensemble.

3.2.4 Extensions

The framework we propose is not necessarily constrained to value function approximation methods.
For instance, one could use the same principles for policy function approximation, where each agent k
defines a policy function 7y (s, a, 8) and before its mth action uses the buffer of observations gathered
by all K agents up to that time and its seeds zj, to perform policy gradient.

4 Computational Results

In this section, we present computational results that demonstrate the robustness and effectiveness
of the approach we suggest in Section [3] In Section[d.I] we present results that serve as a sanity
check for our approach. We show that in the tabular toy problems considered in [1]], seeding with
generalized representations performs equivalently with the seed sampling algorithm proposed in [[1],
which is particularly designed for tabular settings and can benefit from very informative priors. In
Section[d.2] we scale-up to a high-dimensional problem, which would be too difficult to address by
any tabular approach. We use the concurrent reinforcement learning algorithm of Sections[3.2.2]and
[3.2.3] with a neural network value function approximation and we see that our approach explores
quickly and achieves high rewards.

4.1 Sanity Checks

The authors of [1]] considered two toy problems that demonstrate the advantage of seed sampling
over Thompson resampling or concurrent UCRL. We compare the performance of seed LSVI
(Section [3.2.T)) and seed TD (Section [3.2.2)), which are designed for generalized representations,
with seed sampling, Thompson resampling and concurrent UCRL which are designed for tabular
representations.

The first toy problem is the “bipolar chain” of figure[2a] The chain has an even number of vertices, IV,
V ={0,1,..., N — 1} and the endpoints are absorbing. From any inner vertex of the chain, there
are two edges that lead deterministically to the left or to the right. The leftmost edge ey, = (1, 0) has
weight 07, and the rightmost edge eg = (N — 2, N — 1) has weight 0g, such that |0, | = |0r| = N
and 0 = —01. All other edges have weight §. = —0.1. Each one of the K agents starts from vertex
N/2, and its goal is to maximize the accrued reward. We let the agents interact with the environment
for 2N time periods. As in [1], seed sampling, Thompson resampling and concurrent UCRL, know
everything about the environment except from whether 87 = N,0p = —N orfy = —N,0gp = N

0@ @
S e e

O CLERERD®

(a) Bipolar chain environment (b) Parallel chains environment

70 —— seed sampling 109

601 | concurrent UCRL |
g i 29
) Thompson resampling g
? 50 —— seed LSVI ? 8 \ —— seed sampling
240 seed TD g \ concurrent UCRL
E § 7 \ Thompson resampling
230 2 N\ — seed LsVI
2 B 6 seed TD
=20 =]
g g S
E10 g ~

' . \
0 20 40 60 80 100 0 500 1000 1500 2000
number of parallel agents number of parallel agents
(c) Bipolar chain mean regret per agent (d) Parallel chains mean regret per agent

Figure 2: Comparison of the scalable seed algorithms, seed LSVI and seed TD, with their tabular
counterpart seed sampling and the tabular alternatives concurrent UCRL and Thompson resampling
in the toy settings considered in [[1]]. This comparison serves as a sanity check.

and they share a common prior that assigns probability p = 0.5 to either scenario. Once an agent
reaches either of the endpoints, all K agents learn the true value of 67, and fr. Seed LSVI and
seed TD use N-dimensional one-hot encoding to represent any of the chain’s states and a linear
value function representation. Unlike, the tabular algorithms, seed LSVI and seed TD start with a
completely uninformative prior. We run the algorithms with different number of parallel agents K
operating on a chain with N = 50 vertices. Figure [2c|shows the mean reward per agent achieved
as K increases. The “bipolar chain” example aims to highlight the importance of the commitment
property. As explained in [[1], concurrent UCRL and seed sampling are expected to perform in par
because they exhibit commitment, but Thompson resampling is detrimental to exploration because
resampling a MDP in every time period leads the agents to oscillation around the start vertex. Seed
LSVI and seed TD exhibit commitment and perform almost as well as seed sampling, which not only
is designed for tabular problems but also starts with a significantly more informed prior.

The second toy problem is the “parallel chains” of figure [2b] Starting from vertex 0, each of the
K agents chooses one of the ¢ = 1,..., C chains, of length L. Once a chain is chosen, the agent
cannot switch to another chain. All the edges of each chain ¢ have zero weights, apart from the
edge incoming to the last vertex of the chain, which has weight 6. ~ N (0, 02 + c¢). The objective
is to choose the chain with the maximum reward. As in [[1], seed sampling, Thompson resampling
and concurrent UCRL, know everything about the environment except from 6.,Vce =1,...,C, on
which they share a common, well-specified prior. Once an agent traverses the last edge of chain c,
all agents learn 6.. Seed LSVI and seed TD use N-dimensional one-hot encoding to represent any
of the chain’s states and a linear value function representation. As before, seed LSVI and seed TD
start with a completely uninformative prior. We run the algorithms with different number of parallel
agents K operating on a parallel chain environment with C' = 4, L = 4 and 02 = 100. Figure
shows the mean reward per agent achieved as K increases. The “parallel chains” example aims to
highlight the importance of the diversity property. As explained in [1]], Thompson resampling and
seed sampling are expected to perform in par because they diversify, but concurrent UCRL is wasteful
of the exploratory effort of the agents, because it sends all the agents who have not left the source to
the same chain with the most optimistic last edge reward. Seed LSVI and seed TD exhibit diversity
and perform identically with seed sampling, which again starts with a very informed prior.

4.2 Scaling Up: Cartpole Swing-Up

In this section we extend the algorithms and insights we have developed in the rest of the paper to
a complex non-linear control problem. We revisit a variant of the “cartpole” problem of Section [2}
but we introduce two additional state variables, the horizontal distance of the cart x; from the center

x = 0 and its velocity, ;. The second order differential equation governing the system becomes

: in(64)—cos . Lg Fot L2 o L
S ég(b%lri(%cgiﬁ;z;) I =T — 7m2f,:j?\;(¢t), Ty = LAt fjr;i[n(%) [11l. We discretize the

evolution of this second order differential equation with timescale At = 0.01. The agent receives a
reward of 1 if the pole is balanced upright, steady in the middle and the cartpole is centered (precisely
when cos(¢;) > 0.95, |z,| < 0.1, |#;| < 1 and |¢;| < 1), otherwise the reward is 0. We evaluate
performance for 30 seconds of interaction, equivalent to 3000 actions. For implementation, we use
the DeepMind control suite that imposes a rigid edge at |x| = 2 [22].

Due to the curse of dimensionality, tabular approaches to seed sampling quickly become in-
tractable as we introduce more state variables. For a practical approach to seed sampling in this
domain we apply the seed TD-ensemble algorithm of Sections [3.2.2] and [3.2.3] together with a
neural network representation of the value function. We pass the neural network six features:

cos(¢y), sin(ey), 25, &, &6, 1{|z| < 0.1}. Let fp : S — R* be a (50, 50)-MLP with rectified
linear units and linear skip connection. We initialize each Q°(s, a | 6¢) = (fge + 3foc) (s)[a] for
0°, 0§ sampled from Glorot initialization [2]. After each action, for each agent we sample a minibatch
of 16 transitions uniformly from the shared replay buffer and take gradient steps with respect to
6° using the ADAM optimizer with learning rate 10~ [8]]. The parameter 5 plays a role similar
to the prior regularization 1) when used in conjunction with SGD training [9]. We sample noise

Ze.j ~ N(0,0.01) to be used in the shared replay buffer.

14— seed TD (K=10)

seed TD (K=30)
5 seed TD (K=100)
— seed TD (K=300)

--- DOQN &-greedy

Start . Goal

o o °
5 2

1
|
average instantaneous reward

‘ tim;ﬂelapsed (secon:;]s) ”
Figure 3: Comparison of seed sampling varying the number K of agents, with a model ensemble size
min(K, 30). As a baseline we use DQN with 100 agents applying e-greedy exploration.

Figure [3| presents the results of our seed sampling experiments on this cartpole problem. Each curve
is averaged over 10 random instances. As a baseline, we consider DQN with 100 parallel agents
each with 0.1-greedy action selection. With this approach, the agents fail to see any reward over the
duration of their experience. By contrast, a seed sampling approach is able to explore efficiently, with
agents learning to balance the pole remarkably quickly|'} The average reward per agent increases as
we increase the number K of parallel agents. To reduce compute time, we use seed ensemble with
min(K, 30) models; this seems to not significantly degrade performance.

5 Closing Remarks

We have extended the concept of seeding from the non-practical tabular representations to generalized
representations and we have proposed an approach for designing scalable concurrent reinforcement
learning algorithms that can intelligently coordinate the exploratory effort of agents learning in
parallel in potentially enormous state spaces. This approach allows the concurrent agents (1) to
adapt to each other’s high-dimensional observations via value function learning, (2) to diversify their
experience collection via an intrinsic random seed that uniquely initializes each agent’s generalized
representation and uniquely interprets the common history of observations, (3) to commit to sequences
of actions revealing useful information by maintaining each agent’s seed constant throughout learning.
We envision multiple applications of practical interest, where a number of parallel agents who
conform to the proposed framework, can learn and achieve high rewards in short learning periods.
Such application areas include web services, the management of a fleet of autonomous vehicles or
the management of a farm of networked robots, where each online user, vehicle or robot respectively
is controlled by an agent.

'For a demo, see https://youtu.be/kwvhfzbzb0o

References

[1] Maria Dimakopoulou and Benjamin Van Roy. Coordinated exploration in concurrent reinforce-
ment learning. In ICML, 2018.

[2] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249-256, 2010.

[3] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In arXiv, 2016.

[4] Z. Guo and E. Brunskill. Concurrent PAC RL. In AAAI Conference on Artificial Intelligence,
pages 2624-2630, 2015.

[5] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11:1563-1600, 2010.

[6] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209-232, 2002.

[7] Michael Jong Kim. Thompson sampling for stochastic control: The finite parameter case. IEEE
Transactions on Automatic Control, 2017.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep rein-
forcement learning. arXiv preprint arXiv:1806.03335, 2018.

[10] TIan Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
posterior sampling. In NIPS, pages 3003—3011. Curran Associates, Inc., 2013.

[11] Tan Osband, Daniel Russo, Benjamin Van Roy, and Zheng Wen. Deep exploration via random-
ized value functions. arXiv preprint arXiv:1608.02731, 2016.

[12] Ian Osband and Benjamin Van Roy. On optimistic versus randomized exploration in reinforce-
ment learning. In The Multi-disciplinary Conference on Reinforcement Learning and Decision
Making, 2017.

[13] Tan Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning. In ICML, 2017.

[14] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In Proceedings of The 33rd International Conference on Machine Learning,
pages 2377-2386, 2016.

[15] Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space Markov decision
processes. In AAAI Citeseer, 2013.

[16] Jason Pazis and Ronald Parr. Efficient pac-optimal exploration in concurrent, continuous state
mdps with delayed updates. In AAAI. Citeseer, 2016.

[17] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, [an Osband, and Zheng Wen. A tutorial
on Thompson sampling. arXiv preprint arXiv:1707.02038, 2017.

[18] D. Silver, Barker Newnham, L, S. Weller, and J. McFall. Concurrent reinforcement learning
from customer interactions. In Proceedings of The 30th International Conference on Machine
Learning, pages 924-932, 2013.

[19] Malcolm J. A. Strens. A Bayesian framework for reinforcement learning. In ICML, pages
943-950, 2000.

[20] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 2017.

[21] Csaba Szepesvari. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[22] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

