A  Proofs

A.1 Proof of Theorem [

Recall that we consider a fixed 8 € ©, zg € X, yo € ), and zy = g(6; o). We begin by noting
that since Im(g(6y;-)) = RP, we have

b+ (0; (20, 40)) = sup {€(8; (z,90)) — veo((z, 90), (0, 40))}
xT
= sup {065 (2,00)) — 5 Iz = 2013 = h(2) } . (12)
zERP
Similarly as x}, let z} be an e-optimizer to the problem (T2))
z} € e-arg max {6(9; (z,90)) — e Iz — 20||§} .
zERP 2
To further ease notation, let us denote

185 (2,90)) := (65 (20, 90)) + V=£(8; (20, %0)) " (2 — 20)
(05 (2,90)) = €(0; (20,50)) + V2£(0; (20,50)) " (z — 20) + %(2 — 20) " V220(6; (20, %0)) (2 — 20),

the first- and second-order approximation of z — £(6; (z,yo)) around z = z respectively.

First, we note that ||V..£(8; (z,9))|| < L1 < -y by hypothesis and hence, gnewton(05; o) attains the
maximum in the problem

. 1 1 !
gnewton(af; :EO) = 20 + ; (I - gvzzg(ea (2073/0))> vzg(ea (207y0)) (13)

= arg max {EQ(H; (z,90)) — g |z — z0||§ = hg(z)}
z€ERP

Now, note that ha(2) = £2(0; (2, 40)) — 3 |2 — ong is (v — L) - strongly concave since

)\mln(_vzzh(z)) Z Y= )\max(vzz£2(9; (Zv yO))) 2 v Ll

by Assumption where A ax and A, denotes the maximum and minimum eigenvalue respectively.
Recalling the definition of h(z) given in Eq (12)), we then have

— L N =R . R
g 9 - ||Ze - gnewton(eﬁxo)”g < ha (Ze) — ho (gnewton(ef;l'o))

=h (Z:) —h (gnewton(eﬂ -'L'O)) + h2 (Z:) —h (Z:)

+ h (./g\newton(ef; .170)) - h2 (./g\newton (9f7 .1'0))

<etha(z) = h(z2)

+ h (/g\newton(af; .730)) - h2 (/g\newton(gf; .130)) (14)
where we used the definition of z} in the last inequality.

Next, we note that ho and h are close by Taylor expansion.

Lemma 2 ([29, Lemma 1]). Let f : RP — R have a L-Lipschitz Hessian so that for all z, z' € RP?,
V.2 f(2) = V.. f(2)|| < L||z— 2|, Then, forall z,z" € RP,

F) = F2) = VI T = 2) = 2 = )TV f () = 2)| < £l 2.

Applying Lemma 2] we have that
Loy 3
[h2(2) = h(z)| < == Iz = 2ol
Using this inequality in the bound (T4), we arrive at

v— I
2

L ~
S €+ % (HZO - Z:Hi + ”ZO - gnewton(ef;xO)”;) (15)

||Z: - gnewton(of; 'TO)HE
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From definition (T3) of gnewton (0f; o), we have

5 1 3 ~y 3
HZO _./g\newton(ef;xO)HQ < () ( ) Lg (16)

v v — I

Next, to bound ||zp — z}||, in the bound (T3), we show that z* and z, are at most O(1/~)-away. We
defer the proof of the following lemma to Appendix[A.2]

Lemma 3. Ler Assumptionhold and Im(g(0¢;-)) = RP. Then,

4L0 2e
<0 =
2 Y vy

Applying Lemma [3|to bound ||zo — 2} ||§ on the right hand side of inequality (T3), and using the

bound (T6) for ||z0 — Gnewton (0 f; Z0)
3
5Lo\°  [2¢\? L\’
Y Y v =Ly

1
Z: — 20 — ;VZE(G, (ZO,:UO))

3 .
5> We obtain

~ L
|22 — gnewton(ef;l'o)”Q <e+ ?2

v— L1
2

This gives the final result.

A.2  Proof of Lemma[3

We use the following key lemma which says that for functions that satisfy a growth condition, its
minimum is stable to perturbations to the function.

Lemma 4 ([4], Proposition 4.32]). Suppose that fq satisfies the second-order growth condition: there
exists a ¢ > 0 such that if we denote by z* the minimizer of f so that fo(z*) = inf ,cre fo(2), we
have for all z

fo2) 2 fole") +ellz = 25
If there is a function f1 : RP — R such that fo — fi is k-Lipschitz on a neighborhood N of x*, then
z, any e-approximate minimizer of f1 in N, satisfies

HZ—Z*||2 S 071H+671/261/2

Letting fo(2) == —£1(65 (2, y0))+3 12 — zo/2 and £1(2) := —h(2) = —£(0; (2, yo))+3 |z — 202,
note first that fj is y-strongly convex. Further, fo(2) — f1(2) = £(0; (z,40)) — ( (2, yo)) is 2Ly-
Lipschitz by Assumption[T} Applying Lemmal[d] we obtain the result

A.3 Proof of Theorem

Again, we abuse notation by writing £(6; (z,y)) = €(6; (z,y)) for z = g(0; ) € RP, and similarly
p;(0; z) and ¢~ (6; z). We begin by noting that since Im(g( ,-)) = RP, we have

v 2

62(0; (2,9)) = sup {0065 (') — LIl = 2|13}
z' eRpP 2

The following claim will be crucial.

Claim 5. If z — V_£(0; (z,y)) is L-Lipschitz with respect to the ||-||,-norm, then

9005 G I < 64065 (2, ) = 05 (2,0) < 0 ).

Proof of Claim  From Taylor’s theorem, we have

6065 (/) — €06 (2,)) — V=006 (2,9) (' = )] < 3L )=~ 3.

Using this approximation in the definition of ¢.,(6; (z,)), we get

065 < sup {101 (2.9) 4 92001 (o) =) = 55 N 213

= 0(0; (2,y)) + V20085 (,9))3 -

L
2(y—-1L)
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Similarly, we can compute the lower bound

+L
0205 o)) 2 sup {001 (290) 4 920001 (2 0) G = ) = T E - 213
p— . 1 . 2
= 005 (23)) + 5y V=05 o)
Combining the two bounds, the claim follows. O

From the claim, it suffices to show that z — V,£(0; (z,y)) is L-Lipschitz. From V4(0; (z,y)) =
Oy + 27 P (0; 2)0c, 5, we have

m

IV2£(60; (2, ) = VL0605 (z,9) 1, = ||>_(pi (05 2) — p;(6; 2))0;
=1 )

Now, since

IV2p;(0;2)ll, =

—p;(0; 2) <9j - sz(ﬁ;z)91> |
=1 2

< .
<2 lgaén ||96,J ”2 )

we conclude that

IV2L(6; (2, y)) = V=L(6; (2,9))[ly < L(O) |2 — 2|
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Figure 3. Results obtained by running ADDA algorithm [39] using 10, 000 labeled MNIST samples
and a number of target samples indicated on the x-axis. The blue lines indicate results obtained with our
method with K = 2 and v = 1.0. Test sets are MNIST-M (left), SYN (middle) and USPS (right).

B Additional Experimental Results

Table 1 reports results associated with the digit experiment (Section 4.1, Figure 2). In particular,
it reports numerical results (averaged over 10 different runs) obtained with models trained with
Algorithm 1 by varying the hyperparameters K and . Training set is constituted by 10, 000 MNIST
samples, models were tested on SVHN, MNIST-M, SYN and USPS (see Figure 1 (top)). The
baselines (accuracies achieved by models trained with ERM) are:

SVHN: 0.283 £ 0.032

MNIST-M: 0.548 + 0.021

SYN: 0.406 + 0.022

USPS: 0.789 £ 0.017

Table 2 reports results associated with the semantic segmentation experiment (Section 4.2, Figure
3). To summarize, it reports results obtained by training models on Highway and testing them on
New York-like City and Old European Town, and by training models on New York-like City and
testing them on Highway and Old European Town (see Figure 1 (bottom) to observe the different
weather/time/date conditions). The comparison is between models trained with ERM (ERM rows)
and our method (Ours rows), e.g.Algorithm 1 with K = 1 and v = 1.0.

Finally, Figure 4 reports a comparison between our method (blue) and the unsupervised domain
adaptation algorithm ADDA [39] (yellow), by varying the number of target images fed to the latter
during training. Note that, since unsupervised domain adaptation algorithms make use of target data
during training while our method does not, the comparison is not fair. However, we are interested in
evaluating to which extent our method can compete with a well performing unsupervised domain
adaptation algorithm [39]. While on MNIST — USPS split ADDA clearly outperforms our method,
on MNIST — MNIST-M the accuracies reached by our method are just slightly lower than the ones
reached by ADDA, and on MNIST — SYN our method outperforms it, even if the domain adaptation
algorithm has access to a large number of samples from the target domain. Finally, note that MNIST
— SVHN results are not provided because ADDA would not converge on this split (in effect, these
results are neither reported in the original work [39]]). Instead, models trained on MNIST samples
using our method better generalize to SVHN, as shown in Section 4.1.
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Table 1. Results obtained by training models with Algorithm 1 on 10,000 MNIST samples and testing
them on SVHN, MNIST-M, SYN and USPS. Results are averaged over 20 different runs.

K=1 K=2 K=3 K=4
SVHN
v=10"6  0.287+0.006  0.327+0.016  0.334+0.031  0.328+0.033
v=10"  0.284+0.036  0.311+0.033  0.316+0.036  0.331 + 0.026
v=10"%  0.331+0.018  0.324+0.026  0.336+£0.020  0.325+ 0.030
y=10"%  0.294+0.023  0.316+0.029  0.309+0.024  0.343+0.017
v=10"2  0.290+0.041  0.3204£0.030  0.341+£0.030  0.346 + 0.033
v=10"1  0.284+0.007  0.324+0.017  0.307£0.026  0.323 = 0.029
v=10° 028440012  0.306+0.008  0.314+0.022  0.335+0.029
v=10"  0.305+0.031  0.301£0.035  0.316+0.027  0.3430.030
v=10>  0.304+0.032  0.300+0.017  0.327+0.026  0.321 + 0.034
v=10>  0.289+0.030  0.314+0.032  0.300£0.017  0.304+0.025
v=10" 030040020  0.299+0.028  0.325+0.015  0.340 + 0.026
MNIST-M
v=10"6  0.561+0.013  0.584+0.008  0.581+0.009  0.588+0.013
y=10"5  0.564+0.024  0.573+0.010  0.573+0.024  0.589+0.017
v=10"%  0.583+0.011  0.572+0.010  0.586+0.015  0.578 +0.031
v=10"3  0.562+0.026  0.579+0.010  0.567+£0.023  0.601 =+ 0.018
v=10"2  0.539+0.037  0.578+0.013  0.590+0.014  0.598 + 0.014
v=10""  0.556+0.017  0.589+0.021  0.576+0.018  0.576 =+ 0.019
v=10°  0.557+0.017  0.579+0.009  0.571+0.010  0.584 + 0.024
v=10"  0.568+£0.022  0.564+0.028  0.579+0.024  0.589 +0.016
v=10>  0.564+0.025 0.569+0.013 0.579+0.019  0.578+0.021
v=10>  0.558+0.016  0.568+0.017  0.568+0.010  0.567 = 0.021
v=10*  0.567+0.022  0.561+0.023 0570+0.015  0.579+0.016
SYN
v=10"% 041540013  0.445+0.007  0.440+0.012  0.443 +0.013
v=10"5  0.409+0.029  0.432+0.020  0.437+0.024  0.443+0.014
v=10"%* 043940011  0437+0.011  0.446+0.018  0.440 + 0.022
v=10"% 041740018  0437+0.021  0.436+0.017  0.450 +0.010
v=10"2  0417+0.022  0439+0.015  0.447+0.020  0.450 +0.014
v=10"1  0.405+0.011  0.439+0.009  0.438+0.018  0.439 +0.021
v=10"  0.418+0.004 043140017  0426+0.021  0.441+0.013
v=10" 042140016  0427+0.020  0.436+0.020  0.445 +0.016
v=10> 042740017  0427+0.016  0.436+0.021  0.43240.014
v=10° 041040027  0424+0.019  0422+0.019  0.418+0.015
v=10* 042240018 042340015  0.441+0.010  0.443 +0.016
USPS
v=10"6  0.778+0.019  0.783+0.016  0.784+0.012  0.784+0.012
v=10"5  0.775+0.016  0.774+0.017  0.778£0.010  0.782+0.016
v=10"%  0.781+0.010  0.760+0.021  0.772+0.013  0.774 +0.021
v=10"3  0.758+£0.012  0.788+0.014  0.771+0.011  0.784 +0.011
v=10"2  0.765+0.012  0.775+0.024  0.772+0.021  0.775+0.011
v=10"1  0.773+0.011  0.787+0.013  0.774+0.011  0.776 £ 0.018
v=10°  0.778+0.007  0.772+0.010  0.774+0.017  0.768 + 0.021
v=10'  0.767+0.018  0.774+0.013  0.779+0.016  0.773+0.014
v=10> 077440014 078240013  0.776+0.018  0.771 +0.021
v=10>  0.774+0.013  0.774+0.017  0.775+0.012  0.763+0.025
v=10* 077840013  0.773+0.012  0.774+0.012  0.781+0.011
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Table 2. Results (mloUs) associated with the experiments on SYNTHIA dataset. The first column
indicate the training set. The second column indicate the method used: Empirical Risk Minimization

(ERM) and our method (Ours) with K = 1 and v = 1.0. Remaining columns indicate the test set.

New York-like City Old European Town
Dawn Fog Night Spring ~ Winter Dawn Fog Night ~ Spring  Winter
ERM 18.9 14.7 10.7 14.5 13.4 22.0 20.8 14.5 18.6 15.3
Highway/Dawn Ours 24.0 17.0 19.1 22.9 20.2 27.6 25.0 22.4 27.1 19.0
ERM 12.6 27.8 9.0 12.9 134 13.6 20.7 12.1 15.1 12.7
Highway/Fog Ours 17.4 28.4 11.0 18.4 18.4 18.5 27.5 16.4 22.0 19.0
ERM 13.0 7.7 13.9 13.2 10.9 16.6 11.5 19.0 15.7 9.9
Highway/Night Ours 18.5 14.5 24.8 22.9 22.0 22.2 20.1 28.1 25.5 19.1
ERM 15.2 16.0 10.8 15.8 14.8 18.8 21.2 14.7 19.2 13.9
Highway/Spring Ours 22.6 194 14.6 25.5 23.5 25.1 26.5 21.5 29.9 24.5
ERM 14.1 15.9 11.7 14.8 16.8 15.2 19.3 14.6 16.9 20.0
Highway/Winter Ours 16.9 17.4 12.5 21.0 24.0 17.0 20.5 14.9 23.1 26.8
Highway Old European Town
Dawn Fog Night Spring ~ Winter Dawn Fog Night Spring ~ Winter
ERM 19.6 19.1 13.1 18.8 15.9 27.9 23.5 16.3 21.7 17.0
NY.Like C./ Dawn Ours 22.8 22.8 17.8 214 18.5 31.0 25.9 224 26.0 22.3
ERM 12.5 15.9 9.1 11.8 10.7 24.2 26.5 17.8 21.7 16.0
NY.Like C./Fog Ours 15.4 23.1 16.3 18.7 18.2 17.3 26.4 17.5 24.3 21.6
ERM 14.9 14.7 16.3 13.5 13.1 25.4 24.7 24.4 23.3 17.0
NY.Like C./Night Ours 19.4 20.2 221 19.7 17.3 23.3 23.9 27.2 27.2 221
ERM 17.1 18.0 12.8 16.3 14.8 26.6 27.0 20.4 26.3 22.5
NY.Like C./Spring Ours 14.5 14.7 11.8 15.2 11.2 21.9 21.9 19.7 24.8 22.9
ERM 16.1 17.3 11.9 16.5 16.0 21.3 23.8 19.4 24.1 23.2
NY.Like C./Winter Ours 18.1 18.2 15.2 17.8 17.3 21.0 21.0 19.9 25.5 25.6
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