
Supplementary Material: Modelling and unsupervised learning of symmetric
deformable object categories

We show additional qualitative results learning bilateral symmetry on several datasets. Firstly, we try
a more challenging setting of the CelebA dataset, by applying rotations with standard deviation of
30 degrees and translations with standard deviation 20% of image width. As shown in fig. 11, our
method remains able to learn and recover the axis of symmetry under these conditions.

Secondly, we use an exercise dataset of human pose1. Here (fig. 12) the symmetry is recovered
accurately with upright pose and certain deformations, but fails in extreme cases.

Finally, we attempt to learn bilateral symmetry on cars, using the CompCars dataset2. We observe
that, although the symmetry is recovered with frontal images, the plane through the middle of the car
seen from side is mistakenly thought to be a symmetry. This is understandable, since we train only
using synthetic warps of the same image, so it hard to build up a globally consistent frame. Similarly,
the front and back of the car are not disambiguated from each other.

Figure 11: CelebA trained with large distortions

Figure 12: Bilateral symmetry on humans

Figure 13: Bilateral symmetry on cars
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A Proofs for Section 4 (Theory)

Lemma 1. The set H(⇧) is a subgroup of O(3).

Proof. First, note that, since O(3) is the space of extrinsic symmetries of the sphere S2, then
S2 = hS2 = h�1S2. This means that the function composition h⇡h�1 is well defined. Furthermore,
the identity map h = 1 is clearly included in H(⇧), which is therefore not empty. The set is
also closed under composition: if h1, h2 2 H(⇧), then using associativity (h1h2)⇡(h1h2)�1 =
h1(h2⇡h

�1
2 )h�1

1 shows that h1h2 2 H(⇧). It is also closed under inversion: if h 2 H(⇧), then
h�1 2 H(⇧) due to the symmetry in the definition.

Lemma 2. If H(⇧) ⇢ G, then H(⇧) ⇢ H(G⇧).

Proof. Let h 2 H(⇧); we need to show that h 2 H(G⇧). To this end, consider the map r =
hgh�1g�1. We have

rg(h⇡h�1) = h(g⇡)h�1 (7)
By definition, h⇡h�1 2 ⇧. Furthermore, since H(⇧) ⇢ G, then rg = hgh�1 2 G. Hence we
conclude that h(g⇡)h�1 is contained in G⇧.

Lemma 3. ⇡ ⇠H(⇧) ⇡
0

is an equivalence relation on the space of poses ⇧.

Proof. The relation is reflexive because H(⇧) is a group and thus contain the identity element. It
is symmetric because ⇡0 = h⇡h�1 ) ⇡ = h�1⇡0h and h�1 2 H(⇧) as a group is closed under
inversion. It is transitive because if ⇡00 = h2⇡0h�1

2 and ⇡0 = h1⇡h
�1
1 where h1, h2 2 H(⇧), then

⇡00 = h2⇡0h�1
2 = h2(h1⇡h

�1
1 )h�1

2 = (h2h1)⇡(h2h1)�1 since h2h1 2 H(⇧) as a transformation
group is closed under composition.

Lemma 4. Let the pose space ⇧ be closed under a transformation group G, in the sense that

G⇧ = ⇧. Then, if pose ⇡ 2 ⇧ is a solution of the equation S = ⇡[S2] and if h 2 H(⇧) \G, then

⇡h�1
is another pose that solves the same equation.

Proof. First, note that the composition ⇡h�1 is always well posed since is any orthogonal transfor-
mation h�1 2 O(3). Hence the range h�1S2 of h�1 is the same as the domain S2 of ⇡. For the same
reason, ⇡h�1S2 = ⇡S2 = S have the same shape. To conclude the proof, it remains to show that
⇡h�1 2 ⇧. To this end, note that ⇡h�1 = h�1(h⇡h�1) = h�1⇡0. Since h 2 H(⇧), the map ⇡0

belongs to ⇧ by definition of H(⇧). Since h 2 G too, since ⇧ is closed to the action of G, the map
h�1⇡0 belongs to ⇧ as well.
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