
Supplementary Information for Gaussian
Process Prior Variational Autoencoders

Contents

1 Supplementary Methods 1
1.1 ELBO derivation . 1
1.2 Loss derivation . 1
1.3 Fast low-rank computations . 2
1.4 Implementation of low-memory stochastic backprobagation 2
1.5 Out of sample predictions. 3

2 Supplementary Figures 4

1 Supplementary Methods

1.1 ELBO derivation

We assume the following posterior distribution on latent variables

qψ(Z |Y) =
∏
n

N
(
zn |µzψ(yn),diag(σz2ψ(yn))

)
, (1)

where ψ are variational parameters. The evidence lower bound (ELBO) can be derived as follows:

logp(Y | X,W ,φ, σ2
y ,θ) = log

∫
p(Y | z,φ, σ2

y)p (Z |X,W ,θ, α)

qψ(Z |Y)
qψ(Z |Y)dZ

≥
∫

log

(
p(Y | z,φ, σ2

y)p (Z |X,W ,θ, α)

qψ(Z |Y)

)
qψ(Z |Y)dZ

= EZ∼qψ

[∑
n

log N (yn | gφ(zn), σ2
yIK) + logp (Z |X,W ,θ, α)

]
−
∫

logqψ(Z |Y)qψ(Z |Y)dZ

= EZ∼qψ

[∑
n

log N (yn | gφ(zn), σ2
yIK) + logp (Z |X,W ,θ, α)

]
+

1

2

∑
nl

log(σz2
ψ(yn)l) + const

1.2 Loss derivation

First, we approximate the expectation by sampling. Specifically, we sample a latent representation
Zψ =

[
zψ1, . . . ,zψN

]
∈ RN×L from the posterior as:

zψn = µzψ(yn) + εn � σzψ(yn), εn ∼ N (0, IL×L), n = 1, . . . , N, (2)

1

where we used the reparametrization trick to separate the noisy generation of samples from the model
parameters. The resulting approximate ELBO is

ELBO ≈
∑
n

log N (yn | gφ(zψn
), σ2

yIK) + logp
(
Zψ |X,W ,θ, α

)
+

1

2

∑
nl

log(σz2
ψ(yn)l) + const

Finally, as we optimize σ2
y on a validation set (and not on the training set in order to avoid overfitting),

maximization of the approximate ELBO on the training set is equivalent to minimizing the following
cost:

L
(
φ,ψ,θ, α, σ2

y

)
=

1

K

∑
i

(
yi − gφ(ωψn)

)2
︸ ︷︷ ︸

reconstruction term

−λ
L

logp (Zψ |X,W ,θ, α)︸ ︷︷ ︸
latent-space GP model

+
1

2

∑
nl

log(σz2ψ(yn)l)︸ ︷︷ ︸
regularization

 , (3)

where K is the number of pixels in the image and λ is a trade-off parameter balancing data reconstruction
and latent space prior regularization.

Selection of λ. We select the value of λ based on a standard VAE and use the same value for all
compared models. Specifically, we optimize the VAE loss for different values of λ and select the value for
which the VAE ELBO is maximal on a validation set. In order to compute the VAE validation ELBO
we need to estimate optimal value of σ2

y for every value of λ in the grid. Given a certain value of λ = λ̂,
the optimal value of σ2

y can be estimated as

σ2
y
(val)

=
1

N (val)

N(val)∑
n=1

(
y(val)
n − gφλ(zψλ̂

(val)
n

)
)2
, (4)

where N (val) is the number of samples in the validation set and (φλ̂, ψλ̂) are the values of the en-

coder/decoder parameters after training for λ = λ̂.

1.3 Fast low-rank computations

Parameter inference in Gaussian models scales cubically with the number of observations. To preform
fast parameter inference in our Gaussian model, we use the fact that the total covariance is the sum of
low-rank matrix and the identity matrix:

K = V V T + αI (5)

where V ∈ RN×O and O � N . Using the Woodbury identity [1] and the determinant lemma [2], the
linear system K−1M with M ∈ RN×K and the log determinant of K can be computed as:

K−1M =
1

α
I − 1

α
V (αI + V TV)−1V TM , (6)

logdetK = NLlogdetα+ logdet(I +
1

α
V TV), (7)

which have O(NO2 +O3 +ONK) and O(NO2 +O3) complexities, respectively.

1.4 Implementation of low-memory stochastic backprobagation

For a single latent dimension the GP prior introduces the following term in the ELBO:

logp (zψ |X,W ,θ, α) = −1

2
zTψKθ(X,V)−1zψ −

1

2
logdetKθ(X,V) (8)

2

In the equation above, zψ functionally depends on the image space representations and thus a naive
computation of full gradient descent would require loading the entire high-dimensional dataset in memory,
which would be unfeasible form many high-dimensional image datasets. To overcome this limitation, we
recast computations in a form where full-matrix operations only take place in the low dimensional space,
while the dependency on the nested derivatives, which involve high memory loads, is linearized and
mini-batch operations are therefore allowed. This can be achieved by considering a first-order Taylor
expansion of the GP prior term. Specfically, using that Kθ = VθV

T
θ + αI, and collecting all parameters

in ξ = {ψ,θ, α}, we can rewrite the the term in Eq. (8) in this functional form f(z(ξ),V (ξ), α(ξ)). The
first-order Taylor expansion of f(z(ξ),V (ξ), α(ξ)) around (zξ0 ,Vξ0 , αξ0) is:

f(z(ξ),V (ξ), α(ξ)) ≈ aTz(ξ) + tr
(
BTV (ξ)

)
+ cα(ξ) + const. (9)

where

a =

(
∂f

∂z

)
ξ0

=
(
K−1z

)
ξ0

(10)

B =

(
∂f

∂V

)
0

=
(
−K−1zzTK−1V +K−1V

)
ξ0

(11)

c =

(
∂f

∂α

)
ξ0

=
1

2

(
−zTK−1K−1z + tr(K−1)

)
ξ0

(12)

Note that this approximation, applied at every step of gradient descent, locally preserves the gradients.
Thus we can engineer the following low-memory four-step procedure for full gradient descent:

• produce and store latent noise realizations (ε) used for the reparametrization trick;

• obtain latent variable representations z, combining the outputs of the encoder and the noise ε. We
employ mini-batch forward propagation for this step;

• evaluate a, B and c across all samples. Note that this step has low-memory requirements as it only
involes low-dimensional representations;

• exploit the local Taylor expansion as a proxy for our optimization. As this function is linear in the
data, we can accumulate its gradient in a mini-batch fashion, by passing mini-batches of ε, Y , a
and B;

• update the parameters ξ using the full gradients as in standard gradient descent.

Finally, we note that in our specific setting a, B and c can be computed linearly on the number of sample
because of the low rank structure of K (see previous section).

1.5 Out of sample predictions.

We here derive an approximate predictive posterior for GPPVAE. Specifically, given training images Y ,
object representations X and view representations V the predictive posterior for image y? representing

3

object x? in view v? is

p(y? |x?,v?,Y ,X,V) =
p(y?,Y |x?,v?,X,V)

p(Y |X,V)
(13)

=
1

p(Y |X,V)

∫
p(y? |z?)p(Y |Z) p(z?,Z |x?,v?,X,V)︸ ︷︷ ︸

joint distribution

dz?dZ (14)

=
1

p(Y |X,V)

∫
p(y? |z?)p(Y |Z) p(z? |x?,v?,Z,X,V)︸ ︷︷ ︸

predictive posterior

p(Z |X,V)︸ ︷︷ ︸
GP prior on training

dz?dZ (15)

=

∫
p(y? |z?) p(z? |x?,v?,Z,X,V)︸ ︷︷ ︸

predictive posterior

p(Y |Z)p(Z |X,V)

p(Y |X,V)︸ ︷︷ ︸
posterior on Z

dz?dZ (16)

≈
∫
p(y? |z?) p(z? |x?,v?,Z,X,V)︸ ︷︷ ︸

predictive posterior

q(Z |Y)︸ ︷︷ ︸
approx. post. on Z

dz?dZ (17)

where we dropped dependencies from model parameters to simplify the notation.

2 Supplementary Figures

8x3x3 conv, stride 2 + ELU

Out: 8 x 14 x 14

8x3x3 conv, stride 2 + ELU

Out: 8 x 7 x 7

8x3x3 conv, stride 2 + ELU

Out: 8 x 4 x 4

FC 16

Out: 16

FC 16

Out: 16

Input image

Out: 1 x 28 x 28

FC 128

Out: 8x4x4

Upsample + 8x3x3 conv, stride 1 + ELU

Out: 8 x 7 x 7

Upsample + 8x3x3 conv, stride 1 + ELU

Out: 8 x 14 x 14

Latent variable

Out: 16

Upsample + 1x3x3 conv, stride 1 + ELU

Out: 1 x 28 x 28

a b

Figure S1 Neural network architecture used in the MNIST experiments. (a) Encoder archi-
tecture; (b) Decoder architecture. The same encoder/decoder architectures are used for both VAE and
GPPVAE. For CVAE, we still use the same architecture but we provide view representations (rotation
angles) as inputs to both the encoder and the decoder. For the encoder, we provide rotation angles to
the first layer (by adding additional channels to the input image) and again before the dense layer (by
stacking them to the vector produced by the last convolution). Similarly, for the decoder, we provide
rotation angles as inputs to the first layer (by stacking them with the 16-dimensional latent variable)
and again before the first convolution layer (by adding them as additional channels to the 8x8x4 tensor
fed to the first convolution layer). For a fair comparison with GPPVAE, we account for periodicity in
the view representation by providing both the angle sine and cosine, i.e. w = [sinφ, cosφ], where φ is the
rotation angle.

4

32x3x3 conv, stride 1 + ELU + 32x3x3 conv stride 2 + ELU

Out: 32 x 64 x 64

32x3x3 conv, stride 1 + ELU + 32x3x3 conv stride 2 + ELU

Out: 32 x 32 x 32

32x3x3 conv, stride 1 + ELU + 32x3x3 conv stride 2 + ELU

Out: 32 x 16 x 16

Input image

Out: 3 x 128 x 128

FC 512

Out: 32x4x4

Upsample + 32x3x3 conv, stride 1 + ELU + 32x3x3 conv, stride 1 + ELU

Out: 32 x 8 x 8

Upsample + 32x3x3 conv, stride 1 + ELU + 32x3x3 conv, stride 1 + ELU

Out: 32 x 16 x 16

Latent variable

Out: 256

Upsample + 32x3x3 conv, stride 1 + ELU + 32x3x3 conv, stride 1 + ELU

Out: 32 x 32 x 32

a b

32x3x3 conv, stride 1 + ELU + 32x3x3 conv stride 2 + ELU

Out: 32 x 8 x 8

32x3x3 conv, stride 1 + ELU + 32x3x3 conv stride 2 + ELU

Out: 32 x 4 x 4

FC 256 + LINEAR

Out: 256

FC 256 + SOFTPLUS

Out: 256

Upsample + 32x3x3 conv, stride 1 + ELU + 32x3x3 conv, stride 1 + ELU

Out: 32 x 64 x 64

Upsample + 32x3x3 conv, stride 1 + ELU + 3x3x3 conv, stride 1

Out: 3 x 128 x 128

Figure S2 Neural network architecture used in the face dataset experiments. (a) Encoder
architecture; (b) Decoder architecture. The same encoder/decoder architectures are used for both VAE
and GPPVAE. For CVAE, we still use the same architecture but we provide view information as one
hot encoding of the 9 different poses to both the encoder and the decoder networks. For the encoder,
we provide view representations to the first layer (by adding additional channels to the input image)
and again before the dense layer (by stacking them to the vector produced by the last convolution).
Similarly, for the decoder, we provide view representations as inputs to the first layer (by stacking them
with the 16-dimensional latent variable) and again before the first convolution layer (by adding them as
additional channels to the 8x8x4 tensor fed to the first convolution layer).

Selection of alpha for main paper figures

a

A VAE LB
B LIVAE out
C CVAE out

b

Figure S3 Selection of the trade-off parameter between fit-to-data and latent-space model.
The trade-off parameter was selected as to maximize VAE ELBO. We here show the VAE validation
lower bound as a function of the trade-off parameter for the MNIST (a) and the face dataset (b).

5

Figure S4 For CVAE and LIVAE, we also considered the alternative strategy of selecting the value of
the trade-off parameter λ that maximizes prediction performance on the validation set. We refer to these
additional methods as CVAE-opt and LIVAE-opt. We here show the selection of λ for CVAE-opt (a)
and LIVAE-opt (b) and their performance (c-d) for the experiments in MNIST.

Figure S5 Analogous to Figure S4 but for the face data experiments.

Figure S6 Out-of-sample predictions obtained from GPPVAE-joint when considering the perceptual
loss introduced in [3].

6

References

[1] Henderson, H. V. & Searle, S. R. On deriving the inverse of a sum of matrices. Siam Review 23,
53–60 (1981).

[2] Harville, D. A. Matrix algebra from a statistician’s perspective, vol. 1 (Springer, 1997).

[3] Hou, X., Shen, L., Sun, K. & Qiu, G. Deep feature consistent variational autoencoder. In Applications
of Computer Vision (WACV), 2017 IEEE Winter Conference on, 1133–1141 (IEEE, 2017).

7

	Supplementary Methods
	ELBO derivation
	Loss derivation
	Fast low-rank computations
	Implementation of low-memory stochastic backprobagation
	Out of sample predictions.

	Supplementary Figures

