
A Proofs

Lemma 1

Given an exchangeable sequence (x1, x2, . . . , xn) of random variables xi ∈ X and a bijective
mapping f : X 7→ Z , the sequence (f(x1), f(x2), . . . , f(xn)) is exchangeable.

Proof. Consider a vector function g : Rn 7→ Rn such that
(x1, . . . , xn) 7→ (z1 = f(x1), . . . , zn = f(xn)). A change of variable formula gives:

p(x1, x2, . . . , xn) = p(z1, z2, . . . , zn) |detJ | ,

where detJ =
∏n
i=1

∂f(xi)
∂xi

is the determinant of the Jacobian of g. Since both the joint probability
of (x1, x2, . . . , xn) and the |detJ | are invariant to the permutation of sequence entries, so must be
p(z1, z2, . . . , zn). This proves that (z1, z2, . . . , zn) is exchangeable. �

Lemma 2

Given two exchangeable sequence x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of ran-
dom variables, where xi is independent from yj for ∀i, j, the concatenated sequence x_y =
((x1, y1), (x2, y2), . . . , (xn, yn)) is exchangeable as well.

Proof. For any permutation π, as both sequences x and y are exchangeable we have:

p(x1, x2, . . . , xn)p(y1, y2, . . . , yn) = p(xπ(1), xπ(2), . . . , xπ(n))p(yπ(1), yπ(2), . . . , yπ(n)).

Independence between elements in x and y allows to write it as a joint distribution:

p((x1, y1), (x2, y2) . . . , (xn, yn)) = p((xπ(1), yπ(1)), (xπ(2), yπ(2)), . . . , (xπ(n), yπ(n))),

and thus the sequence x_y is exchangeable. �

This Lemma justifies our construction with D independent exchangeable processes in the latent space
as given in A1 from Section 3.3.

B Derivation of recurrent Bayesian updates for exchangeable Student-t and
Gaussian processes

We assume that x = (x1, x2, . . . xn) ∈ Rn follows a multivariate Student-t distribution
MV Tn(ν,µ,K) with degrees of freedom ν ∈ R+ \ [0, 2], mean µ ∈ Rn and a positive definite
n× n covariance matrixK. Its density is given by:

p(x) =
Γ(ν+n2)

((ν − 2)π)n/2Γ(ν/2)
|K|−1/2

(
1 +

(x− µ)TK−1(x− µ)

ν − 2

)− ν+n2
. (1)

Note that this parameterization of the multivariate t-distribution as defined by Shah et al. [8] is slightly
different from the commonly used one. We used this parametrization as it makes the formulas simpler.

If we partition x into two consecutive parts xa ∈ Rna and xb ∈ Rnb :[
xa
xb

]
∼MV Tn

(
ν,

[
µa
µb

]
,

[
Kaa Kab

Kba Kbb

])
,

the conditional distribution p(xb|xa) is given by:

p(xb|xa) = MV Tnb(ν + na, µ̃b,
ν + βa − 2

ν + na − 2
K̃bb), (2)

where

µ̃b = KbaK
−1
aa (xa − µa) + µb

βa = (xa − µa)TK−1aa (xa − µa)

K̃bb = Kbb −KbaK
−1
aaKab.

1

Derivation of this result is given in the appendix of [8]. Let us now simplify these equations for the
case of exchangeable sequences with µ = (µ, µ . . . µ) and the following covariance structure:

K =


v ρ · · · ρ
ρ v · · · ρ
...

...
. . .

...
ρ ρ · · · v

 .

In our problem, we are interested in doing one-step predictions, i.e. computing a univariate density
p(xn+1|x1:n) with parameters νn+1, µn+1, vn+1. Therefore, in Eq. 2 we can take: nb = 1, na = n,
xa = x1:n ∈ Rn, xb = xn+1 ∈ R, Kaa = K1:n,1:n, Kab = K1:n,n+1, Kba = Kn+1,1:n and
Kbb = Kn+1,n+1 = v.

Computing the parameters of the predictive distribution requires the inverse ofKaa, which we can
find using the Sherman-Morrison formula:

K−1aa = (A+ uvT)−1 = A−1 − A
−1uvTA−1

1 + vTA−1u
,

with

A =


v − ρ 0 · · · 0

0 v − ρ · · · 0
...

...
. . .

...
0 0 · · · v − ρ

 ,

u =


ρ
ρ
...
ρ

 , v =


1
1
...
1

 .

After a few steps, the inverse ofKaa is:

K−1aa =


an bn · · · bn
bn an · · · bn
...

...
. . .

...
bn bn · · · an


with

an =
v + ρ(n− 2)

(v − ρ)(v + ρ(n− 1))
,

bn =
−ρ

(v − ρ)(v + ρ(n− 1))
.

Note that entries ofK−1aa explicitly depend on n.

Equations for the mean and variance of the predictive distribution require the following term:

KbaK
−1
aa = (ρ ρ · · · ρ)K−1aa =

{ ρ

v + ρ(n− 1)

}
1:n
,

which is a 1× n vector.

With this in mind, it is easy to derive the following recurrence:

dn =
ρ

v + ρ(n− 1)

µn+1 = (1− dn)µn + dnxn

vn+1 = (1− dn)vn + dn(v − ρ).

Finally, let us derive recurrent equations for βn+1 = (xa − µa)TK−1aa (xa − µa).

2

Let x̃ = xa − µa, then:

βn+1 = x̃TK−1aa x̃

= (anx̃1 + bn

n∑
i6=1

x̃i, anx̃2 + bn

n∑
i 6=2

x̃i, . . . , anx̃n + bn
∑
i 6=n

x̃i)
T (x̃1, x̃2, . . . x̃n)

= (an − bn)

n∑
i=1

x̃2i + bn(

n∑
i=1

x̃i)
2.

Similarly, βn from p(xn|x1:n−1) is:

βn = (an−1 − bn−1)

n−1∑
i=1

x̃2i + bn−1(

n−1∑
i=1

x̃i)
2

βn+1 = (an − bn)(

n−1∑
i=1

x̃2i + x̃2n) + bn(

n∑
i=1

x̃i)
2

= (an − bn)
βn − bn−1(

∑n−1
i=1 x̃i)

2

an−1 − bn−1
+ (an − bn)x̃2n + bn(

n∑
i=1

x̃i)
2.

It is easy to show that an−bn
an−1−bn−1

= 1, so βn+1 can be written recursively as:

sn+1 = sn + x̃n

βn+1 = βn + (an − bn)x̃2n + bn(s2n+1 − s2n),

with s1 = 0.

C Implementation details

For simple datasets, such as MNIST, we found it tolerable to use models that rely upon a general
implementation of the Real NVP coupling layer similarly to Papamakarios et al. [6]. Namely,
when scaling and translation functions s and t are fully-connected neural networks. In our model,
networks s and t share the parameters in the first two dense layers with 1024 hidden units and ELU
nonlinearity [1]. Their output layers are different: s ends with a dense layer with tanh and t ends
with a dense layer without a nonlinearity. We stacked 6 coupling layers with alternating the indices
of the transformed dimensions between odd and even as described by Dinh et al. [2]. For the first
layer, which implements a logit transformation of the inputs, namely f(x) = logit(α+ (1− 2α)x),
we used α = 10−6. The logit transformation ensures that when taking the inverse mapping during
sample generation, the outputs always lie within (−α1−2α ,

1−α
1−2α).

In Omniglot, Fashion MNIST and CIFAR-10 experiments, we built upon a Real NVP model originally
designed for CIFAR-10 by Dinh et al. [3]: a multi-scale architecture with deep convolutional residual
networks in the coupling layers. Our main difference was the use of coupling layers with fully-
connected s and t networks (as described above) placed on top of the original convolutional Real
NVP model. We found that adding these layers allowed for a faster convergence and improved results.
This is likely due to a better mixing of the information before the output of the Real NVP gets into
the Student-t layer. We also found that using weight normalisation [7] within every s and t function
was crucial for successful training of large models.

The model parameters were optimized using RMSProp [9] with a decaying learning rate starting
from 10−3. Trainable parameters of a T P or GP were updated with a 10x smaller learning rate and
were initialized as following: νd = 1000, vd = 1., ρd = 0.1 for every dimension d. The mean µd
was fixed at 0. For the Omniglot model, we used a batch size of 32, sequence length of 20 and trained
for 200K iterations. The other models were trained for a smaller number of iterations, i.e. ranging
from 50K to 100K updates.

3

D Sampling from a Student-t distribution

Algorithm 1 Efficient sampling on GPU from a univariate t-distribution with mean µ, variance v and
degrees of freedom ν

function sample(µ, v, ν)
a, b← U(0, 1)
c← min(a, b)
r ← max(a, b)
α← 2πc

r

t← cos(α)
√

(ν/r2)(r−4/ν − 1)

σ ←
√
v
(
ν−2
ν

)
return µ+ σt

end function

E Sample analysis

In Figure 1, which includes Figure 2 from the main text, we want to illustrate how sample variability
depends on the variance of the inputs. From these examples, we see that in the case of a repeated
input image, samples get more coherent as the number of conditioning inputs grows. It also shows
that BRUNO does not merely generate samples according to the inferred class label.

While Omngilot is limited to 20 images per class, we can experiment with longer sequences using
CIFAR-10 or MNIST. In Figure 2 and Figure 3, we show samples from the models trained on those
datasets. In Figure 4, we also show more samples from the prior distribution p(x).

Figure 1: Samples generated conditionally on images from an unseen Omniglot character class. Left:
input sequence of 20 images from one class. Right: the same image is used as an input at every step.

Figure 2: CIFAR-10 samples from p(x|x1:n) for every n = 480, . . . , 500. Left: input sequence
(given in the top row of each subplot) is composed of random same-class test images. Right: same
image is given as input at every step. In both cases, input images come from the test set of CIFAR-10
and the model was trained on all of the classes.

4

Figure 3: MNIST samples from p(x|x1:n) for every n = 480, . . . , 500. Left: input sequence (given
in the top row of each subplot) is composed of random same-class test images. Right: same image is
given as input at every step. In both cases, input images come from the test set of MNIST and the
model was trained only on even digits, so it did not see digit ‘1’ during training.

Figure 4: Samples from the prior for the models trained on Omniglot, CIFAR-10, Fashion MNIST
and MNIST (only trained on even digits).

F Parameter analysis

After training a model, we observed that a majority of the processes in the latent space have low
correlations ρd/vd, and thus their predictive distributions remain close to the prior. Figure 5 plots
the number of dimensions where correlations exceed a certain value on the x-axis. For instance,
MNIST model has 8 dimensions where the correlation is higher than 0.1. While we have not verified
it experimentally, it is reasonable to expect those dimensions to capture information about visual
features of the digits.

Figure 5: Number of dimensions where ρd/vd > ε plotted on a double logarithmic scale. Left:
Omniglot model. Middle: CIFAR-10 model Right: Non-convolutional version of BRUNO trained on
MNIST.

For T P-based models, degrees of freedom νd for every process in the latent space were intialized to
1000, which makes a T P close to a GP . After training, most of the dimensions retain fairly high
degrees of freedom, but some can have small ν’s. One can notice from Figure 6 that dimensions with
high correlation tend to have smaller degrees of freedom.

5

Figure 6: Correlation ρd/vd versus degrees of freedom νd for every d. Degrees of freedom on the
x-axis are plotted on a logarithmic scale. Left: Omniglot model. Middle: CIFAR-10 model Right:
Non-convolutional version of BRUNO trained on MNIST.

We noticed that exchangeable T Ps and GPs can behave differently for certain settings of hyperpa-
rameters even when T Ps have high degrees of freedom. Figure 7 gives one example when this is the
case.

Figure 7: A toy example which illustrates how degrees of freedom ν affect the behaviour of a T P
compared to a GP . Here, we generate one sequence of 100 observations from an exchangeable
multivariate normal disribution with parameters µ = 0., v = 0.1, ρ = 0.05 and evaluate predictive
probabilities under an exchangeable T P and GP models with parameters µ = 0., v = 1., ρ = 0.01
and different ν for T Ps in the left and the right plots.

G Training of GP and T P-based models

When jointly optimizing Real NVP with a T P or a GP on top, we found that these two versions of
BRUNO occasionally behave differently during training. Namely, with GPs the convergence was
harder to achive. We could pinpoint a few determining factors: (a) the use of weightnorm [7] in the
Real NVP layers, (b) an intialisation of the covariance parameters, and (c) presence of outliers in the
training data. In Figure 8, we give examples of learning curves when BRUNO with GPs tends not
to work well. Here, we use a convolutional architecture and train on Fashion MNIST. To simulate
outliers, every 100 iterations we feed a training batch where the last image of every sequence in the
batch is completely white.

We would like to note that there are many settings where both versions of BRUNO diverge or
they both work well, and that the results of this partial ablation study are not sufficient to draws
general conclusions. However, we can speculate that when extending BRUNO to new problems, it is
reasonable to start from a GP-based model with weightnorm, small initial covariances, and small
learning rates. However, when finding a good set of hyperparameters is difficult, it might be worth
trying the T P-based BRUNO.

6

Figure 8: Negative log-likelihood of T P and GP-based BRUNO on the training batches, smoothed
using a moving average over 10 points. Left: not using weightnorm, initial covariances are sampled
from U(0.1, 0.95) for every dimension. Here, the GP -based model diverged after a few hundred
iterations. Adding weighnorm fixes this problem. Middle: using weightnorm, covariances are
initialised to 0.1, learning rate is 0.002 (two times the default one). In this case, the learning rate is
too high for both models, but the GP-based model suffers from it more. Right: using weightnorm,
covariances are initialised to 0.95.

H Set anomaly detection

Online anomaly detection for exchangeable data is one of the application where we can use BRUNO.
This problem is closely related to the task of content-based image retrieval, where we need to rank
an image x on how well it fits with the sequence x1:n [5]. For the ranking, we use the probabilistic
score proposed in Bayesian sets [4]:

score(x) =
p(x|x1:n)

p(x)
. (3)

When we care exclusively about comparing ratios of conditional densities of xn+1 under different
sequences x1:n, we can compare densities in the latent space Z instead. This is because the Jacobian
from the change of variable formula does not depend on the sequence we condition on.

For the following experiment, we trained a small convolutional version of BRUNO only on even
MNIST digits (30,508 training images). In Figure 9, we give typical examples of how the score
evolves as the model gets more data points and how it behaves in the presence of inputs that do not
conform with the majority of the sequence. This preliminary experiment shows that our model can
detect anomalies in a stream of incoming data.

Figure 9: Evolution of the score as the model sees more images from an input sequence. Identified
outliers are marked with vertical lines and plotted on the right in the order from top to bottom. Note
that the model was trained only on images of even digits. Left: a sequence of digit ‘1’ images with
one image of ‘7’ correctly identified as an outlier. Right: a sequence of digit ‘9’ with one image of
digit ‘5’.

7

I Model samples

Figure 10: Samples from a model trained on Omniglot. Conditioning images come from character
classes that were not used during training, so when n is small, the problem is equivalent to a few-shot
generation.

8

Figure 11: Samples from a model trained on CIFAR-10. The model was trained on the set with 10
classes. Conditioning images in the top row of each subplot come from the test set.

9

Figure 12: Samples from a convolutional BRUNO model trained on Fashion MNIST. The model was
trained on the set with 10 classes. Conditioning images in the top row of each subplot come from the
test set.

10

Figure 13: Samples from a non-convolutional model trained on MNIST. The model was trained on
the set with 10 classes. Conditioning images in the top row of each subplot come from the test set.

11

References

[1] Clevert, D., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep network learning by
exponential linear units (ELUs). In Proceedings of the 4th International Conference on Learning
Representations.

[2] Dinh, L., Krueger, D., and Bengio, Y. (2014). NICE: non-linear independent components
estimation. arXiv preprint, abs/1410.8516.

[3] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP. In
Proceedings of the 5th International Conference on Learning Representations.

[4] Ghahramani, Z. and Heller, K. A. (2006). Bayesian sets. In Weiss, Y., Schölkopf, B., and Platt,
J. C., editors, Advances in Neural Information Processing Systems 18, pages 435–442. MIT Press.

[5] Heller, K. A. and Ghahramani, Z. (2006). A simple bayesian framework for content-based image
retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 2110–2117.

[6] Papamakarios, G., Murray, I., and Pavlakou, T. (2017). Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems 30, pages 2335–2344.

[7] Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Proceedings of the 30th International Conference
on Neural Information Processing Systems.

[8] Shah, A., Wilson, A. G., and Ghahramani, Z. (2014). Student-t processes as alternatives to
gaussian processes. In Proceedings of the 17th International Conference on Artificial Intelligence
and Statistics, pages 877–885.

[9] Tieleman, T. and Hinton, G. (2012). Lecture 6.5 - RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.

12

	Proofs
	Derivation of recurrent Bayesian updates for exchangeable Student-t and Gaussian processes
	Implementation details
	Sampling from a Student-t distribution
	Sample analysis
	Parameter analysis
	Training of GP and TP-based models
	Set anomaly detection
	Model samples

