
PAC-Bayes Tree: weighted subtrees with guarantees

Tin Nguyen∗
MIT EECS

tdn@mit.edu

Samory Kpotufe
Princeton University ORFE
samory@princeton.edu

Abstract

We present a weighted-majority classification approach over subtrees of a fixed
tree, which provably achieves excess-risk of the same order as the best tree-pruning.
Furthermore, the computational efficiency of pruning is maintained at both training
and testing time despite having to aggregate over an exponential number of subtrees.
We believe this is the first subtree aggregation approach with such guarantees.
The guarantees are obtained via a simple combination of insights from PAC-Bayes
theory, which we believe should be of independent interest, as it generically implies
consistency for weighted-voting classifiers w.r.t. Bayes – while, in contrast, usual
PAC-bayes approaches only establish consistency of Gibbs classifiers.

1 Introduction

Classification trees endure as popular tools in data analysis, offering both efficient prediction and
interpretability – yet they remain hard to analyze in general. So far there are two main approaches
with generalization guarantees: in both approaches, a large tree (possibly overfitting the data) is first
obtained; one approach is then to prune back this tree down to a subtree2 that generalizes better;
the alternative approach is to combine all possible subtrees of the tree by weighted majority vote.
Interestingly, while both approaches are competitive with other practical heuristics, it remains unclear
whether the alternative of weighting subtrees enjoys the same strong generalization guarantees as
pruning; in particular, no weighting scheme to date has been shown to be statistically consistent, let
alone attain the same tight generalization rates (in terms of excess risk) as pruning approaches.

In this work, we consider a new weighting scheme based on PAC-Bayesian insights [1], that (a) is
consistent and attains the same generalization rates as the best pruning of a tree, (b) is efficiently
computable at both training and testing time, and (c) competes against pruning approaches on
real-world data. To the best of our knowledge, this is the first practical scheme with such guarantees.

The main technical hurdle has to do with a subtle tension between goals (a) and (b) above. Namely,
let T0 denote a large tree built on n datapoints, usually a binary tree with O(n) nodes; the family
of subtrees T of T0 is typically of exponential size in n [2], so a naive voting scheme that requires
visiting all subtrees is impractical; on the other hand it is known that if the weights decompose
favorably over the leaves of T (e.g., multiplicative over leaves) then efficient classification is possible.
Unfortunately, while various such multiplicative weights have been designed for voting with subtrees
[3, 4, 5], they are not known to yield statistically consistent prediction. In fact, the best known result
to date [5] presents a weighting scheme which can provably achieve an excess risk3 (over the Bayes
classifier) of the form oP (1) + C ·minT R(hT), whereR(hT) denotes the misclassification rate of
a classifier hT based on subtree T . In other words, the excess risk might never go to 0 as sample size
increases, which in contrast is a basic property of the pruning alternative. Furthermore, the approach
∗The majority of the research was done when the author was an undergraduate student at Princeton University

ORFE.
2Considering only subtrees that partition the data space.
3The excess risk of a classifier h over the Bayes hB (which minimizesR(h) over any h) isR(h)−R(hB).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

of [5], based on l1-risk minimization, does not trivially extend to multiclass classification, which is
most common in practice. Our approach is designed for multiclass by default.

Statistical contribution. PAC-Bayesian theory [1, 6, 7, 8] offers useful insights into designing
weighting schemes with generalization guarantees (w.r.t. a prior distribution P over classifiers).
However, a direct application of existing results fails to yield a consistent weighted-majority scheme.
This is because PAC-Bayes results are primarily concerned with so-called Gibbs classifiers, which
in our context corresponds to predicting with a random classifier hT drawn according to a weight-
distribution Q over subtrees of T0. Instead, we are interested in Q-weighted majority classifiers
hQ. Unfortunately the corresponding errorR(hQ) can be twice the riskR(Q) = EhT∼QR(hT) of
the corresponding Gibbs classifier: this then results (at best – see overview in Section 2.2) in an
excess risk of the form (R(hQ)−R(hB)) ≤ (R(Q)−R(hB)) +R(Q) = oP (1) +R(hB), which,
similar to [5], does not go to 0. So far, this problem is best addressed in PAC-Bayes results such as
the MinCq bound in [6, 8] on R(hQ), which is tighter in the presence of low correlation between
base classifiers. In contrast, our PAC-Bayes result applies even without low correlation between base
classifiers, and allows an excess risk oP (1) + (C/n) ·minT log(1/P (T))→ 0 (Proposition 2). This
first result is in fact of general interest since it extends beyond subtrees to any family of classifiers,
and is obtained by carefully combining existing arguments from PAC-Bayes analysis.

However, our basic PAC-Bayes result alone does not ensure convergence at the same rate as that
of the best pruning approaches. This requires designing a prior P that scales properly with the
size of subtrees T of T0. For instance, suppose P were uniform over all subtrees of T0, then
log(1/(P (T)) = Ω(n), yielding a vacuous excess risk. We show through information-theoretic
arguments that an appropriate prior P can be designed to yield rates of convergence of the same
order as that of the best pruning of T0. In particular, our resulting weighting scheme maintains ideal
properties of pruning approaches such as adaptivity to the intrinsic dimension of data (see e.g. [9]).

Algorithmic contribution. We show that we can design a prior P which, while meeting the above
statistical constraints, yields posterior weights that decompose favorably over the leaves of a subtree T .
As a result of this decomposition, the weights of all subtrees can be recovered by simply maintaining
corresponding weights at the nodes of the original tree T0 for efficient classification in time O(log n)
(this is illustrated in Figure 1). We then propose an efficient approach to obtain weights at the nodes
of T0, consisting of concurrent top-down and bottom-up dynamic programs that run in O(n) time.
These match the algorithmic complexity of the most efficient pruning approaches, and thus offer a
practical alternative.

Our theoretical results are then verified in experiments over many real-world datasets. In particular
we show that our weighted-voting scheme achieves similar or better error than pruning on practical
problems, as suggested by our theoretical results.

Paper Organization. We start in Section 2 with theoretical setup and an overview of PAC-Bayes
analysis. This is followed in Section 3 with an overview of our statistical results, and in Section 4
with algorithmic results. Our experimental analysis is then presented in Section 5.

2 Preliminaries

2.1 Classification setup

We consider a multiclass setup where the input X ⊂ X , for a bounded subset X of RD, possibly of
lower intrinsic dimension. For simplicity of presentation we assume X ⊂ [0, 1]D (as in normalized
data). The output Y ⊂ [L], where we use the notation [L] = {1, 2, . . . , L} for L ∈ N.

We are to learn a classifier h : X 7→ [L], given an i.i.d. training sample {Xi, Yi}2ni=1 of size 2n, from
an unknown distribution over X,Y . Throughout, we let S .

= {Xi, Yi}ni=1 and S0
.
= {Xi, Yi}2ni=n+1,

which will serve later to simplify dependencies in our analysis.

Our performance measure is as follows.

Definition 1. The risk of a classifier h is given as R(h) = E[h(X) 6= Y]. This is minimized by
the Bayes classifier hB(x)

.
= argmaxl∈[L] P (Y = l|X = x). Therefore, for any classifier ĥ learned

over a sample {Xi, Yi}i, we are interested in the excess-risk E(ĥ)
.
= R(ĥ)−R(hB).

2

Figure 1: A partition tree T0 over input space X , and a query x ∈ X to classify. The leaves of T0 are the 4
cells shown left, and the root is X . A query x follows a single path (shown in bold) from the root down to a leaf.
A key insight towards efficient weighted-voting is that this path visits all leaves (containing x) of any subtree of
T0. Therefore, weighted voting might be implemented by keeping a weight w(A) at any node A along the path,
where w(A) aggregates the weights Q(T) of every subtree T that has A as a leaf. This is feasible if we can
restrict Q(T) to be multiplicative over the leaves of T , without trading off accuracy.

Here we are interested in aggregations of classification trees, defined as follows.
Definition 2. A hierarchical partition or (space) partition-tree T of X is a collection of nested
partitions of X ; this is viewed as a tree where each node is a subset A of X , each child A′ of
a node A is a subset of A, and whose collection of leaves, denoted π(T), is a partition of X . A
classification tree hT on X is a labeled partition-tree T of X : each leaf A ∈ π(T) is assigned a
label l = l(A) ∈ [L]; the classification rule is simply hT (x) = l(A) for any x ∈ A.

Given an initial tree T0, we will consider only subtrees T of T0 that form a hierarchical partition of
X , and we henceforth use the term subtrees (of T0) without additional qualification.

Finally, aggregation (of subtrees of T0) consists of majority-voting as defined below.
Definition 3. Let H denote a discrete family of classifiers h : X 7→ [L], and let Q denote a
distribution overH. The Q-majority classifier hQ

.
= hQ(H) is one satisfying for any x ∈ X

hQ(x) = argmax
l∈[L]

∑
h∈H,h(x)=l

Q(h).

Our oracle rates of Theorem 1 requires no additional assumptions; however, the resulting corollary is
stated under standard distributional conditions that characterize convergence rates for tree-prunings.

2.2 PAC-Bayes Overview

PAC-Bayes analysis develops tools to bound the error of a Gibbs classifier, i.e. one that randomly
samples a classifier h ∼ Q over a family of classifiersH. In this work we are interested in families
{hT } defined over subtrees of an initial tree T0. Here we present some basic PAC-Bayes result which
we extend for our analysis. While these results are generally presented for classification risk R
(defined above), we keep our presentation generic, as we show later that a different choice of risk
leads to stronger results forR than what is possible through direct application of existing results.

Generic Setup. Consider a random vector Z, and an i.i.d sample Z[n] = {Zi}ni=1. Let Z be the
support of Z, and L = {`h : h ∈ H} be a loss class indexed by h ∈ H – discrete, and where
`h : Z → [0, 1]. For h ∈ H, the loss `h induces the following risk and empirical counterparts:

RL(h)
.
= EZ`h(Z), R̂L(h, Z[n])

.
=

1

n

n∑
i=1

`h(Zi).

In particular, for the above classification riskR, and Z , (X,Y), we have `h(Z) = 1 {h(X) 6= Y }.
Given a distribution Q overH, the risk (and empirical counterpart) of the Gibbs classifier is then

RL(Q)
.
= Eh∼QRL(h), R̂L(Q,Z[n])

.
= Eh∼QR̂L(h, Z[n]).

3

PAC-Bayesian results bound RL(Q) in terms of R̂L(Q,Z[n]), uniformly over any distribution Q,
provided a fixed prior distribution P over H. We will build on the following form of [10] which
yields an upper-bound that is convex in Q (and therefore can be optimized for a good posterior Q∗).
Proposition 1 (PAC-Bayes onRL [10]). Fix a prior P supported onH, and let n ≥ 8 and δ ∈ (0, 1).
With probability at least 1− δ over Z[n], simultaneously for all λ ∈ (0, 2) and all posteriors Q over
H:

RL(Q) ≤
R̂L(Q,Z[n])

1− λ/2
+
Dkl (Q‖P) + log (2

√
n/δ)

λ(1− λ/2)n
,

where Dkl (Q‖P)
.
= EQlog Q(h)

P (h) is the Kullback-Leibler divergence between Q and P .

Choice of posterior Q∗. Let Q∗ minimize the above upper-bound, and let h∗ minimizeRL overH.
Then, by letting Qh∗ put all mass on h∗, we automatically get that, with probability at least 1− 2δ:

RL(Q∗) ≤ RL(Qh∗) ≤ C ·
(
R̂L(h∗, Z[n]) +

log(1/P (h∗)) + log(n/δ)

n

)
≤ C ·

(
RL(h∗) +

log(1/P (h∗)) + log(n/δ)

n
+

√
log(1/δ)

n

)
, (1)

where the last inequality results from bounding |RL(h∗)− R̂L(h∗, Z[n])| using Chernoff.

Unfortunately, such direct application is not enough for our purpose when RL = R. We want
to bound the excess risk E(hQ) for a Q-majority classifier hQ over h′s ∈ H. It is known that
R(hQ) ≤ 2R(Q) which yields a bound of the form (1) on R(hQ∗); however this implies at best
that R(hQ∗) → 2R(hB) even if E(h∗) → 0 (which is generally the case for optimal tree-pruning
h∗T [9]). This is a general problem in converting from Gibbs error to that of majority-voting, and is
studied for instance in [6, 8] where it is shown thatR(hQ) can actually be smaller in some situations.

Improved choice of Q∗. Here, we want to design Q∗ such thatR(hQ∗)→ R(hB) (i.e. E(hQ∗)→
0) at the same rate as E(h∗T) → 0 always. Our solution relies on a proper choice of loss `h
that relates most directly to excess risk E that the 0-1 loss 1 {h(x) 6= y}. A first candidate is to
define `h(x, y) as eh(x, y)

.
= 1 {h(x) 6= y} − 1 {hB(x) 6= y} since E(h) = E eh(X,Y); however

eh(x, y) /∈ [0, 1] and can take negative values. This is resolved by considering an intermediate loss
eh(x) = EY |xeh(x, Y) ∈ [0, 1] to be related back to eh(x, y) by integration in a suitable order.

3 Statistical results

3.1 Basic PAC-Bayes result

We start with the following intermediate loss family over classifiers h, w.r.t. the Bayes classifier hB .
Definition 4. Let eh(x, y)

.
= 1 {h(x) 6= y} − 1 {hB(x) 6= y}, and eh(x) = EY |xeh(x, Y), and

Ẽ(h,S)
.
=

1

n

n∑
i=1

eh(Xi), and Ê(h,S)
.
=

1

n

n∑
i=1

eh(Xi, Yi).

Our first contribution is a basic PAC-Bayes result which the rest of our analysis builds on.
Proposition 2 (PAC-Bayes on excess risk). Let H denote a discrete family of classifiers, and fix
a prior distribution P with support H. Let n ≥ 8 and δ ∈ (0, 1). Suppose, there exists bounded
functions ∆̂n(h,S),∆n(h), h ∈ H (depending on δ) such that

P
(
∀h ∈ H, Ẽ(h,S) ≤ Ê(h,S) + ∆̂n(h,S)

)
≥ 1− δ, inf

h∈H
P
(

∆̂n(h,S) ≤ ∆n(h)
)
≥ 1− δ.

For any λ ∈ (0, 2), consider the following posterior overH:

Q∗λ(h) =
1

c
e−nλ(R̂(h,S)+∆̂n(h,S))P (h), for c = Eh∼P e−nλ(R̂(h,S)+∆̂n(h,S)). (2)

Then, with probability at least 1− 4δ over S, simultaneously for all λ ∈ (0, 2):

E(hQ∗λ) ≤ L

1− λ/2
inf
h∈H

E(h) + ∆n(h) +
log(1/P (h))

λn
+

log 2
√
n
δ + λ

√
2n log 1

δ

λn

 .

4

Proposition 2 builds on Proposition 1 by first taking RL(h) to be E(h), R̂L(h) to be Ẽ(h), and Z
to be X . The bound in Proposition 2 is then obtained by optimizing over Q for fixed λ. Since this
bound is on excess error (rather than error), optimizing over λ can only improve constants, while the
choice of prior P is crucial in obtaining optimal rates as |H| → ∞. Such choice is treated next.

3.2 Oracle risk for trees (asH .
= H(T0) grows in size with T0)

We start with the following definitions on classifiers of interest and related quantities.
Definition 5. Let T0 be a binary partition-tree of X obtained from data S0, of depth D0. Consider a
family of classification trees H(T0)

.
= {hT } indexed by subtrees T of T0, and where hT defines a

fixed labeling l(A) of nodes A ∈ π(T), e.g., l(A)
.
= majority label in Y if A ∩ S0 6= ∅.

Furthermore, for any node A of T0, let p̂(A,S) denote the empirical mass of A under S and p(A) be
the population mass. Then for any subtree T of T0, let |T | be the number of nodes in T and define

∆̂n(hT ,S)
.
=

∑
A∈π(T)

√
p̂(A,S)

2 log(|T0| /δ)
n

, and (3)

∆n(hT)
.
=

∑
A∈π(T)

√
8 max

(
p(A),

(2 + logD) ·D0 + log(1/δ)

n

)
log(|T0| /δ)

n
. (4)

Remark 1. In practice, we might start with a space partitioning tree T ′0 (e.g., a dyadic tree, or
KD-tree) which partitions [0, 1]D, rather than the support X . We then view T0 as the intersection of
T ′0 with X .

Our main theorem below follows from Proposition 2 on excess risk, by showing (a) that the above
definition of ∆̂n(hT ,S) and ∆n(hT) satisfies the conditions of Proposition 2, and (b) that there
exists a proper prior P such that log(1/P (T)) ∼ |π(T)|, i.e., depends just on the subtree complexity
rather than on that of T0. The main technicality in showing (b) stems from the fact that P needs to
be a proper distribution (i.e.

∑
T P (T) = 1) without requiring too large a normalization constant

(remember that the number of subtrees can be exponential in the size of T0). This is established
through arguments from coding theory, and in particular Kraft-McMillan inequality.

Theorem 1 (Oracle risk for trees). Let the prior satisfy P (hT)
.
= (1/CP)e−3D0·|π(T)| for a nor-

malizing constant CP , and consider the corresponding posterior Q∗λ as defined in Equation 2, such
that, with probability at least 1 − 4δ over S, for all λ ∈ (0, 2), the excess risk E(hQ∗λ) of the
majority-classifier is at most

(L

1− λ/2
)
· min
hT∈H(T0)

E(hT) + ∆n(hT) +
3D0 · |π(T)|

λn
+

log 2
√
n
δ + λ

√
2n log 1

δ

λn

 .

From Theorem 1 we can deduce that the majority classifier hQ∗λ is consistent whenever the approach
of pruning to the best subtree is consistent (typically, minhT E(hT) + (D0 |π(T)|)/n = oP (1)).
Furthermore, we can infer that E(hQ∗λ) converges at the same rate as pruning approaches: the terms
∆n(hT) and D0 · |π(T)|/n can be shown to be typically, of lower or similar order as E(hT) for the
best subtree classifier hT . These remarks are formalized next and result in Corollary 1 below.

3.3 Rate of convergence

Much of known rates for tree-pruning are established for dyadic trees (see e.g. [9, 11]), due to their
simplicity, under nonparametric assumptions on E[Y |X]. Thus, we adopt such standard assumptions
here to illustrate the rates achievable by hQ∗λ , following the more general statement of Theorem 1.

The first standard assumption below restricts how fast class probabilities change over space.
Assumption 1. Consider the so-called regression function η(x) ∈ RL with coordinate ηl(x)

.
=

EY |x1 {Y = l} , l ∈ [L]. We assume η is α-Hölder for α ∈ (0, 1], i.e.,

∃λ such that ∀x, x′ ∈ X , ‖η(x)− η(x′)‖ ≤ λ ‖x− x′‖α .

5

Next, we illustrate some of the key conditions verified by dyadic trees which standard results build
on. In particular, we want the diameters of nodes of T0 to decrease relatively fast from the root down.
Assumption 2 (Conditions on T0). The tree T0 is obtained as the intersection of X with dyadic
partition of [0, 1]D (e.g. by cycling though coordinates) of depth D0 = O(D log n) and partition size
|T0| = O(n). In particular, we emphasize that the following conditions on subtrees then hold.

For any subtree T of T0, let r(T) denote the maximum diameter of leaves of T (viewed as subsets of
X). There exist C1, C2, d > 0 such that:
For all (C1/n) < r ≤ 1, there exists a subtree T of T0 such that r(T) ≤ r and |π(T)| ≤ C2r

−d.

The above conditions on subtrees are known to approximately hold for other procedures such as
KD-trees, and PCA-trees; in this sense, analyses of dyadic trees do yield some insights into the
performance other approaches. The quantity d captures the intrinsic dimension (e.g., doubling or box
dimension) of the data space X or is often of the same order [12, 13, 14].

Under the above two assumptions, it can be shown through standard arguments that the excess error
of the best pruning, namely minhT∈H(T0) E(hT) is of order n−α/(2α+d), which is tight (see e.g.
minimax lower-bounds of [15]). The following corollary to Theorem 1 states that such a rate, up to a
logarithmic factor of n, is also attained by majority classification under Q∗λ.
Corollary 1 (Adaptive rate of convergence). Assume that for any cell A of T0, the labeling l(A)
corresponds to the majority label in A (under S0) if A ∩ S0 6= ∅, or l(A) = 1 otherwise. Then, under
Assumptions 1 and 2, and the conditions of Theorem 1, there exists a constant C such that:

ES0,SE(hQ∗λ) ≤ C
(

log n

n

)α/(2α+d)

.

4 Algorithmic Results

Here we show that hQ can be efficiently implemented by storing appropriate weights at nodes of
T0. Let wQ(A)

.
=
∑
hT :A∈π(T)Q(hT) aggregate weights over all subtrees T of T0 having A as a

leaf. Then hQ(x) = argmaxl∈[L]

∑
A∈path(x),l(A)=l wQ(A), where path(x) denotes all nodes of T0

containing x. Thus, hQ(x) is computable from weights proportional to wQ(A) at every node.

We show in what follows that we can efficiently obtainw(A) = C ·wQ∗λ(A) by dynamic-programming
by ensuring that Q∗λ(hT) is multiplicative over π(T). This is the case, given our choice of prior from
Theorem 1: we have Q∗λ(hT) = (1/CQ∗λ) · exp(

∑
A∈π(T) φ(A)) where

φ(A)
.
= −λ

∑
i:Xi∈A∩S

1 {Yi 6= l(A)} − nλ
√
p̂(A,S)

2 log(|T0| /δ)
n

− 3D0.

We can then compute w(A)
.
= CQ∗λ · wQ∗λ(A) via dynamic-programming. The intuition is similar

to that in [5], however, the particular form of our weights require a two-pass dynamic program
(bottom-up and top-down) rather than the single pass in [5]. Namely, w(A) divides into subweights
that any node A′ might contribute up or down the tree. Let

α(A)
.
=

∑
hT :A∈π(T)

exp

(∑
A′ 6=A,A′∈π(T)

φ(A′)

)
, (5)

so that w(A) = eφ(A) · α(A). As we will show (proof of Theorem 2), α(A) decomposes into
contributions from the parent Ap and sibling As of A, i.e., α(A) = α(Ap)β(As) where β(As) is
given as (writing TA0 for the subtree of T0 rooted at A, and T � T ′ when T is a subtree of T ′):

β(As) =
∑

T�TAs0

exp

(∑
A′∈π(T)

φ(A′)

)
. (6)

The contributions β(A) are first computed using the bottom-up Algorithm 1, and the contributions
α(A) and final weights w(A) are then computed using the top-down Algorithm 2. For ease of
presentation, these routines run on a full-binary tree version T̄0 of T0, obtained by adding a dummy
child to each node A that has a single child in T0. Each dummy node A′ has φ(A′) = 0.

6

Algorithm 1 Bottom-up pass
for A ∈ π(T̄0) do

β(A)← eφ(A)

end for
for i← D0 to 0 do
Ai← set of nodes of T̄0 at depth i
for A ∈ Ai \ π(T̄0) do
N ← the children nodes of A
β(A)← eφ(A) +

∏
A′∈N β(A′)

end for
end for

Algorithm 2 Top-down pass
α(root)← 1
for i← 1 to D0 do
Ai← set of nodes of T̄0 at depth i
for A ∈ Ai do

Ap, As← parent of node A, sibling of node A
α(A)← α(Ap)β(As)

w(A)← eφ(A)α(A)
end for

end for

Theorem 2 (Computing w(A)). Running Algorithm 1, then 2, we obtain w(A)
.
= CQ∗λ · wQ∗λ(A),

where Q∗λ is as defined in Theorem 1. Furthermore, the combined runtime of Algorithms 1, then 2 is
2|T̄0| ≤ 4|T0|, where |T | is the number of nodes in T .

5 Experiments

Table 1: UCI datasets

Name (abbreviation) Features count Labels count Train size

Spambase (spam) 57 2 2601
EEG Eye State (eeg) 14 2 12980
Epileptic Seizure Recognition (epileptic) 178 2 9500
Crowdsourced Mapping (crowd) 28 6 8546
Wine Quality (wine) 12 11 4497
Optical Recognition of Handwritten Digits (digit) 64 10 3620
Letter Recognition (letter) 16 26 18000

Here we present experiments on real-world datasets, for two common partition-tree approaches,
dyadic trees and KD-trees. The various datasets are described in Table 1.

The main baseline we compare against, is a popular efficient pruning heuristic where a subtree of T0

is selected to minimize the penalized error C1(hT) = R̂(hT ,S) + λ |π(T,S)|
n .

We also compare against other tree-based approaches that are theoretically driven and efficient.
First is a pruning approach proposed in [16], which picks a subtree minimizing the penalized error

C2(hT) = R̂(hT ,S) + λ
∑
A

√
max

(
p̂(A,S), ‖A‖n

)
· ‖A‖n , where ‖A‖ denotes the depth of node

A in T0. We note that, here we choose a form of C2 that avoids theoretical constants that were of a
technical nature, but instead let λ account for such. We report this approach as SN-pruning. Second
is the majority classifier of [5], which however is geared towards binary classification as it requires
regression-type estimates in [0, 1] at each node. This is denoted HS-vote.

All the above approaches have efficient dynamic programs that run in time O(|T0|), and all predict in
time O(height(T0)). The same holds for our PAC-Bayes approach as discussed above in Section 4.

Practical implementation of PAC-Bayes tree. Our implementation rests on the theoretical in-
sights of Theorem 1, however we avoid some of the technical details that were needed for rigor,

7

such as sample splitting and overly conservative constants in concentration results. Instead we
advise cross-validating for such constants in the prior and posterior definitions. Namely, we first
set P (hT) ∝ exp(− |π(T,S)|), where π(T,S) denotes the leaves of T containing data. We set

∆n(hT ,S) =
∑
A∈π(T,S)

√
p̂(A,S)
n . The posterior is then set as Q∗(hT) ∝ exp(−n(λ1R̂(hT ,S) +

λ2∆n(hT ,S)))P (hT), where λ1, λ2 account for concentration terms to be tuned to the data.

Finally, we use the entire data to construct T0 and compute weights, i.e., S0 = S, as inter-
dependencies are in fact less of an issue in practice. We note, that the above alternative theoretical
approaches, SN-pruning and HS-vote, are also assumed (in theory) to work on a sample independent
choice of T0 (or equivalently built and labeled on a separate sample S0), but are implemented here on
the entire data to similarly take advantage of larger data sizes. The baseline pruning heuristic is by
default always implemented on the full data.

Experimental setup and results. The data is preprocessed as follows: for dyadic trees, data is scaled
to be in [0, 1]D, while for KD-trees data is normalized accross each coordinate by standard deviation.

Testing data is fixed to be of size 2000, while each experiment is ran 5 times (with random choice of
training data of size reported in Table 1) and average performance is reported. In each experiment,
all parameters are chosen by 2-fold cross-validation for each of the procedures. The log-grid is 10
values, equally spaced in logarithm, from 2−8 to 26 while the linear-grid is 10 linearly-spaced values
between half the best value of the log-search and twice the best value of the log-search.

Table 2 reports classification performance of the various theoretical methods relative to the baseline
pruning heuristic. We see that proposed PAC-Bayes tree achieves competitive performance against all
other alternatives. All the approaches have similar performance accross datasets, with some working
slightly better on particular datasets. Figure 2 further illustrates typical performance on multiclass
problems as training size varies.

Table 2: Ratio of classification error over that of the default pruning baseline: bold indicates best results across
methods, while blue indicates improvement over baseline; N/A means the algorithm was not run on the task.

T0 ≡ dyadic tree T0 ≡ KD tree

Dataset SN-pruning PAC-Bayes tree HS-vote SN-pruning PAC-Bayes tree HS-vote

spam 1.118 0.975 1.224 1.048 1.020 1.075
eeg 0.979 0.993 1.029 1.000 0.990 1.000
epileptic 0.993 0.992 0.951 0.977 0.987 0.907
crowd 0.991 1.020 N/A 1.001 1.017 N/A
wine 1.035 0.991 N/A 1.010 0.997 N/A
digit 1.000 0.936 N/A 0.994 0.997 N/A
letter 1.005 0.993 N/A 1.000 1.001 N/A

Figure 2: Classification error versus training size

8

References
[1] David A McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, 1999.

[2] László A Székely and Hua Wang. On subtrees of trees. Advances in Applied Mathematics, 34(1):138–155,
2005.

[3] Trevor Hastie and Daryl Pregibon. Shrinking trees. AT & T Bell Laboratories, 1990.

[4] Wray Buntine and Tim Niblett. A further comparison of splitting rules for decision-tree induction. Machine
Learning, 8(1):75–85, 1992.

[5] David P Helmbold and Robert E Schapire. Predicting nearly as well as the best pruning of a decision tree.
Machine Learning, 27(1):51–68, 1997.

[6] Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, and Nicolas Usunier. PAC-
Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier. In Advances in
Neural information processing systems, pages 769–776, 2007.

[7] John Langford and John Shawe-Taylor. PAC-Bayes & margins. In Advances in neural information
processing systems, pages 439–446, 2003.

[8] Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand, and Jean-Francis Roy. Risk
Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm. Journal of
Machine Learning Research, 16:787–860, 2015.

[9] C. Scott and R.D. Nowak. Minimax-optimal classification with dyadic decision trees. IEEE Transactions
on Information Theory, 52, 2006.

[10] Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A Strongly Quasiconvex
PAC-Bayesian bound. In Steve Hanneke and Lev Reyzin, editors, Proceedings of the 28th International
Conference on Algorithmic Learning Theory, volume 76 of Proceedings of Machine Learning Research,
pages 466–492, Kyoto University, Kyoto, Japan, 15–17 Oct 2017. PMLR.

[11] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution Free Theory of Nonparametric Regression.
Springer, New York, NY, 2002.

[12] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial partition trees are adaptive to intrinsic
dimension? In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages
565–574. AUAI Press, 2009.

[13] Samory Kpotufe and Sanjoy Dasgupta. A tree-based regressor that adapts to intrinsic dimension. Journal
of Computer and System Sciences, 78(5):1496–1515, 2012.

[14] Santosh Vempala. Randomly-oriented kd trees adapt to intrinsic dimension. In FSTTCS, volume 18, pages
48–57. Citeseer, 2012.

[15] Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals of
Statistics, 35(2):608–633, 2007.

[16] Clayton Scott. Dyadic Decision Trees. PhD thesis, Rice University, 2004.

[17] Olivier Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning.
Institute of Mathematical Statistics, 2007.

[18] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[19] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, 2006.

[20] Colin McDiarmid. On the method of bounded differences. Cambridge University Press, Cambridge, 1989.

9

6 Appendix

6.1 Proposition 2

The proof Proposition 2 requires the following lemma, which states that the excess risk of the voting
classifier is always at most L times the excess risk of the Gibbs classifier defined by the same
distribution. It has the same spirit as the well-known result for the binary case where where the
classification risk of the voting classifier is at most 2 times that of the stochastic classifier.
Lemma 1. For any Q, it holds that:

E(hQ) ≤ L · E(Q).

Proof. For any classifier h, we have the following decomposition:

E(h) = EX [P (hB(x) = Y |X = x)− P (h(x) = Y |X = x)]

Interchanging order of integration, we write the excess risk of the Gibbs classifier as:

E(Q) = Eh∼QE(h) = EX
[
Eh∼Q

(
P (Y = hB(x)|X = x)− P (Y = h(x)|X = x)

)]
Similarly, the excess risk of the majority classifier is:

E(hQ) = EX [P (hB(x) = Y |X = x)− P (hQ(x) = Y |X = x)]

Now, we observe the point-wise relationship between regression gaps, which is true for all x:

P (hB(x) = Y |X = x)−P (hQ(x) = Y |X = x)

≤ L · Eh∼Q
(
P (hB(x) = Y |X = x)− P (Y = h(x)|X = x)

)
Because of the majority rule nature of hQ, if the output label hQ(x) is l, there must be at least 1

L (under
Q) classifiers inH which predicts l. Hence, there must be at least 1

L (under Q) classifiers with the
same gap in regression value as the voting classifier. In addition, because the other classifiers whose
prediction is different from hQ(x) have non-negative regression gap, the statement is established.
Integrating this point-wise inequality over X and using monotonicity of integration, we are done.

In addition, the following lemma states that the distribution minimizing objectives that is the sum of
a linear function in the distribution plus the Kullback-Leibler divergence w.r.t to a given priror has a
particular exponential form.
Lemma 2 (Lemma 1.1.3 of [17]). SupposeH is a hypothesis class. Let G : H → R be a bounded
function. For a reference distribution P , define the Q∗ distribution overH:

Q∗(h) =
1

c′
e−G(h)P (h),

where c′ is the normalization constant c′ = Eh∼P e−G(h). Then, for all distributions Q overH:

Eh∼QG(h) +Dkl (Q‖P) = − logEh∼P e−G(h) +Dkl (Q‖Q∗) .

We are ready to delve into the proof of Proposition 2.

Proof of Proposition 2. First, we show how the PAC-Bayes theorem of Proposition 1 applies to
excess risk. It was necessary to introduce the intermediate loss function eh(x), which is valued in
[0, 1] while eh(x, y) might not be. The reason why eh(Xi) is valued in [0, 1] is that:

eh(x) = P (hB(Xi) = Y |X = x)− P (h(x) = Y |X = x)

where 0 ≤ P (h(x) = Y |X = x) ≤ P (hB(x) = Y |X = x) ≤ 1. In addition, E(h) = Eeh(X).
Therefore we can apply Proposition 1 with lh(x, y) = eh(x) to conclude that, with probability at
least 1− δ over the sampling of S, simultaneously for all λ ∈ (0, 2) and all posteriors Q:

E(Q) ≤ Ẽ(Q,S)

1− λ/2
+
Dkl (Q‖P) + log 2

√
n
δ

λ(1− λ/2)n
. (7)

10

Now, by the definition of ∆̂n(h,S), with probability at least 1−δ over the sampling of S , ∀λ ∈ (0, 2),
for all h ∈ H it holds that Ẽ(h,S) ≤ Ê(h,S) + ∆̂n(h,S). Because the upper bound holds for all
classifiers, when we take expectation on both sides using the same distribution, the inequality still
holds. In other words, for a distribution Q, if we define ∆n(Q,S)

.
= Eh∼Q∆n(h,S) then with

probability at least 1− δ over S, simultaneously for all Q:

Ẽ(Q,S) ≤ Ê(Q,S) + ∆̂n(Q,S) (8)

A simple union bound guarantees that the probability of both events in Equation 7 and Equation 8
occurring is at least 1− 2δ. In such situations, simultaneously for all λ ∈ (0, 2) and distributions Q:

E(Q) ≤ Ê(Q,S) + ∆̂n(Q,S)

1− λ/2
+
Dkl (Q‖P) + log 2

√
n
δ

λ(1− λ/2)n
(9)

Second, we prove that for any fixed λ ∈ (0, 2), Q∗λ as defined in Equation 2 minimizes the right hand
side of Equation 9 out of all distributions overH, which is equivalent to minimizing:

φ(Q)
.
= Eh∼Q[nλÊ(h,S) + nλ∆̂n(h,S)] +Dkl (Q‖P) . (10)

This objective has the right form for us to apply Lemma 2. We define G(h) = nλÊ(h,S) +

nλ∆̂n(h,S). Because ∆̂n(h,S) is bounded, G(h) satisfies the boundedness assumption and we can
apply the Lemma. Since the Kullback-Leibler divergence is non-negative, it is true that

min
Q

φ(Q) = min
Q

(Eh∼QG(h) +KL(Q||P)) = − logEh∼P e−G(h),

The minimum is attained at Q = Q∗. Upon closer inspection, it turns out that Q∗ = Q∗λ as defined in
Equation 2. Clearly, empirical excess risk is equal to the difference between empirical risks:

Ê(h,S) = R̂(h,S)− R̂(hB ,S).

Therefore:

Q∗(h) =
e−nλ(Ê(h,S)+∆̂n(h,S)P (h)

Eh′∼P e−nλ(Ê(h,S)+∆̂n(h,S)
=

enλR̂(hB ,S) · e−nλ(R̂(h,S)+∆̂n(h,S)P (h)

enλR̂(hB ,S) · Eh′∼P e−nλ(R̂(h′,S)+∆̂n(h′,S))

=
e−nλ(R̂(h,S)+∆̂n(h,S)P (h)

Eh′∼P e−nλ(R̂(h′,S)+∆̂n(h′,S))
= Q∗λ(h).

Third, we put the results of the first two steps to formulate an oracle inequality for the Gibbs classifier.
For simplicity assume that some h∗ ∈ H achieves the infimum in the right hand side of Proposition
2. By Hoeffding’s inequality [18], since Ê(h∗,S) = 1

n

∑n
i=1 eh(Xi, Yi) where eh(Xi, Yi) are i.i.d

valued in {−1, 1}, it holds with probability at least 1− δ over S that:

Ê(h∗,S)− E(h∗) ≤

√
2 log 1

δ

n
. (11)

In addition, also consider the following event, which has probability at least 1− δ, where:

∆̂n(h∗,S) ≤ ∆n(h∗) (12)

Supposing that the statements of Equation 9, Equation 11 and Equation 12 hold, which is an event of
probability at least 1− 4δ. Because Q∗λ minimizes the right hand side of Equation 9, in particular it
does better than Qh∗ i.e.

E(Q∗λ) ≤
nλ(Ê(h∗,S) + ∆̂n(h∗,S))− logP (h∗) + log 2

√
n
δ

λ(1− λ
2)n

≤
nλ(E(h∗) +

√
2

log 1
δ

n + ∆n(h∗))− logP (h∗) + log 2
√
n
δ

λ(1− λ
2)n

≤ E(h∗) + ∆n(h∗)

1− λ
2

+
log(1/P (h∗)) + log 2

√
n
δ + λ

√
2n log 1

δ

λ(1− λ
2)n

.

11

Finally, combining this upper bound on the excess risk of the Gibbs classifier with Lemma 1 to
conclude that with probability at least 1− 4δ over S:

E(hQ∗λ) ≤ L

1− λ/2
inf
h∈H

E(h) + ∆n(h) +
log(1/P (h))

λn
+

log 2
√
n
δ + λ

√
2n log 1

δ

λn

 .

6.2 Theorem 1

We need a few lemmas to prove Theorem 1. The first is Kraft’s inequality, a standard tool in coding
theory.
Lemma 3 (Kraft’s inequality [19]). For any prefix-free code over an alphabet of sizeD, the codeword
lengths l1, l2, . . . , lm must satisfy: ∑

i

D−li ≤ 1

The next lemma shows that the normalization constant defining the prior in Theorem 1 is at most 1.
Lemma 4. Recall that the prior in Theorem 1 has the normalization constant CP =∑
hT∈H(T0) e

−3D0·|π(T)|. It is true that:
CP ≤ 1

Proof. The idea is to design a prefix-free codebook forH(T0) over the binary alphabet {0, 1} and
use Kraft’s inequality, a standard tool in coding theory (A prefix-free code is a codebook such that no
codeword is a prefix of another). Because of the one-to-one correspondence between the classifier
hT and the subtree T , it suffices to encode T .

First, we define a prefix-free code for the set of nodes in T0 by modifying the strategy in Section 2.3.2
of [16]. The code for a node A consists of three components, concatenated in order of appearance:

• Depth encoding: if the depth of A is k, the encoding is string of k ones.

• A delimiting 0 to signify that the depth encoding has ended

• Path encoding: the sequence of left and right links that is the path from the root to A, where
a left link is encode as 0 and a right link is encoded as 1.

This is a prefix-free code for the set of nodes of T0: the sequence of ones at the start eliminates the
possibilities of two nodes at different depths having codewords that are prefix of each other, and for
nodes of the same depth, there will be a discrepancy in the paths from root to the nodes that makes
it impossible for prefixing. Given this codebook of nodes, the encoding E of subtree T , it suffices
to concatenate the codewords for A ∈ π(T): deeper nodes are put in front, and among those at the
same depth, go from left to right.

Second, we prove that E is a prefix-free code for the family of subtrees T over the alphabet {0, 1} i.e.
for subtrees T1 6= T2, neither E(T1) is a prefix of E(T2) nor vice versa. On one hand, consider the
case that E(T1) = E(T2) i.e. two different subtrees having the same encoding. However, since no
two different subtrees can have the same leaf set, this is not possible.

On the other hand, consider the case when one codeword is a proper prefix of the other: without loss
of generality, assume E(T1) is a proper prefix of E(T2). Because E is the concatenation of prefix-
free codes, from E(T1) we reconstruct uniquely the leaf set π(T1) and from E(T2) we reconstruct
uniquely the leaf set π(T2). Since E(T1) is a proper prefix of E(T2), it must be true that one leaf set
is contained in the other π(T1) ⊂ π(T2) and there exists A′ such that A′ ∈ π(T2) but A′ /∈ π(T1).
But because both π(T1) and π(T2) partition X , it means that A′ ∩ X = ∅. This is a contradiction
since A′ is supposed to intersect X
Overall, there can be no code that is a prefix of another code. We now analyze the length of the
encoding E. It is easy to see that each node A has a codelength at most 3 times its depth. Therefore,
to encode a subtree T , whose maximum depth is bounded by D0 and has |π(T)| leaves we can

12

use codewords whose lengths are upper bounded by 3 log2 e ·D0 · |π(T)|. We now employ Kraft’s
inequality. In our case, the prefix-free codebook for subtrees T is over the alphabet {0, 1} and
3D0 log2 e · |π(T)| are upper bounds on the codelengths. Hence:∑

hT∈H(T0)

2−(3D0 log2 e·|π(T)|) ≤ 1 =⇒
∑

hT∈H(T0)

e−3D0·|π(T)| ≤ 1.

The next lemma proves that ∆̂n(hT ,S) and ∆n(hT) defined in Equation 3 and Equation 4 satisfies
the conditions of Proposition 2 for the hypothesis classH(T0).

Lemma 5. With ∆̂n(hT ,S) defined as in Equation 3, with probability at least 1− δ over S, for all
hT ∈ H(T0):

Ẽ(hT ,S) ≤ Ê(hT ,S) + ∆̂n(hT ,S)

Proof. Let n(A,S) = np̂(A,S) be the number of data points in S which falls into A. Define

c(A,S)
.
=

{
1

n(A,S)

∑
Xi∈A eh(Xi, Yi) if n(A,S) > 0

0 otherwise

For fixed Xn = {Xi}ni=1, denote by c̄(A,Xn) the condition expectation over Y n = {Yi}ni=1 is:

c̄(A,Xn)
.
= EY n|Xnc(A,S)

=

{
1

n(A,S)

∑
Xi∈A eh(Xi) if n(A,S) > 0

0 otherwise

First, for fixed Xn, we derive a uniform concentration result for all nodes A in T0, with the random-
ness from Y n. For nodes that contain data, c(A,S) is the average of n(A,S) independent random
variables since Y1, Y2, . . . , Yn are independent conditioned on Xn. Furthermore, c(A,S) satisfies a
bounded variation condition: a change in some Yi for results in at most a change of 2

n(A,S) in c(A,S).
Hence, for any node A of T0, for any εA > 0, by McDiarmid’s inequality [20]:

Pr
Y n|Xn

(c̄(A,Xn)− c(A,S) > εA) ≤ exp

(
− 2ε2A
n(A,S)(2

n(A,S))2

)
= e−n(A,S)ε2A/2

We set εA =
√

2 log(|T0| /δ)/n(A,S). In addition, we multiply both sides of the event c̄(A,Xn)−
c(A,S) > εA by p̂(A,S) to have that:

Pr
Y n|Xn

(
p̂(A,S)(c̄(A,Xn)− c(A,S)) ≤

√
p̂(A,S)

2 log(|T0| /δ)
n

)
≤ δ

|T0|

Now, we perform a union bound, with at most |T0| elements to conclude that for fixed Xn, with
probability at least 1− δ over Y n, simultaneously for all A such that p̂(A,S) > 0:

p̂(A,S)(c̄(A,Xn)− c(A,S)) ≤
√
p̂(A,S)

2 log(|T0| /δ)
n

(13)

As for nodesA such that p̂(A,S) = 0, by definition, for all Y n it holds that that c̄(A,Xn)−c(A,S) =
0. Hence, the statement in Equation 13 is also true for empty cells. Moving on to the tail bound for
the subtree classifiers’ excess risk. The empirical excess risk, the intermediate losss and the penalty
of each hT is decomposable over the leaves of T :

Ẽ(hT ,S)− Ê(hT ,S) =
∑

A∈π(T)

p̂(A,S)[c̄(A,Xn)− c(A,S)]

∆̂n(hT ,S) =
∑

A∈π(T)

√
p̂(A,S)

2 log(|T0| /δ)
n

13

Because of this decomposition, the following inclusion of events is true:

{∃hT : Ẽ(hT ,S)− Ê(hT ,S) > ∆̂n(hT ,S)}

⊆

{
∃A : p̂(A,S)[c̄(A,Xn)− c(A,S)] >

√
p̂(A,S)

2 log(|T0| /δ)
n

}
According to Equation 13, the probability over Y n of the later event is at most δ. Therefore:

Pr
Y n|Xn

(∃hT : Ẽ(hT ,S)− Ê(hT ,S) > ∆̂n(hT ,S)) ≤ δ

Taking the expectation of both sides w.r.t to Xn, and taking the complement event, we conclude that:

Pr
S

(∀hT : Ẽ(hT ,S)− Ê(hT ,S) ≤ ∆̂n(hT ,S)) ≥ 1− δ

Lemma 6. With ∆n(hT) defined in Equation 4 for any hT ∈ H(T0), with probability at least 1− δ
over S:

∆̂n(hT ,S) ≤ ∆n(hT)

Proof. It is implied by Lemma 1 [16]. Each node in T0 can be associated with a codeword ‖A‖ that
is proportional to its depth in T0, with the constant being upper bounded by 2 + logD. Then, with
probability at least 1− δ, for all A:

p̂(A,S) ≤ 4 max

(
p(A),

‖A‖+ log(1/δ)

n

)
Since the maximal depth of a node in T0 is D0, we replace ‖A‖ by (2 + logD) ·D0:

p̂(A,S) ≤ 4 max

(
p(A),

(2 + logD) ·D0 + log(1/δ)

n

)
If the inequality above holds for all A, for any hT , by taking the summation of A ∈ π(T) on both
sides to prove the statement of the lemma.

Proof of Theorem 1. Theorem 1 is a direct application of Proposition 2 for the familyH(T0).

It is clear from Lemma 5 and Lemma 6 that ∆̂n(hT ,S) and ∆n(hT) satisfy the conditions of Propo-
sition 2 (the boundedness condition is automatically satisfied becauseH(T0) is finite). Hence, for the
choice of prior P (hT) = 1

Cp
e−3D0·|π(T)|, with probability at least 1− 4δ over S , simultaneously for

all λ ∈ (0, 2):

E(hQ∗λ)

≤ L

1− λ/2
min

hT∈H(T0)

E(hT) + ∆n(hT) +
logCp + 3D0 · |π(T)|

λn
+

log 2
√
n
δ + λ

√
2n log 1

δ

λn

 .

By Lemma 4, logCP ≤ 0. This shows the statement of the Theorem.

6.3 Corollary 1

As usual when it comes to tree-based classification, we first go through tree-based regression. Each
label Y is converted to a vector one-hot encoding b(Y) where the l coordinate bl(Y) = 1 if Y = l
and 0 otherwise. Then we have a family of regression trees {ηT } indexed by subtrees T of T0 where
ηT defines a fixed regression value s(A) of nodes A ∈ π(T), e.g. s(A)

.
= average value of b(Y) if

A ∩ S0 6= ∅.
The following proposition, implied by Equation A.1 in [13], shows the bias-variance decomposition
of L2 excess risk for regressors based on dyadic trees.

14

Proposition 3 (Bias-variance decomposition [13]). There are absolute constants C3, C4 such that
the following hold. For any T that induces a dyadic partition of X , it is true that:

ES0,X‖ηT (X)− η(X)‖2 ≤ C3λ
2r(T)2α + C4

|π(T)|
n

The next lemma shows how the L2 excess risk of a regressor is an upper bound on the excess risk
of the associated plug-in classifier. The result for binary classification is well-established: here we
prove in the multiclass case for completeness.

Lemma 7. Suppose η̂(x) is a regressor (trained from data) and ĥ(x) is the associated plug-in
classifier ĥ(x) = argmaxl∈[L] η̂l(x). Then:

E(ĥ) ≤ 2
√
L ·
√

EX‖η̂(X)− η(X)‖22

Proof. We first prove that:
E(ĥ) ≤ 2EX‖η̂(X)− η(X)‖1

The idea is to prove the point-wise inequality:

P (hB(x) = Y |X = x)− P
(
ĥ(x) = Y |X = x

)
≤ 2|η̂(x)− η(x)|

(Integration over x of the left hand side gives the excess risk of ĥ while integrating over the right
hand side gives the L1 regression risk.) The inequality can be rewritten as:

ηhB(x)(x)− ηĥ(x)(x) ≤ 2|η̂(x)− η(x)|

Let |η̂(x)− η(x)| = u. Then, for all l ∈ [L], |η̂l(x)− ηl(x)| ≤ u. In particular:∣∣η̂hB(x)(x)− ηhB(x)(x)
∣∣ ≤ u∣∣∣η̂ĥ(x)(x)− ηĥ(x)(x)
∣∣∣ ≤ u

From the first equation, we have ηhB(x)(x) ≤ η̂hB(x)(x) + u, so that ηhB(x)(x) − ηĥ(x)(x) ≤
η̂hB(x)(x) − ηĥ(x)(x) + u. Because ĥ(x) is the plug-in of η̂(x), we have η̂hB(x)(x) ≤ η̂ĥ(x)(x).
Combined this fact with the second equation, which says η̂ĥ(x)(x)− ηĥ(x)(x) ≤ u, overall we have
shown that ηhB(x)(x)− ηĥ(x)(x) ≤ 2u.

We then combine with the well-known inequality between Lp norms:

EX‖η̂(X)− η(X)‖1 ≤
√
L · EX‖η̂(X)− η(X)‖22

Truly:
‖η̂(X)− η(X)‖21 = (

∑
l

|η̂l(X)− ηl(X)|)2 ≤ L
∑
l

(η̂l(X)− ηl(X))2

so we have, by Jensen’s inequality:

(EX‖η̂(X)− η(X)‖)2 ≤ EX‖η̂(X)− η(X)‖21 ≤ L · E‖η̂(X)− η(X)‖22

Proof of Corollary 1. We first convert Theorem 1, a statement in high probability over S, to a
statement in expectation over S. We select δ = 1

n . In the rare event (probability at most 4
n) that

the upper bound in Theorem 1 does not hold, we still have the trivial upper bound on excess risk
E(hQ∗λ) ≤ 1. Therefore, for fixed S0 but taking expectation over S, we have:

ESE(hQ∗λ) ≤ C0 min
hT∈H(T0)

(
E(hT) + ∆n(hT) +

3D0|π(T)|
λn

+
log(2n

√
n) + λ

√
2n log n+ 4λ

λn

)
.

(14)

15

where C0 = L
1−λ/2 . We now show that the expectation of the right hand side has the right dependen-

cies on n, α, d. The strategy is to demonstrate the existence of a right resolution r that results in a
classification tree with the right excess risk. By Assumption 2, for any (C1/n) < r ≤ 1, there exists
a subtree T r of T0 such that r(T r) ≤ r, |π(T r)| ≤ C2r

−d. Combined with Proposition 3, the excess
risk of the regressor has the form:

ES0,X‖ηT r (X)− η(X)‖2 ≤ C3λ
2r2α + C4

r−d

n
.

Consider the choice r∗
.
= (C4

C3λ2)1/(2α+d)(logn
n)1/(2α+d). Such r∗ is permissible since 1

n is smaller
that (logn

n)1/(2α+d) for all large n. Therefore, for some constant C5, the L2 excess risk of ηT r∗
satisfies:

ES0,X‖ηT r∗ (X)− η(X)‖2 ≤ C5

(
log n

n

)2α/(2α+d)

.

Because of how we define ηT , hT is the plug-in classifier associated with ηT . Using Lemma 7, we
have for some constant C8:

ES0E(hT r∗) ≤ C8

(
log n

n

)α/(2α+d)

.

We move on to bound ∆n(hT r∗). Observe that
√

max(a, b) ≤
√
a+
√
b for any a, b ≥ 0. Hence:

∆n(hT r∗) =

√
log(n |T0|)

n

∑
A∈π(T r∗)

√
4 max

(
p(A),

D0 + log n

n

)

≤ 2

√
log(n |T0|)

n

∑
A∈π(T r∗)

(√
p(A) +

√
D0 + log n

n

)

≤ 2

√
log(n |T0|)

n

∑
A∈π(T r∗)

√
p(A) + 2

√
log(n |T0|)(D0 + log n)

|π(T r∗)|
n

.

We bound the first summation by Jensen’s inequality for concave
√
x, supposing that the summation

is over A such that p(A) > 0:∑
A∈π(T r∗)

√
p(A) =

∑
A∈π(T r∗)

p(A)
1√
p(A)

≤

√√√√ ∑
A∈π(T r∗)

p(A)

p(A)
=
√
|π(T r∗)|.

Combining the fact that the maximal depth D0 = O(D log n) and that T0 has O(n) leaves, it means
that |T0| = O(Dn log n). Therefore, there exists a constant C6 such that:

∆n(hT r∗) ≤ C6(

√
log n · |π(T r∗)|

n
+

log n · |π(T r∗)|
n

).

Recall that |π(T r∗)| ≤ r−d∗ . This implies that for setting r = r∗ there exists some constant C7 such
that √

log n · |π(T r∗)|
n

≤ C7

(
log n

n

)α/(2α+d)

,

which leads to the overall conclusion that there exists some constant C8 satisfying:

ES0
(
E(hT r∗) + ∆n(hT r∗) +

3D0 · |π(T r∗)|
λn

)
≤ C8

(
log n

n

)α/(2α+d)

. (15)

The order of growth on the right hand side of the above inequality dominates the
log(2n

√
n)+λ

√
2n logn+4λ

λn component of the right hand side of Equation 14. We now show the
rate of convergence over S0 and S. Clearly, for any S0:

min
hT∈H(T0)

(
E(hT) + ∆n(hT) +

3D0 · |π(T)|
λn

)
≤ E(hT r∗) + ∆n(hT r∗) +

3D0 · |π(T r∗)|
λn

. (16)

16

Therefore, by taking expectation of both sides of Equation 14, combining Equations 15 and 16, we
conclude that there exists a constant C such that:

ES0,SE(hQ∗λ) ≤ C
(

log n

n

)α/(2α+d)

.

6.4 Theorem 2

Proof. That the combined runtime of Algorithm 1 and Algorithm 2 is 2
∣∣T̄0

∣∣ is clear: and each
algorithm will visit each node of T̄0 exactly once, doing a constant amount of computation. In
addition,

∣∣T̄0

∣∣ ≤ 2 |T0| since we only add one dummy node to at most |T0| nodes.

Regarding the correctness of the procedure: if we show that indeed, the β(A) computed through
Algorithm 1 is equal to the right hand side of Equation 6 and the α(A) computed through Algorithm
2 is equal to the right hand side of Equation 5, then we will have proven that after the two algorithms,
w(A) = CwQ∗λ(A) for some positive constant C, since if α(A) is the expression in Equation 5, then

w(A) = eφ(A)
∑

hT :A∈π(T)

exp

(∑
A′ 6=A,A′∈π(T)

φ(A′)

)
=

∑
hT :A∈π(T)

exp

(∑
A′∈π(T)

φ(A′)

)
= CQ∗λ · wQ∗λ(A)

The strategy is to prove the correctness on T̄0: because the dummy nodes A′ that we add to T0 to
form T̄0 have zero contribution φ(A′) = 0, we also have correctness on T0. For A in T̄0, we denote
by

β∗(A)
.
=
∑
T�T̄A0

exp

(∑
A′∈π(T)

φ(A′)

)
,

and

α∗(A)
.
=

∑
T :A∈π(T)

exp

(∑
A′ 6=A,A′∈π(T)

φ(A′)

)
.

and set out to prove that β(A) = β∗(A) and α(A) = α∗(A). For any node A, denote AL to be the
left child of A and AR to be the right child, in the augmented tree T̄0.

Regarding β(A) = β∗(A), it suffices to show that β∗(A) satisfies the base case and the recurrence
relation defining β(A) in Algorithm 1, namely:

β∗(A) =

{
eφ(A) if A ∈ π(T̄0)

eφ(A) + β∗(AL)β∗(AR) otherwise

When A is a leaf, β∗(A) = eφ(A) is immediate since the only the subtree rooted at A is A itself,
viewed as a subtree. When A is an internal node, any T � TA0 is either just the node A or can be
decomposed into a left subtree TL and a right subtree TR that are rooted at AL and AR, respectively.
The former case contributes the term eφ(A) to the sum. In the later case, the product over A′ ∈ π(T)
is the same as the product over A1 ∈ π(TL) times the product over A2 ∈ π(TR). In other words:

β∗(A) = eφ(A) +
∑

TL�T
AL
0

∑
TR�T

AR
0

∏
A1∈π(TL)

∏
A2∈π(TR)

eφ(A1)eφ(A2)

= eφ(A) + (
∑

TL�T
AL
0

∏
A1∈π(TL)

eφ(A1))(
∑

TR�T
AR
0

∏
A2∈π(TR)

eφ(A2))

= eφ(A) + β∗(AL)β∗(AR)

Hence, we have β(A) = β∗(A).

17

Regarding α(A) = α∗(A), again we aim to show that α∗(A) satisfies the base case and recurrence
relation defining α(A) in Algorithm 2, namely:

α∗(root) = 1

α∗(AL) = α∗(A)β∗(AR)

α∗(AR) = α∗(A)β∗(AL)

The first equation is clear: when A is the root node, the summation defining α∗(A) is over the subtree
with only the root, and there are no leaves in this tree except the root, so the summation inside the
exponential is 0. We only need to prove the second equation: the third follows in the same manner.
The partition T of any subtree classifier hT such that AL ∈ π(T) can be decomposed into three parts:
the part T1 which is a pruned subtree of T0 such that A ∈ π(T1), the extension of T1 by a pruned
subtree rooted at AR (which we denote T2) and the inclusion of itself AL as a leaf. There are no
constraints between T1 and T2 except that the former must have A as a leaf and T2 is rooted at AR.
Therefore:

α∗(AL) =
∑

T1:A∈π(T1)

∑
T2�T

AR
0

exp

(∑
A′ 6=A,A′∈π(T1)

φ(A′)

)
exp

(∑
A′∈π(T2)

φ(A′)

)

=

 ∑
T1:A∈π(T1)

exp

(∑
A′ 6=A,A′∈π(T1)

φ(A′)

)
 ∑
T2�T

AR
0

exp

(∑
A′∈π(T2)

φ(A′)

)
= α∗(A)β∗(AR)

Hence we have α(A) = α∗(A).

18

	Introduction
	Preliminaries
	Classification setup
	PAC-Bayes Overview

	Statistical results
	Basic PAC-Bayes result
	Oracle risk for trees (as H =.H(T0) grows in size with T0)
	Rate of convergence

	Algorithmic Results
	Experiments
	Appendix
	Proposition 2
	Theorem 1
	Corollary 1
	Theorem 2

