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1 Relationship between Parametric SOP and Covariance of Multivariate
Generalized Gaussian Distribution

Here, we show our parametric second-order pooling (SOP) shares similar philosophy with estimation
of covariance by assuming features are sampled from a generalized multivariate Gaussian distribution
with zero mean. Firstly, our parametric SOP takes the following form:

2(Q;) = X"Q;X = (P, X)" (P,X), (1)
where Q; is a learnable matrix, and Q; is a symmetric positive definite matrix, which has a unique
decomposition Q; = PTP;. Given a set of X € RY*? = {xy,...,x.}, their generalized
multivariate Gaussian distribution with zero mean [5] can be represented as
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where ¢ and § are parameters of scale and shape, respectively; 3 is covariance matrix, and I is a

Gamma function. Under maximum likelihood criterion, given ¢ and &, covariance matrix 3 can be
estimated by:
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As shown in [11 [6], the objective function in Eq. (3)) can converge to a stationary point by using
iterative reweighed methods, whose j-th iteration has the following form:
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Let f;(x;) @ S @D we have
3 = X6, X = (R;X)" (R;X), (5)
where G ; and f{j are diagonal matrices, and their diagonal elements are { f;(x1)/L, ..., f;(xz)/L}

and {\/fj(x1)/L,...,\/f;(x1)/L}, respectively. Comparing Eq. (1) with Eq. , it is evident that,
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in each iteration, our parametric SOP learns a full matrix P;, while iterative reweighted methods
[1,16]] learn the diagonal R ;.

According to Eq. (3),, iterative reweighted methods can be accomplished by J iterations:

Y =Ry RiX)"(Rr- Ry X), (6)
Correspondingly we can learn a sequence of parameters Q,, {j = 1, ..., J} for our parametric SOP,
ie.,

Y= (Pr--- P X)T(Pr---P1X). (7

Since P ;X can be conveniently implemented using 1 x 1 convolution, our parametric SOP can be
transformed into learning multiple sequential 1 x 1 convolution operations following by computation
of SOP. Egs. (5)and (7) clearly show our parametric SOP and covariance of multivariate generalized
Gaussian distribution share the similar form.

2 Details of Matrix Square Root of Covariance Based on Newton-Schulz
Iteration [2]

Let Ag = X and By = I, according to Newton-Schulz iteration [2]], we have
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where A ;7 and B ; will converge to $% and £ after J iterations, respectively. However, Eq.
requires norm of (I — X), i.e., ||[I — X|| < 1. The recently proposed method [4] introduces pre-

normalization (i.e., 3 = ﬁE) and post-compensation operations (i.e., Z = 4/tr(3)A ;) for
Newton-Schulz iteration in Eq. (§)), and develop a back-propagation (BP) algorithm based on matrix
back-propagation method [3]] for end-to-end learning. Specifically, given the loss function I, BP for

post-compensation can be achieved by
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Let 6(]93l =0, for} =J ,.-.,2, BP of Newton-Schulz iteration can be accomplished with
J
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When} =1, we have

Finally, BP of pre-normalization can be computed as
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Eq. is the gradient of loss function ! with respect to 33, which is used to achieve BP for matrix
square root of covariance. Readers can refer to [4] for more details.
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