
A Missing Proofs

A.1 Useful Lemmas

As we work in finite probability space, we will use the following fact regarding total variation distance
and L1 distance for any two probability measures P and Q:

kP �Qk1 = 2DTV (P,Q). (13)

Recall that d⇡ = (1� �)
P1

t=0 �
t
d
t

⇡
. The following lemma shows that if two policies are close with

each other in terms of the trust region constraint we defined in the paper, then the state visitations of
the two policies are not that far away.

Lemma A.1 Given any two policy ⇡1 and ⇡2 such that Es⇠d⇡1
[DTV (⇡1(·|s),⇡2(·|s))]  ↵, then

we have:

kd⇡1 � d⇡2k1 
2↵

1� �
. (14)

Proof: Fix a state s and time step t, let us first consider dt
⇡1
(s)� d

t

⇡2
(s).

d
t

⇡1
(s)� d

t

⇡2
(s)

=
X

s0,s1,..,st�1

X

a0,a1,..,at�1

⇣
⇢(s0)⇡1(a0|s0)Ps0,a0(s2)...⇡1(at�1|st�1)Pst�1,at�1(s)

� ⇢(s0)⇡2(a0|s0)Ps0,a0(s1)...⇡2(at�1|st�1)Pst�1,at�1(s)
⌘

=
X

s0

⇢(s0)
X

a0

⇡1(a0|s0)
X

s1

Ps0,a0(s1)...
X

at�1

⇡1(at�1|st�1)Pst�1,at�1(s)

�

X

s0

⇢(s0)
X

a0

⇡2(a0|s0)
X

s1

Ps0,a0(s1)...
X

at�1

⇡2(at�1|st�1)Pst�1,at�1(s)

=
X

s0

⇢(s0)
X

a0

⇡1(a0|s0)P (st = s|s0, a0;⇡1)�
X

s0

⇢(s0)
X

a0

⇡2(a0|s0)P (st = s|s0, a0;⇡2),

(15)

where P (st = s|s0, a0;⇡) stands for the probability of reaching state s at time step t, starting at s0
and a0 and then following ⇡. Continue, we have:

|d
t

⇡1
(s)� d

t

⇡2
(s)|

= |

X

s0

⇢(s0)
X

a0

⇡1(a0|s0)P (st = s|s0, a0;⇡1)�
X

s0

⇢(s0)
X

a0

⇡2(a0|s0)P (st = s|s0, a0;⇡2)|

 |

X

s0

⇢(s0)
X

a0

⇡1(a0|s0)P (st = s|s0, a0;⇡1)�
X

s0

⇢(s0)
X

a0

⇡1(a0|s0)P (st = s|s0, a0;⇡2)|

+ |

X

s0

⇢(s0)
X

a0

⇡1(a0|s0)P (st = s|s0, a0;⇡2)�
X

s0

⇢(s0)
X

a0

⇡2(a0|s0)P (st = s|s0, a0;⇡2)|

 |

X

s1

d
1
⇡1
(s1) (P (st = s|s1;⇡1)� P (st = s|s1;⇡2)) |+ Es0⇠⇢

X

a0

|⇡1(a0|s0)� ⇡2(a0|s0)|P (st = s|s0, a0;⇡2)

(16)

Add
P

s
on both sides of the above equality, we get the following inequality:

X

s

|d
t

⇡1
(s)� d

t

⇡2
(s)|

 Es1⇠d1
⇡1

X

s

|P (st = s|s1;⇡1)� P (st = s|s1;⇡2)|+ Es0⇠⇢k⇡1(·|s0)� ⇡2(·|s0)k1 (17)

12

We can apply similar operations on P (st = s|s1;⇡1)� P (st = s|s1;⇡2) as follows:

Es1⇠d1
⇡1

X

s

|P (st = s|s1;⇡1)� P (st = s|s1;⇡2)|

= Es⇠d1
⇡1

X

s

|

X

a1

[⇡1(a1|s1)P (st = s|s1, a1;⇡1)� ⇡2(a1|s1)P (st = s|s1, a2;⇡2)] |

 Es2⇠d2
⇡1

X

s

|P (st = s|s2;⇡1)� P (st = s|s2;⇡2)|+ Es1⇠d1
⇡1
[k⇡1(·|s1)� ⇡2(·|s1)k1]

Again, if we continue expand P (st = s|s2;⇡1)� P (st = s|s2;⇡2) till time step t, we get:

X

s

|d
t

⇡1
(s)� d

t

⇡2
(s)| 

t�1X

i=0

Esi⇠di
⇡1
[k⇡1(·|si)� ⇡2(·|si)k1] (18)

Hence, for kd⇡1 � d⇡2k1, we have:

kd⇡1 � d⇡2k1  (1� �)
1X

t=0

�
t
kd

t

⇡1
� d

t

⇡2
k1



1X

t=0

�
tEs⇠dt

⇡1
[k⇡1(·|s)� ⇡2(·|s)k1] 

1X

t=0

2�tEs⇠dt
⇡1
[DTV (⇡1(·|s),⇡2(·|s))] 

2↵

1� �
. (19)

⇤

Lemma A.2 For any two distribution P and Q over X , and any bounded function f : X ! R such

that |f(x)|  c, 8x 2 X , we have:

|Ex⇠P [f(x)]� Ex⇠Q[f(x)]|  ckP �Qk1. (20)

Proof:

|Ex⇠P [f(x)]� Ex⇠Q[f(x)]| = |

X

x2X
P (x)f(x)�Q(x)f(x)|



X

x

|P (x)f(x)�Q(x)f(x)| 
X

x

|f(x)||P (x)�Q(x)|

 c

X

x

|P (x)�Q(x)| = ckP �Qk1. (21)

⇤

A.2 Proof of Theorem 3.1

Recall that we denote d⇡⇡ as the joint state-action distribution under policy ⇡. To prove Theorem 3.1,
we will use Lemma 1.2 presented in the Appendix from [37] to prove the following claim:

Lemma A.3 Suppose we learned a approximate model P̂ and obtain the optimal policy ⌘n with

respect to the objective function J(⇡) under P̂ and the trust-region constraint Es⇠d⇡n
DTV (⇡,⇡n) 

↵, then compare to ⇡
⇤
n

, we have:

J(⌘n)� J(⌘⇤
n
) 

�

2(1� �)

⇣
E(s,a)⇠d⌘n⌘n

h
kP̂s,a � Ps,ak1

i
+ E(s,a)⇠d⌘⇤

n
⌘⇤
n

h
kP̂s,a � Ps,ak1

i⌘
.

(22)

Proof: Denote V̂ ⇡ as the value function of policy ⇡ under the approximate model P̂ . From Lemma
1.2 and Corollary 1.2 in [37], we know that for any two policies ⇡1 and ⇡2, we have:

J(⇡1)� J(⇡2) = Es⇠⇢0 [V̂
⇡1(s)� V̂

⇡2(s)]

+
�

2(1� �)

⇣
E(s,a)⇠d⇡1⇡1

h
kP̂s,a � Ps,ak1

i
+ E(s,a)⇠d⇡2⇡2

h
kP̂s,a � Ps,ak1

i⌘
.

(23)

13

Now replace ⇡1 with ⌘n and ⇡2 with ⌘
⇤
n

. Note that both ⌘n and ⌘
⇤
n

are in the trust region constraint
Es⇠d⇡n

DTV (⇡,⇡n)  ↵ by definition. As ⌘n is the optimal control under the approximate model P̂
(i.e., the optimal solution to Eq. 4), we must have Es⇠⇢0 [V̂

⌘n(s)� V̂
⌘
⇤
n(s)]  0. Substitute it back

to Eq. 23, we immediately prove the above lemma. ⇤
The above lemma shows that the performance gap between ⌘n and ⌘

⇤
n

is measured under the
state-action distributions measured from ⌘n and ⌘

⇤
n

while our model P̂ is only accurate under the
state-action distribution from ⇡n. Luckily due to the trust-region constraint Es⇠d⇡n

DTV (⇡,⇡n) and
the fact that ⌘n and ⌘

⇤
n

are both in the trust-region, we can show that d⌘n⌘n, d⇡⇤
n
⇡
⇤
n

are not that far
from d⇡n⇡n using Lemma A.1:

kd⌘n⌘n � d⇡n⇡nk1  kd⌘n⌘n � d⇡n⌘nk1 + kd⇡n⌘n � d⇡n⇡nk1

 kd⌘n � d⇡nk1 + Es⇠d⇡n
[k⌘n(·|s)� ⇡n(·|s)k1] 

2↵

1� �
+ 2↵ 

4↵

1� �
. (24)

similarly, for ⇡⇤
n

we have:

kd⌘⇤
n
⌘
⇤
n
� d⇡n⇡nk1 

4↵

1� �
. (25)

Go back to Eq. 22, let us replace Ed⌘n⌘n and Ed⌘⇤
n
⌘⇤
n

by Ed⇡n⇡n and using Lemma A.2, we will have:

|E(s,a)⇠d⌘n⌘n
[kP̂s,a � Ps,ak1]� E(s,a)⇠d⇡n⇡n

[kP̂s,a � Ps,ak1]|  2kd⌘n⌘n � d⇡n⇡nk1 
8↵

1� �

) E(s,a)⇠d⌘n⌘n
[kP̂s,a � Ps,ak1]  E(s,a)⇠d⇡n⇡n

[kP̂s,a � Ps,ak1] +
8↵

(1� �)
, (26)

and similarly,

E(s,a)⇠d⌘⇤
n
⌘⇤
n
[kP̂s,a � Ps,ak1]  E(s,a)⇠d⇡n⇡n

[kP̂s,a � Ps,ak1] +
8↵

(1� �)
. (27)

Combine Eqs. 26 and 27, we have:

J(⌘n)� J(⌘⇤
n
) 

�

2(1� �)

⇣
2E(s,a)⇠d⇡n⇡n

[kP̂s,a � Ps,ak1] + 16↵/(1� �)
⌘

=
��

1� �
+

8�↵

(1� �)2
= O

✓
��

1� �

◆
+O

✓
�↵

(1� �)2

◆
. (28)

Using the definition of �(↵), adding J(⇡n) and subtracting J(⇡n) on the LHS of the above inequality,
we prove the theorem.

A.3 Proof of Theorem 4.1

The definition of ⇡n+1 implies that Es⇠d⇡n
[DTV (⇡n+1(·|s),⇡n(·|s))]  �. Using Lemma A.1, we

will have that the total variation distance between d
t

⇡n+1
and d

t

⇡n
is:

kd⇡n+1 � d⇡nk1 
2�

1� �
. (29)

Now we can compute the performance improvement of ⇡n+1 over ⌘n as follows:
(1� �)(J(⇡n+1)� J(⌘n)) = Es⇠d⇡n+1

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤

= Es⇠d⇡n+1

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤
� Es⇠d⇡n

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤
+ Es⇠d⇡n

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤



���Es⇠d⇡n+1

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤
� Es⇠d⇡n

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤���+ Es⇠d⇡n

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤


2"�

1� �
+ Es⇠d⇡n

⇥
Ea⇠⇡n+1 [A

⌘n(s, a)]
⇤

=
2"�

1� �
+ An(⇡n+1)

=
2"�

1� �
� |An(⇡n+1)| (30)

14

Finally, to bound J(⇡n+1)� J(⇡n), we can simply do:

J(⇡n+1)� J(⇡n) = J(⇡n+1)� J(⌘n) + J(⌘n)� J(⇡n)


�"

(1� �)2
�

|An(⇡n+1)|

1� �
��(↵). (31)

A.4 Global Performance Guarantee for DPI

When |�n(↵)| and |An(⇡n+1)| are small, say |�n(↵)|  ⇠, |An(⇡n+1)|  ⇠, then we can guarantee
that ⌘n and ⇡n are good policies, if our initial distribution ⇢ happens to be a good distribution
(e.g., close to d⇡⇤), and the realizable assumption holds: min⇡2⇧ Es⇠d⇡n

⇥
Ea⇠⇡(·|s)[A

⌘n(s, a)]
⇤
=

Es⇠d⇡n
[mina⇠A [A⌘n(s, a)]]. We call a policy class ⇧ closed under its convex hull if for any

sequence of policies {⇡i}i,⇡i 2 ⇧, the convex combination
P

i
wi⇡i, for any w such that wi � 0

and
P

i
wi = 1, also belongs to ⇧.

Theorem A.4 Under the realizable assumption and the assumption of ⇧ is closed under its convex

hull, and max{|An(⇡n+1)|,�(↵)}  ⇠ 2 R+
, then for ⌘n, we have:

J(⌘n)� J(⇡⇤) 

✓
max

s

✓
d⇡⇤(s)

⇢0(s)

◆◆✓
⇠

�(1� �)2
+

⇠

�(1� �)

◆
.

The term (maxs (d⇡⇤(s)/⇢0(s))) measures the distribution mismatch between the initial state distri-
bution ⇢0 and the optimal policy ⇡

⇤, and appears in some of previous API algorithms–CPI [5] and
PSDP [4].4

Proof: Recall the average advantage of ⇡n+1 over ⇡n is defined as A⇡n(⇡n+1) =
Es⇠d⇡n

[Ea⇠⇡n+1(·|s)[A
⌘n(s, a)]]. Also recall that the conservative update where we first com-

pute ⇡
⇤
n

= argmin⇡2⇧ Es⇠d⇡n
[Ea⇠⇡A

⌘n(s, a)], and then compute the new policy ⇡
0
n+1 =

(1 � �)⇡n + �⇡
⇤
n

. Note that under the assumption that the policy class ⇧ is closed under its
convex hull, we have that ⇡0

n+1 2 ⇧. As we showed that ⇡0
n+1 satisfies the trust-region constraint

defined in Eq. 5, we must have:

A⇡n(⇡n+1) = Es⇠d⇡n
[Ea⇠⇡n+1(·|s)[A

⌘n(s, a)]]  Es⇠d⇡n
[Es⇠⇡

0
n+1

[A⌘n(s, a)]], (32)

due to the fact that ⇡n+1 is the optimal solution of the optimization problem shown in Eq. 5 subject to
the trust region constraint. Hence if A⇡(⇡n+1) � �⇠, we must have Es⇠d⇡n

[Es⇠⇡
0
n+1

[A⌘n(s, a)]] �
�⇠, which means that:

Es⇠d⇡n

h
(1� �)Es⇠d⇡n

A
⌘n(s, a) + �Es⇠d⇡⇤

n
A

⌘n(s, a)
i

= (1� �)(1� �)(J(⇡n)� J(⌘n)) + �Es⇠d⇡n
[Ea⇠⇡⇤

n
A

⌘n(s, a)] � �⇠,

) Es⇠d⇡n
[Ea⇠⇡⇤

n
A

⌘n(s, a)] � �
⇠

�
�

1� �

�
(1� �)�(↵) � �

⇠

�
�

1� �

�
�(↵). (33)

Recall the realizable assumption: Es⇠d⇡n
[Ea⇠⇡⇤

n
A

⌘n(s, a)] = Es⇠d⇡n
[mina A⌘n(s, a)], we have:

�
⇠

�
�

1� �

�
�(↵) 

X

s

d⇡n(s)min
a

A
⌘n(s, a) =

X

s

d⇡n(s)

d⇡⇤(s)
d⇡⇤(s)min

a

A
⌘n(s, a)

 min
s

✓
d⇡n(s)

d⇡⇤(s)

◆X

s

d⇡⇤(s)min
a

A
⌘n(s, a)

 min
s

✓
d⇡n(s)

d⇡⇤(s)

◆X

s

d⇡⇤(s)
X

a

⇡
⇤(a|s)A⌘n(s, a)

= min
s

✓
d⇡n(s)

d⇡⇤(s)

◆
(1� �)(J(⇡⇤)� J(⌘n)). (34)

4While CPI considers a different setting where a good reset distribution ⌫ (different from ⇢0) is accessible,
DPI can utilize such reset distribution by replacing ⇢0 by ⌫ during training.

15

Rearrange, we get:

J(⌘n)� J(⇡⇤) 

✓
max

s

✓
d⇡⇤(s)

d⇡n(s)

◆◆✓
⇠

�(1� �)
+

�(↵)

�

◆



✓
max

s

✓
d⇡⇤(s)

⇢(s)

◆◆✓
⇠

�(1� �)2
+

⇠

�(1� �)

◆
(35)

⇤

A.5 Analysis on Using DAGGER for Updating ⇡n

Note that in ExIt, once an intermediate expert is constructed, DAGGER [38] is used as the imitation
learning algorithm to improvement the reactive policy. DAGGER does not directly optimize the
ultimate objective function—the expected total cost, but instead trying minimizes the number of
mismatches between the learner and the expert. Here we used more advanced, cost-aware IL
algorithms, AGGREVATE [26] and AGGREVATED [27], which directly reason about the expected
total cost, and guarantee to learn a policy that achieves one-step deviation improvement of the expert
policy.

Below we analyze the update of ⇡ using DAGGER.

To analyze the update of ⇡ using DAGGER, we consider deterministic policy here: we assume ⇡n

and ⌘ are both deterministic and the action space A is discrete. We consider the following update
procedure for ⇡:

min
⇡2⇧

Es⇠d⇡n

h
Ea⇠⇡(·|s) (a 6= argmin

a

A
⌘n(s, a))

i
,

s.t.,Es⇠d⇡n
[k⇡(·|s)� ⇡n(·|s)k1]  �. (36)

Namely we simply convert the cost vector defined by the disadvantage function by a “one-hot"
encoded cost vector, where all entries are 1, except the entry corresponding to argmina A⌘n(s, a)
has cost 0. Ignoring the updates on the “expert" ⌘n, running the above update step with respect to ⇡

can be regarded as running online gradient descent with a local metric defined by the trust-region
constraint. Recall that ⌘n may from a different policy class than ⇧.

Assume that we learn a policy ⇡n+1 that achieves ✏n prediction error:

Es⇠d⇡n

h
Ea⇠⇡n+1(·|s)

h
(a 6= argmin

a

A
⌘n(s, a))

ii
 ✏n. (37)

Namely we assume that we learn a policy ⇡n+1 such that the average probability of mismatch to ⌘n

is at most ✏n.

Using Lemma A.1, we will have that the total variation distance between d⇡n+1 and d⇡n is at most:

kd⇡n+1 � d⇡nk1 
2�

1� �
. (38)

Applying PDL, we have:
(1� �)(J(⇡n+1)� J(⌘n)) = Es⇠d⇡n+1

[Ea⇠⇡n+1 [A
⌘n(s, a)]]

 Es⇠d⇡n
[Ea⇠⇡n+1 [A

⌘n(s, a)]] +
2�"

1� �

= Es⇠d⇡n
[

X

a 6=argmina A⌘n (s,a)

⇡(a|s)A⌘n(s, a)] +
2�"

1� �

 (max
s,a

A
⌘n(s, a))Es⇠d⇡n

[Ea⇠⇡n+1 (a 6= argmin
a

A
⌘n(s, a))] +

2�"

1� �

 "
0
✏n +

2�"

1� �
, (39)

where we define "
0 = maxs,a A⌘n(s, a), which should be at a similar scale as ". Hence we can show

that performance difference between ⇡n+1 and ⇡n as:

J(⇡n+1)� J(⇡n) 
2�✏

(1� �)2
+

"
0
✏n

1� �
��(↵). (40)

16

Now we can compare the above upper bound to the upper bound shown in Theorem 4.1. Note
that even if we assume the policy class is rich and the learning process perfect learns a policy (i.e.,
⇡n+1 = ⌘n) that achieves prediction error ✏n = 0, we can see that the improvement of ⇡n+1 over
⇡n only consists of the improvement from the local optimal control �(↵). While in theorem 4.1,
under the same assumption, except for �(↵), the improvement of ⇡n+1 over ⇡n has an extra term
|An(⇡n+1)|

1��
, which basically indicates that we learn a policy ⇡n+1 that is one-step deviation improved

over ⌘n by leveraging the cost informed by the disadvantage function. If one uses DAgger, than the
best we can hope is to learn a policy that performs as good as the “expert" ⌘n (i.e., ✏n = 0).

B Additional Experimental Details

B.1 Synthetic Discrete MDPs and Conservative Policy Update Implementation

We follow [7] to randomly create 10 discrete MDPs, each with 1000 states, 5 actions and 2 branches
(namely, each state action pair leads to at most 2 different states in the next step). We work in
model-free setting: we cannot explicitly compute the distribution d⇡ and we can only generate
samples from d⇡ by executing ⇡.

We maintain a tabular representation P̂ 2 R|S|⇥|A|⇥|S|, where each entry Pi,j,k records the number
of visits of the state-action-next state triple. We represent ⌘ as a 2d matrix ⌘ 2 R|S⇥A|, where ⌘i,j

stands for the probability of executing action j at state i. The reactive policy uses the binary encoding
of the state id as the feature, which we denote as �(s) 2 Rds (ds is the dimension of feature space,
which is log2(|S|) in our setup). Hence the reactive policy ⇡n sits in low-dimensional feature space
and doesn’t scale with respect to the size of the state space S.

For both our approach and CPI, we implement the unconstrained cost-sensitive classification (Eq. 5)
by the Cost-Sensitive One Against All (CSOAA) classification technique. Specifically, given a set of
states {si}i sampled from d⇡n , and a cost vector {A⌘n(si, ·) 2 R|A|

} (byproduct of VI), we train
a linear regressor Ŵ 2 R|A|⇥ds to predict the cost vector: Ŵ�(s) ⇡ A

⌘n(s, ·). Then ⇡
⇤
n

in Eq. 6
is just a classifier that predicts action argmini(Ŵs)[i] corresponding to the smallest predicted cost.
We then combine ⇡

⇤
n

with the previous policies as shown in Eq. 6 to make sure ⇡n+1 satisfies the
trust region constraint in Eq. 5.

For CPI, we estimate A
⇡n(s, a) by running value iteration using P̂ with the original cost matrix. We

also experimented estimating A
⇡n(s, ·) by empirical rollouts with importance weighting, which did

not work well in practice due to high variance resulting from the empirical estimate and importance
weight. For our method, we alternately compute ⌘n using VI with the new cost shown in Eq. 10 and
P̂ , and update the Lagrange multiplier µ, under convergence. Hence the only difference between
our approach and CPI here is simply that we use A

⌘n while CPI uses A⇡n . We tuned the step size �

(Eq. 6) for CPI. Neither our method nor CPI used line-search trick for �.

Our results indicates that using A
⌘n converges much faster than using A

⇡n , although computing ⌘n

is much more time consuming than computing A
⇡n . But again we emphasize that computing ⌘n

doesn’t require extra samples. For real large discrete MDPs, we can easily plug in an approximate VI
techniques such as [39] to significantly speed up computing ⌘n.

B.2 Details for Updating Lagrange Multiplier µ

Though running gradient ascent on µ is theoretically sound and can work in practice as well, but
it converges slow and requires to tune the learning rate as we found experimentally. To speed up
convergence, we used the same update procedure used in the practical implementation of Guided
Policy Search [40]. We set up µmin and µmax. Starting from µ = µmin, we fix µ and compute ⌘

using the new cost c0 as shown in Eq. 10 under the local dynamics P̂ using LQR. We then compare
Es⇠µnDKL(⌘(·|s),⇡n(·|s)) to ↵. If ⌘ violates the constraint, i.e., Es⇠µnDKL(⌘(·|s),⇡n(·|s)) > ↵,
then it means that µ is too small. In this case, we set µmin = µ, and compute new µ as µ =
min(

p
µminµmax, 10µmin); On the other hand, if ⌘ satisfies the KL constraint, i.e, µ is too big, we

set µmax = µ, and compute new µ as µ = max(
p
µminµmax, 0.1µmax). We early terminate the

process once we find ⌘ such that 0.9↵  Es⇠µnDKL(⌘(·|s),⇡n(·|s))  1.1↵. We then store the
most recent Lagrange multiplier µ which will be used as warm start of µ for the next iteration.

17

B.3 Details on the Natural Gradient Update to ⇡

Here we provide details for updating ⇡✓ via imitating ⌘⇥ (Sec. 5.2) Recall the objective function
Ln(✓) = Es⇠d⇡✓n

[Ea⇠⇡(·|s;✓)[A
⌘⇥n (s, a)]], r✓n as r✓Ln(✓)|✓=✓n , and F✓n is the Fisher informa-

tion matrix (equal to the Hessian of the KL constraint measured at ✓n). To compute F
�1
✓

r✓, in our
implementation, we use Conjugate Gradient with the Hessian-vector product trick [12] to directly
compute F

�1
r.

Note that the unbiased empirical estimation of r✓n and F✓n is well-studied and can be com-
puted using samples generated from executing ⇡✓n . Assume we roll out ⇡✓n to generate K

trajectories ⌧
i = {s

i

0, a
i

0, ...s
i

T
, a

i

T
}, 8i 2 [K]. The empirical gradient and Fisher matrix can

be formed using these samples as r✓n =
P

s,a
[r✓n (ln(⇡(a|s; ✓n)))A⌘⇥n (s, a)] and F✓n =P

s,a

⇥
(r ln(⇡(a|s; ✓n)))(r✓n ln(⇡(a|s; ✓n))T

⇤
.

The objective Ln(✓) could be nonlinear with respect ✓, depending on the function approximator used
for ⇡n,. Hence one step of gradient descent may not reduce Ln(✓) enough. In practice, we can perform
k steps (k > 1) of NGD shown in Eq. 12, with the learning rate shrinking to

q
(�/k)/(rT

✓
F

�1
✓n

r✓)

to ensure that after k steps, the solution still satisfies the constraint in Eq. 11.

B.4 Details on the Continuous Control Experiment Setup

The cost function c(s, a) for discrete MDP is uniformly sampled from [0, 1]. For the continuous
control experiments, we designed the cost function c(s, a), which is set to be known to our algorithms.
For cartpole and helicopter hover, denote the target state as s⇤, the cost function is designed to be
exactly quadratic: c(s, a) = (s� s

⇤)TQ(s� s
⇤) + a

T
Ra, which penalizes the distance to the goal

and large control inputs. For Swimmer, Hopper and Half-Cheetah experiment, we set up a target
moving forward speed v

⇤. For any state, denote the velocity component as sv, the quadratic cost
function is designed as c(s, a) = q(sv � v

⇤)2 + a
T
Ra, which encourages the agent to move forward

in a constant speed while avoiding using large control inputs.

For reactive policies, we simply used two-layer feedforward neural network as the parameterized
policies–the same structures used in the implementation of [12].

For local linear model fit under d⇡, given a dataset in the format of {si, ai, s0i}Ni=1, where si ⇠ d⇡,
ai ⇠ ⇡(·|s), and s

0
i
⇠ Psi,ai , we perform Ridge linear regression:

A,B, c = arg min
A,B,c

1

N

NX

i=1

kAsi +Bai + c� s
0
i
k
2
2 + �(kAkF + kBkF + kck2), (41)

where regularization � is pre-fixed to be a small number for all experiments. With A,B, c, we
estimate ⌃ as ⌃ = 1

N

P
N

i=1 eie
T

i
, where ei = Asi +Bai + c� s

0
i
.

18

