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Abstract

In this paper, we propose a new technique named Stochastic Path-Integrated
Differential EstimatoR (SPIDER), which can be used to track many deterministic
quantities of interests with significantly reduced computational cost. Combining
SPIDER with the method of normalized gradient descent, we propose SPIDER-SFO
that solve non-convex stochastic optimization problems using stochastic gradients
only. We provide a few error-bound results on its convergence rates. Specially,
we prove that the SPIDER-SFO algorithm achieves a gradient computation cost
of O

(
min(n1/2ε−2, ε−3)

)
to find an ε-approximate first-order stationary point.

In addition, we prove that SPIDER-SFO nearly matches the algorithmic lower
bound for finding stationary point under the gradient Lipschitz assumption in
the finite-sum setting. Our SPIDER technique can be further applied to find an
(ε,O(ε0.5))-approximate second-order stationary point at a gradient computation
cost of Õ

(
min(n1/2ε−2 + ε−2.5, ε−3)

)
.

1 Introduction

In this paper, we study the optimization problem

minimize
x∈Rd

f(x) ≡ E [F (x; ζ)] (1.1)

where the stochastic component F (x; ζ), indexed by some random vector ζ, is smooth and possibly
non-convex. Non-convex optimization problem of form (1.1) contains many large-scale statistical
learning tasks and is gaining tremendous popularity due to its favorable computational and statistical
efficiency [5–7]. Typical examples of form (1.1) include principal component analysis, estimation
of graphical models, as well as training deep neural networks [17]. The expectation-minimization
structure of stochastic optimization problem (1.1) allows us to perform iterative updates and minimize
the objective using its stochastic gradient∇F (x; ζ) as an estimator of its deterministic counterpart.

A special case of central interest is when the stochastic vector ζ is finitely sampled. In such
finite-sum (or offline) case, we denote each component function as fi(x) and (1.1) can be restated as

minimize
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) (1.2)
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where n is the number of individual functions. Another case is when n is reasonably large or even
infinite, running across of the whole dataset is exhaustive or impossible. We refer it as the online (or
streaming) case. For simplicity of notations we will study the optimization problem of form (1.2) in
both finite-sum and online cases till the rest of this paper.

One important task for non-convex optimization is to search for, given the precision accuracy
ε > 0, an ε-approximate first-order stationary point x ∈ Rd or ‖∇f(x)‖ ≤ ε. In this paper, we aim
to propose a new technique, called the Stochastic Path-Integrated Differential EstimatoR (SPIDER),
which enables us to construct an estimator that tracks a deterministic quantity with significantly
lower sampling costs. As the readers will see, the SPIDER technique further allows us to design an
algorithm with a faster rate of convergence for non-convex problem (1.2), in which we utilize the
idea of Normalized Gradient Descent (NGD) [18, 26]. NGD is a variant of Gradient Descent (GD)
where the stepsize is picked to be inverse-proportional to the norm of the full gradient. Compared to
GD, NGD exemplifies faster convergence, especially in the neighborhood of stationary points [25].
However, NGD has been less popular due to its requirement of accessing the full gradient and its
norm at each update. In this paper, we estimate and track the gradient and its norm via the SPIDER
technique and then hybrid it with NGD. Measured by gradient cost which is the total number of
computation of stochastic gradients, our proposed SPIDER-SFO algorithm achieves a faster rate of
convergence in O(min(n1/2ε−2, ε−3)) which outperforms the previous best-known results in both
finite-sum [3][32] and online cases [24] by a factor of O(min(n1/6, ε−0.333)).

For the task of finding stationary points for which we already achieved a faster convergence
rate via our proposed SPIDER-SFO algorithm, a follow-up question to ask is: is our proposed
SPIDER-SFO algorithm optimal for an appropriate class of smooth functions? In this paper, we
provide an affirmative answer to this question in the finite-sum case. To be specific, inspired by a
counterexample proposed by Carmon et al. [10] we are able to prove that the gradient cost upper
bound of SPIDER-SFO algorithm matches the algorithmic lower bound. To put it differently, the
gradient cost of SPIDER-SFO cannot be further improved for finding stationary points for some
particular non-convex functions.

1.1 Related Works

In the recent years, there has been a surge of literatures in machine learning community that
analyze the convergence property of non-convex optimization algorithms. Limited by space and our
knowledge, we have listed all literatures that we believe are mostly related to this work. We refer
the readers to the monograph by Jain et al. [19] and the references therein on recent general and
model-specific convergence rate results on non-convex optimization.

SGD and Variance Reduction For the general problem of finding approximate stationary points,
under the smoothness condition of f(x), it is known that vanilla Gradient Descent (GD) and Stochastic
Gradient Descent (SGD), which can be traced back to Cauchy [11] and Robbins & Monro [33] and
achieve an ε-approximate stationary point with a gradient cost of O(min(nε−2, ε−4)) [16, 26].

Recently, the convergence rate of GD and SGD have been improved by the variance-reduction
type of algorithms [22, 34]. In special, the finite-sum Stochastic Variance-Reduced Gradient
(SVRG) and online Stochastically Controlled Stochastic Gradient (SCSG), to the gradient cost
of Õ(min(n2/3ε−2, ε−3.333)) [3, 24, 32].

First-order method for finding approximate second-order stationary points It has been shown
that for machine learning methods such as deep learning, approximate stationary points that have
at least one negative Hessian direction, including saddle points and local maximizers, are often not
sufficient and need to be avoided or escaped from [12, 15]. Recently, many literature study the problem
of how to avoid or escape saddle points and achieve an (ε, δ)-approximate second-order stationary
point x at a polynomial gradient cost, i.e. an x ∈ Rd such that ‖∇f(x)‖ ≤ ε, λmin(∇2f(x)) ≥ −δ
[1, 2, 4, 8, 15, 18, 20, 21, 23, 25, 30, 31, 35, 38]. Among them, the group of authors Ge et al.
[15], Jin et al. [20] proposed the noise-perturbed variants of Gradient Descent (PGD) and Stochastic
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Gradient Descent (SGD) that escape from all saddle points and achieve an ε-approximate second-
order stationary point in gradient cost of Õ(min(nε−2, poly(d)ε−4)) stochastic gradients. Levy [25]
proposed the noise-perturbed variant of NGD which yields faster evasion of saddle points than GD.

The breakthrough of gradient cost for finding second-order stationary points were achieved in
2016/2017, when the two recent lines of literatures, namely FastCubic [1] and CDHS [8] as well as
their stochastic versions [2, 35], achieve a gradient cost of Õ(min(nε−1.5+n3/4ε−1.75, ε−3.5)) which
serves as the best-known gradient cost for finding an (ε,O(ε0.5))-approximate second-order stationary
point before the initial submission of this paper.3 4 In particular, Agarwal et al. [1], Tripuraneni
et al. [35] converted the cubic regularization method for finding second-order stationary points [27]
to stochastic- gradient based and stochastic-Hessian-vector-product-based methods, and Allen-Zhu
[2], Carmon et al. [8] used a Negative-Curvature Search method to avoid saddle points. See also
recent works by Reddi et al. [31] for related saddle-point-escaping methods that achieve similar rates
for finding an approximate second-order stationary point.

Other concurrent works As the current work is carried out in its final phase, the authors became
aware that an idea of resemblance was earlier presented in an algorithm named the StochAstic
Recursive grAdient algoritHm (SARAH) [28, 29]. Despite the fact that both our SPIDER-SFO and
theirs adopt the recursive stochastic gradient update framework and our SPIDER-SFO can be viewed
as a variant of SARAH with normalization, our work differ from their works in two aspects:

(i) Our analysis techniques are totally different from the version of SARAH proposed by Nguyen
et al. [28, 29]. Their version can be seen as a variant of gradient descent, while ours hybrids the
SPIDER technique with normalized gradient descent. Moreover, Nguyen et al. [28, 29] adopt a
large stepsize setting (in fact their goal was to design a memory-saving variant of SAGA [13]),
while our SPIDER-SFO algorithm adopt a small stepsize that is proportional to ε. All these are
essential elements of our superior achievements in convergence rates;

(ii) Our proposed SPIDER technique is a much more general variance-reduced estimation method
for many quantities (not limited to gradients) and can be flexibly applied to numerous problems,
e.g. stochastic zeroth-order method.

Soon after the initial submission to NIPS and arXiv release of this paper, we became aware
that similar convergence rate results for stochastic first-order method were also achieved indepen-
dently by the so-called SNVRG algorithm [39, 40]. SNVRG [40] obtains a gradient complexity
of Õ(min(n1/2ε−2, ε−3)) for finding an ε-approximate first-order stationary point and achieves a
Õ(ε−3.5) gradient cost for finding an (ε,O(ε0.5))-approximate second-order stationary point [39].
By exploiting the third-order smoothness, an SNVRG variant can also achieve an (ε,O(ε0.5))-
approximate second-order stationary point in Õ(ε−3) stochastic gradient costs [39].

1.2 Our Contributions

In this work, we propose the Stochastic Path-Integrated Differential Estimator (SPIDER) technique,
which significantly avoids excessive access of stochastic oracles and reduces the time complexity.
Such technique can be potential applied in many stochastic estimation problems.

(i) We propose the SPIDER-SFO algorithm (Algorithm 1) for finding approximate first-order
stationary points for non-convex stochastic optimization problem (1.2), and prove the optimality
of such rate in at least one case. Inspired by recent works Carmon et al. [8, 10], Johnson &
Zhang [22] and independent of Zhou et al. [39, 40], this is the first time that the gradient cost of
O(min(n1/2ε−2, ε−3)) in both upper and lower (finite-sum only) bound for finding first-order
stationary points for problem (1.2) were obtained.

3Allen-Zhu [2] also obtains a gradient cost of Õ(ε−3.25) to achieve a (modified and weakened) (ε,O(ε0.25))-
approximate second-order stationary point.

4Here and in many places afterwards, the gradient cost also includes the number of stochastic Hessian-vector
product accesses, which has similar running time with computing per-access stochastic gradient.
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(ii) Following Allen-Zhu & Li [4], Carmon et al. [8], Xu et al. [38], we propose SPIDER-SFO+

algorithm for finding an approximate second-order stationary point for non-convex stochastic
optimization problem. To best of our knowledge, this is also the first time that the gradient cost
of Õ(min(n1/2ε−2 + ε−2.5, ε−3)) achieved with standard assumptions. We leave the details of
SFO in the long version of our paper: https://arxiv.org/abs/1807.01695

(iii) We propose a new and simpler analysis framework for proving convergence to approximate
stationary points. One can flexibly apply our proof techniques to analyze others algorithms, e.g.
SGD, SVRG [22], and SAGA [13].

Notation. Throughout this paper, we treat the parameters L,∆, σ, and ρ, to be specified later as
global constants. Let ‖ · ‖ denote the Euclidean norm of a vector or spectral norm of a square
matrix. Denote pn = O(qn) for a sequence of vectors pn and positive scalars qn if there is a global
constant C such that |pn| ≤ Cqn, and pn = Õ(qn) such C hides a poly-logarithmic factor of the
parameters. Denote pn = Ω(qn) if there is a global constant C such that |pn| ≥ Cqn. Let λmin(A)
denote the least eigenvalue of a real symmetric matrix A. For fixed K ≥ k ≥ 0, let xk:K denote the
sequence {xk, . . . ,xK}. Let [n] = {1, . . . , n} and S denote the cardinality of a multi-set S ⊂ [n] of
samples (a generic set that allows elements of multiple instances). For simplicity, we further denote
the averaged sub-sampled stochastic estimator BS := (1/S)

∑
i∈S Bi and averaged sub-sampled

gradient∇fS := (1/S)
∑
i∈S ∇fi. Other notations are explained at their first appearance.

2 Stochastic Path-Integrated Differential Estimator: Core Idea

In this section, we present in detail the underlying idea of our Stochastic Path-Integrated Dif-
ferential Estimator (SPIDER) technique behind the algorithm design. As the readers will see, such
technique significantly avoids excessive access of stochastic oracle and reduces complexity, which is
of independent interest and has potential applications in many stochastic estimation problems.

Let us consider an arbitrary deterministic vector quantity Q(x). Assume that we observe a
sequence x̂0:K , and we want to dynamically track Q(x̂k) for k = 0, 1, . . . ,K. Assume further that
we have an initial estimate Q̃(x̂0) ≈ Q(x̂0), and an unbiased estimate ξk(x̂0:k) of Q(x̂k)−Q(x̂k−1)
such that for each k = 1, . . . ,K

E [ξk(x̂0:k) | x̂0:k] = Q(x̂k)−Q(x̂k−1).

Then we can integrate (in the discrete sense) the stochastic differential estimate as

Q̃(x̂0:K) := Q̃(x̂0) +

K∑
k=1

ξk(x̂0:k). (2.1)

We call estimator Q̃(x̂0:K) the Stochastic Path-Integrated Differential EstimatoR, or SPIDER for
brevity. We conclude the following proposition which bounds the error of our estimator ‖Q̃(x̂0:K)−
Q(x̂K)‖, in terms of both expectation and high probability:

Proposition 1. The martingale variance bound has

E‖Q̃(x̂0:K)−Q(x̂K)‖2 = E‖Q̃(x̂0)−Q(x̂0)‖2 +

K∑
k=1

E‖ξk(x̂0:k)−(Q(x̂k)−Q(x̂k−1))‖2. (2.2)

Proposition 1 can be easily concluded using the property of square-integrable martingales. Now,
let B map any x ∈ Rd to a random estimate Bi(x) such that, conditioning on the observed sequence
x0:k, we have for each k = 1, . . . ,K,

E
[
Bi(xk)− Bi(xk−1) | x0:k

]
= Vk − Vk−1. (2.3)
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At each step k let S∗ be a subset that samples S∗ elements in [n] with replacement, and let the
stochastic estimator BS∗ = (1/S∗)

∑
i∈S∗ Bi satisfy

E‖Bi(x)− Bi(y)‖2 ≤ L2
B‖x− y‖2, (2.4)

and ‖xk − xk−1‖ ≤ ε1 for all k = 1, . . . ,K. Finally, we set our estimator Vk of B(xk) as

Vk = BS∗(xk)− BS∗(xk−1) + Vk−1.

Applying Proposition 1 immediately concludes the following lemma, which gives an error bound of
the estimator Vk in terms of the second moment of ‖Vk − B(xk)‖:
Lemma 1. We have under the condition (2.4) that for all k = 1, . . . ,K,

E‖Vk − B(xk)‖2 ≤ kL2
Bε

2
1

S∗
+ E‖V0 − B(x0)‖2. (2.5)

It turns out that one can use SPIDER to track many quantities of interest, such as stochastic
gradient, function values, zero-order estimate gradient, functionals of Hessian matrices, etc. Our
proposed SPIDER-based algorithms in this paper take Bi as the stochastic gradient ∇fi and the
zeroth-order estimate gradient, separately.

3 SPIDER for Stochastic First-Order Method

In this section, we apply SPIDER to the Stochastic First-Order (SFO) method. We introduce the
basic settings and assumptions in §3.1 and propose the main error-bound theorems for finding an
ε-approximate first-order stationary point in §3.2. We conclude this section with the corresponding
lower-bound result in §3.3.

3.1 Settings and Assumptions

We first introduce the formal definition of an approximate first-order stationary point as follows.

Definition 1. We call x ∈ Rd an ε-approximate first-order stationary point, or simply an FSP, if

‖∇f(x)‖ ≤ ε. (3.1)

For our purpose of analysis, we also pose the following assumption:

Assumption 1. We assume the following

(i) The ∆ := f(x0)− f∗ <∞ where f∗ = infx∈Rd f(x) is the global infimum value of f(x);

(ii) The component function fi(x) has an averaged L-Lipschitz gradient, i.e. for all x,y,

E‖∇fi(x)−∇fi(y)‖2 ≤ L2‖x− y‖2;

(iii) (For online case only) the stochastic gradient has a finite variance bounded by σ2 <∞, i.e.

E ‖∇fi(x)−∇f(x)‖2 ≤ σ2.

3.2 Upper Bound for Finding First-Order Stationary Points

Recall that NGD has iteration update rule

xk+1 = xk − η ∇f(xk)

‖∇f(xk)‖
, (3.2)

where η is a constant step size. The NGD update rule (3.2) ensures ‖xk+1 − xk‖ being constantly
equal to the stepsize η, and might fastly escape from saddle points and converge to a second-order
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Algorithm 1 SPIDER-SFO: Input x0, q, S1, S2, n0, ε, and ε̃ (For finding first-order stationary point)

1: for k = 0 to K do
2: if mod (k, q) = 0 then
3: Draw S1 samples (or compute the full gradient for the finite-sum case), let vk = ∇fS1(xk)
4: else
5: Draw S2 samples, and let vk = ∇fS2(xk)−∇fS2(xk−1) + vk−1

6: end if

7: OPTION I � for convergence rates in high probability
8: if ‖vk‖ ≤ 2ε̃ then
9: return xk

10: else
11: xk+1 = xk − η · (vk/‖vk‖) where η =

ε

Ln0
12: end if

13: OPTION II � for convergence rates in expectation

14: xk+1 = xk − ηkvk where ηk = min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
15: end for

16: OPTION I: Return xK � however, this line is not reached with high probability

17: OPTION II: Return x̃ chosen uniformly at random from {xk}K−1
k=0

stationary point [25]. We propose SPIDER-SFO in Algorithm 1, which resembles a stochastic variant
of NGD with the SPIDER technique applied, so that one can maintain an estimate of ∇f(xk) at a
higher accuracy under limited gradient budgets.

To analyze the convergence rate of SPIDER-SFO, let us first consider the online case for Algorithm
1. We let the input parameters be

S1 =
2σ2

ε2
, S2 =

2σ

εn0
, η =

ε

Ln0
, ηk = min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
, q =

σn0

ε
,

(3.3)
where n0 ∈ [1, 2σ/ε] is a free parameter to choose.5 In this case, vk in Line 5 of Algorithm 1 is a
SPIDER for ∇f(xk). To see this, recall ∇fi(xk−1) is the stochastic gradient drawn at step k and

E
[
∇fi(xk)−∇fi(xk−1) | x0:k

]
= ∇f(xk)−∇f(xk−1). (3.4)

Plugging in Vk = vk and Bi = ∇fi in Lemma 1 of §2, we can use vk in Algorithm 1 as the SPIDER
and conclude the following lemma that is pivotal to our analysis.

Lemma 2. Set the parameters S1, S2, η, and q as in (3.3), and k0 = bk/qc · q. Then under the
Assumption 1, we have

E
[
‖vk −∇f(xk)‖2 | x0:k0

]
≤ ε2.

Here we compute the conditional expectation over the randomness of x(k0+1):k.

Lemma 2 shows that our SPIDER vk of∇f(x) maintains an error of O(ε). Using this lemma,
we are ready to present the following results for Stochastic First-Order (SFO) method for finding
first-order stationary points of (1.2).

Theorem 1 (First-order stationary point, online setting, in expectation). Assume we are in the
online case, let Assumption 1 holds, set the parameters S1, S2, η, and q as in (3.3), and set
K =

⌊
(4L∆n0)ε−2

⌋
+ 1. Then running Algorithm 1 with OPTION II for K iterations outputs a x̃

5When n0 = 1, the mini-batch size is 2σ/ε, which is the largest mini-batch size that Algorithm 1 allows to
choose.
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satisfying

E [‖∇f(x̃)‖] ≤ 5ε. (3.5)

The gradient cost is bounded by 24L∆σ ·ε−3 +2σ2ε−2 +4σn−1
0 ε−1 for any choice of n0 ∈ [1, 2σ/ε].

Treating ∆, L and σ as positive constants, the stochastic gradient complexity is O(ε−3).

The relatively reduced minibatch size serves as the key ingredient for the superior performance
of SPIDER-SFO. For illustrations, let us compare the sampling efficiency among SGD, SCSG and
SPIDER-SFO in their special cases. With some involved analysis of the algorithms above, we can
conclude that to ensure per-iteration sufficient decrease of Ω(ε2/L), we have

(i) for SGD the choice of mini-batch size is O
(
σ2 · ε−2

)
;

(ii) for SCSG [24] and Natasha2 [2] the mini-batch size is O
(
σ · ε−1.333

)
;

(iii) for our SPIDER-SFO, only a reduced mini-batch size of O
(
σ · ε−1

)
is needed.

Turning to the finite-sum case, analogous to the online case we let

S2 =
n1/2

n0
, η =

ε

Ln0
, ηk = min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
, q = n0n

1/2, (3.6)

where n0 ∈ [1, n1/2]. In this case, one computes the full gradient vk = ∇fS1
(xk) in Line 3 of

Algorithm 1. We conclude our second upper-bound result:
Theorem 2 (First-order stationary point, finite-sum setting, in expectation). Assume we are in the
finite-sum case, let Assumption 1 holds, set the parameters S2, ηk, and q as in (3.6), set K =⌊
(4L∆n0)ε−2

⌋
+ 1, and let S1 = [n], i.e. we obtain the full gradient in Line 3. Then running

Algorithm 1 with OPTION II for K iterations outputs a x̃ satisfying

E‖∇f(x̃)‖ ≤ 5ε.

The gradient cost is bounded by n+ 12(L∆) · n1/2ε−2 + 2n−1
0 n1/2 for any choice of n0 ∈ [1, n1/2].

Treating ∆, L and σ as positive constants, the stochastic gradient complexity is O(n+ n1/2ε−2).

3.3 Lower Bound for Finding First-Order Stationary Points

To conclude the optimality of our algorithm we need an algorithmic lower bound result [10, 37].
Consider the finite-sum case and any random algorithm A that maps functions f : Rd → R to a
sequence of iterates in Rd+1, with

[xk; ik] = Ak−1
(
ξ,∇fi0(x0),∇fi1(x1), . . . ,∇fik−1

(xk−1)
)
, k ≥ 1, (3.7)

where Ak are measure mapping into Rd+1, ik is the individual function chosen by A at iteration k,
and ξ is uniform random vector from [0, 1]. And [x0; i0] = A0(ξ), where A0 is a measure mapping.
The lower-bound result for solving (1.2) is stated as follows:
Theorem 3 (Lower bound for SFO for the finite-sum setting). For any L > 0, ∆ > 0, and 2 ≤ n ≤
O
(
∆2L2 · ε−4

)
, for any algorithmA satisfying (3.7), there exists a dimension d = Õ

(
∆2L2·n2ε−4

)
,

and a function f satisfies Assumption 1 in the finite-sum case, such that in order to find a point x̃ for
which ‖∇f(x̃)‖ ≤ ε, A must cost at least Ω

(
L∆ · n1/2ε−2

)
stochastic gradient accesses.

Note the condition n ≤ O(ε−4) in Theorem 3 ensures that our lower bound Ω(n1/2ε−2) =
Ω(n + n1/2ε−2), and hence our upper bound in Theorem 1 matches the lower bound in Theorem
3 up to a constant factor of relevant parameters, and is hence near-optimal. Inspired by Carmon
et al. [10], our proof of Theorem 3 utilizes a specific counterexample function that requires at least
Ω(n1/2ε−2) stochastic gradient accesses. Note Carmon et al. [10] analyzed such counterexample in
the deterministic case n = 1 and we generalize such analysis to the finite-sum case n ≥ 1.
Remark 1. Note by setting n = O(ε−4) the lower bound complexity in Theorem 3 can be as large as
Ω(ε−4). We emphasize that this does not violate theO(ε−3) upper bound in the online case [Theorem
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1], since the counterexample established in the lower bound depends not on the stochastic gradient
variance σ2 specified in Assumption 1(iii), but on the component number n. To obtain the lower
bound result for the online case with the additional Assumption 1(iii), with more efforts one might be
able to construct a second counterexample that requires Ω(ε−3) stochastic gradient accesses with
the knowledge of σ instead of n. We leave this as a future work.

4 Further Extensions

Further extensions of our SPIDER technique can be successfully applied to reduce the complexity.
Limited by space, we leave the details of the following important extensions in the long version of
our paper at https://arxiv.org/abs/1807.01695 .

Upper Bound for Finding First-Order Stationary Points, in High-Probability Under more
stringent assumptions on the moments of stochastic gradients, our Algorithm 1 with OPTION I
achieves a gradient cost of Õ(min(n1/2ε−2, ε−3)) (note the additional polylogarithmic factor) with
high probability. We detail the theorems and their proofs in the long version of our paper.

Second-Order Stationary Point To find a second-order stationary point with (3.1), we can fuse
our SPIDER-SFO in Algorithm 1 (OPTION I taken) with a Negative-Curvature-Search (NC-Search)
iteration. In the long version of our paper (and independent of [39]), we proved rigorously that a
gradient cost of Õ(min(n1/2ε−2 + ε−2.5, ε−3)) can be achieved under standard assumptions:

Theorem 4 (Second-Order Stationary Point, Informal). There exists an algorithm such that under
appropriate assumptions it takes to find a (ε,

√
ρε)-second-order stationary point, we have for the

online case, when ε ≤ ρσ2 the total number of stochastic gradient computations is Õ(ε−3); For the
finite-sum case, when ε ≤ ρn, the total cost of gradient access is Õ(nε−1.5 + n1/2ε−2 + ε−2.5).

Zeroth-Order Stationary Point After the NIPS submission of this work, we propose a second
application of our SPIDER technique to the stochastic zeroth-order method for problem (1.2) and
achieves individual function accesses of O(min(dn1/2ε−2, dε−3)). To best of our knowledge, this is
also the first time a complexity of individual function value accesses for non-convex problems has
been improved to the aforementioned complexity using variance reduction techniques [22, 34].

5 Summary and Future Directions

We propose in this work the SPIDER method for non-convex optimization. Our SPIDER-type
algorithms have update rules that are reasonably simple and achieve excellent convergence properties.
However, there are still some important questions are left. For example, the lower bound results for
finding a second-order stationary point are not complete. Specially, it is not yet clear if our Õ(ε−3)
for the online case and Õ(n1/2ε−2) for the finite-sum case gradient cost upper bound for finding
a second-order stationary point (when n ≥ Ω(ε−1)) is optimal or the gradient cost can be further
improved, assuming both Lipschitz gradient and Lipschitz Hessian.
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A Analysis of SPIDER

In this and next sections, we sometimes denote for brevity that Ek[·] = E[· | x0:k], the expectation
operator conditional on x0:k, for an arbitrary k ≥ 0. We focus on the proofs of Proposition 1 and
Lemma 1.

A.1 Proof of Proposition 1

Proof of Proposition 1. It is straightforward to verify from the definition of Q̃ in (2.1) that

Q̃(x̂0:K)−Q(x̂K) = Q̃(x̂0)−Q(x̂0) +

K∑
k=1

ξk(x̂0:k)− (Q(x̂k)−Q(x̂k−1))

is a martingale, and hence (2.2) follows from the property of L2 martingales [14].

A.2 Proof of Lemma 1

Proof of Lemma 1. For any k > 0, we have from Proposition 1 (by applying Q̃ = V)

Ek‖Vk − B(xk)‖2 = Ek‖BS∗(xk)− B(xk)− BS∗(xk−1) + B(xk−1)‖2 + ‖Vk−1 − B(xk−1)‖2.
(A.1)

Then

Ek‖BS∗(xk)− B(xk)− BS∗(xk−1) + B(xk−1)‖2

a
=

1

S∗
E‖Bi(xk)− B(xk)− Bi(xk−1) + B(xk−1)‖2

b
≤ 1

S∗
E‖Bi(xk)− Bi(xk−1)‖2

(2.4)
≤ 1

S∗
L2
BE‖xk − xk−1‖2 ≤ L2

Bε
2
1

S∗
, (A.2)

where in a
= and

b
≤, we use Eq (2.3), and S∗ are random sampled from [n] with replacement. Combin-

ing (A.1) and (A.2), we have

Ek‖Vk − B(xk)‖2 ≤ L2
Bε

2
1

S∗
+ ‖Vk−1 − B(xk−1)‖2. (A.3)

Telescoping the above display for k′ = k − 1, . . . , 0 and using the iterated law of expectation, we
have

E‖Vk − B(xk)‖2 ≤ kL2
Bε

2
1

S∗
+ E‖V0 − B(x0)‖2. (A.4)

A.3 Proof of Lemma 2

Proof of Lemma 2. For k = k0, we have

Ek0‖vk0 −∇f(xk0)‖2

= Ek0‖∇fS1
(xk0)−∇f(xk0)‖2 ≤ σ2

S1
=
ε2

2
. (A.5)

From Line 14 of Algorithm 1 we have for all k ≥ 0,

‖xk+1 − xk‖ = min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
‖vk‖ ≤ ε

Ln0
. (A.6)
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Applying Lemma 1 with ε1 = ε/(Ln0), S2 = 2σ/(εn0), K = k − k0 ≤ q = σn0/ε, we have

Ek0‖vk −∇f(xk)‖2 ≤ σn0L
2

ε
· ε2

L2n2
0

· εn0

2σ
+ Ek0‖vk0 −∇f(xk0)‖2 (A.5)

= ε2, (A.7)

completing the proof.

B Proof of Expectation Results for FSP

This section devotes to the proofs of Theorems 1, 2. To prepare for them, we first conclude via
standard analysis the following

Lemma 3. Under the Assumption 1, setting k0 = bk/qc · q, we have

Ek0
[
f(xk+1)− f(xk)

]
≤ − ε

4Ln0
Ek0

∥∥vk∥∥+
3ε2

4n0L
. (B.1)

Proof of Lemma 3. From Assumption 1 (ii), we have

‖∇f(x)−∇f(y)‖2 = ‖Ei (∇fi(x)−∇fi(y))‖2 ≤ Ei‖∇fi(x)−∇fi(y)‖2 ≤ L2‖x− y‖2.(B.2)

So f(x) has L-Lipschitz continuous gradient, then

f(xk+1) ≤ f(xk) +
〈
∇f(xk),xk+1 − xk

〉
+
L

2

∥∥xk+1 − xk
∥∥2

= f(xk)− ηk
〈
∇f(xk),vk

〉
+
L(ηk)2

2

∥∥vk∥∥2

= f(xk)− ηk
(

1− ηkL

2

)∥∥vk∥∥2 − ηk
〈
∇f(xk)− vk,vk

〉
a
≤ f(xk)− ηk

(
1

2
− ηkL

2

)∥∥vk∥∥2
+
ηk

2

∥∥vk −∇f(xk)
∥∥2
, (B.3)

where in
a
≤, we applied Cauchy-Schwarz inequality. Since ηk = min

(
ε

Ln0‖vk‖ ,
1

2Ln0

)
≤ 1

2Ln0
≤

1
2L , we have

ηk
(

1

2
− ηkL

2

)∥∥vk∥∥2 ≥ 1

4
ηk
∥∥vk∥∥2

=
ε2

8n0L
min

(
2

∥∥∥∥vkε
∥∥∥∥ ,∥∥∥∥vkε

∥∥∥∥2
)

a
≥ ε‖vk‖ − 2ε2

4n0L
, (B.4)

where in
a
≥, we use V (x) = min

(
|x|, x

2

2

)
≥ |x| − 2 for all x. Hence

f(xk+1) ≤ f(xk)− ε‖vk‖
4Ln0

+
ε2

2n0L
+
ηk

2

∥∥vk −∇f(xk)
∥∥2

ηk≤ 1
2Ln0

≤ f(xk)− ε‖vk‖
4Ln0

+
ε2

2n0L
+

1

4Ln0

∥∥vk −∇f(xk)
∥∥2
. (B.5)

Taking expectation on the above display and using Lemma 2, we have

Ek0f(xk+1)− Ek0f(xk) ≤ − ε

4Ln0
Ek0

∥∥vk∥∥+
3ε2

4Ln0
. (B.6)

The proof is done via the following lemma:

Lemma 4. Under Assumption 1, for all k ≥ 0, we have

E‖∇f(xk)‖ ≤ E‖vk‖+ ε. (B.7)
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Proof. By taking the total expectation in Lemma 2, we have

E‖vk −∇f(xk)‖2 ≤ ε2. (B.8)

Then by Jensen’s inequality(
E‖vk −∇f(xk)‖

)2 ≤ E‖vk −∇f(xk)‖2 ≤ ε2.

So using triangle inequality

E‖∇f(xk)‖ = E‖vk − (vk −∇f(xk))‖
≤ E‖vk‖+ E‖vk −∇f(xk)‖ ≤ E‖vk‖+ ε. (B.9)

This completes our proof.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Taking full expectation on Lemma 3, and telescoping the results from k = 0 to
K − 1, we have

ε

4Ln0

K−1∑
k=0

E‖vk‖ ≤ f(x0)− Ef(xK) +
3Kε2

4Ln0

Ef(xK)≥f∗

≤ ∆ +
3Kε2

4Ln0
. (B.10)

Diving ε
4Ln0

K both sides of (B.10), and using K = b 4L∆n0

ε2 c+ 1 ≥ 4L∆n0

ε2 , we have

1

K

K−1∑
k=0

E‖vk‖ ≤ ∆ · 4Ln0

ε

1

K
+ 3ε ≤ 4ε. (B.11)

Then from the choose of x̃, we have

E‖∇f(x̃)‖ =
1

K

K−1∑
k=0

E‖∇f(xk)‖
(B.7)
≤ 1

K

K−1∑
k=0

E‖vk‖+ ε
(B.11)
≤ 5ε. (B.12)

To compute the gradient cost, note in each q iterations we access for one time S1 stochastic
gradients and for q times of 2S2 stochastic gradients, and hence the cost is⌈

K · 1

q

⌉
S1 + 2KS2

S1=qS2

≤ 3K · S2 + S1

≤ 3

(
4Ln0∆

ε2

)
2σ

εn0
+

2σ2

ε2
+ 2S2

=
24Lσ∆

ε3
+

2σ2

ε2
+

4σ

n0ε
. (B.13)

This concludes a gradient cost of 24L∆σε−3 + 2σ2ε−2 + 4σn−1
0 ε−1.

Proof of Theorem 2. For Lemma 2, we have

Ek0‖vk0 −∇f(xk0)‖2 = Ek0‖∇f(xk0)−∇f(xk0)‖2 = 0. (B.14)

With the above display, applying Lemma 1 with ε1 = ε
Ln0

, and S2 = n1/2

εn0
, K = k − k0 ≤ q =

n0n
1/2, we have

Ek0‖vk −∇f(xk)‖2 ≤ n0n
1/2L2 · ε2

L2n2
0

· εn0

n1/2
+ Ek0‖vk0 −∇f(xk0)‖2 (A.5)

= ε2. (B.15)
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So Lemma 2 holds. Then from the same technique of online case, we can obtain (A.6) and (4), and
(B.12). The gradient cost analysis is computed as:⌈

K · 1

q

⌉
S1 + 2KS2

S1=qS2

≤ 3K · S2 + S1

≤ 3

(
4Ln0∆

ε2

)
n1/2

n0
+ n+ 2S2

=
12(L∆) · n1/2

ε2
+ n+

2n1/2

n0
. (B.16)

This concludes a gradient cost of n+ 12(L∆) · n1/2ε−2 + 2n−1
0 n1/2.

C Proof of Theorem 3 for Lower Bound

Our proof is a direct extension of Carmon et al. [10]. Before we drill into the proof of Theorem 3,
we first introduce the hard instance f̃K with K ≥ 1 constructed by Carmon et al. [10].

f̂K(x) := −Ψ(1)Φ(x1) +

K∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (C.1)

where the component functions are

Ψ(x) :=

{
0 x ≤ 1

2

exp
(

1− 1
(2x−1)2

)
x > 1

2

(C.2)

and

Φ(x) :=
√
e

∫ x

−∞
e−

t2

2 , (C.3)

where xi denote the value of i-th coordinate of x, with i ∈ [d]. f̂K(x) constructed by Carmon et al.
[10] is a zero-chain function, that is for every i ∈ [d], ∇if(x) = 0 whenever xi−1 = xi = xi+1. So
any deterministic algorithm can only recover “one” dimension in each iteration [10]. In addition, it
satisfies that : If |xi| ≤ 1 for any i ≤ K,∥∥∥∇f̂K(x)

∥∥∥ ≥ 1. (C.4)

Then to handle random algorithms, Carmon et al. [10] further consider the following extensions:

f̃K,BK (x) = f̂K
(
(BK)Tρ(x)

)
+

1

10
‖x‖2 = f̂K

(〈
b(1), ρ(x)

〉
, . . . ,

〈
b(K), ρ(x)

〉)
+

1

10
‖x‖2,(C.5)

where ρ(x) = x√
1+‖x‖2/R2

and R = 230
√
K, BK is chosen uniformly at random from the space

of orthogonal matrices O(d,K) = {D ∈ Rd×K |D>D = IK }. The function f̃K,B(x) satisfies the
following:

(i)

f̃K,BK (0)− inf
x
f̃K,BK (x) ≤ 12K. (C.6)

(ii) f̃K,BK (x) has constant l (independent of K and d) Lipschitz continuous gradient.
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(iii) if d ≥ 52 · 2302K2 log( 2K2

p ), for any algorithm A solving (1.2) with n = 1, and f(x) =

f̃K,BK (x), then with probability 1− p,∥∥∥∇f̃K,BK (xk)
∥∥∥ ≥ 1

2
, for every k ≤ K. (C.7)

The above properties found by Carmon et al. [10] is very technical. One can refer to Carmon et al.
[10] for more details.

Proof of Theorem 3. Our lower bound theorem proof is as follows. The proof mirrors Theorem 2 in
Carmon et al. [10] by further taking the number of individual function n into account. Set

fi(x) :=
ln1/2ε2

L
f̃K,BK

i
(CT

i x/b) =
ln1/2ε2

L

(
f̂K
(
(BK

i )Tρ(CT
i x/b)

)
+

1

10

∥∥CT
i x/b

∥∥2
)
, (C.8)

and

f(x) =
1

n

n∑
i=1

fi(x). (C.9)

where BnK = [BK
1 , . . . ,B

K
n ] is chosen uniformly at random from the space of orthogonal matrices

O(d,K) = {D ∈ R(d/n)×(nK)|D>D = I(nK) }, with each BK
i ∈ {D ∈ R(d/n)×(K)|D>D =

I(K) }, i ∈ [n], C = [C1, . . . ,Cn] is an arbitrary orthogonal matrices O(d,K) = {D ∈
Rd×d|D>D = Id }, with each CK

i ∈ {D ∈ R(d)×(d/n)|D>D = I(d/n) }, i ∈ [n]. K = ∆L
12ln1/2ε2

,
with n ≤ 144∆2L2

l2ε4 (to ensure K ≥ 1), b = lε
L , and R =

√
230K. We first verify that f(x) satisfies

Assumption 1 (i). For Assumption 1 (i), from (C.6), we have

f(0)− inf
x∈Rd

f(x) ≤ 1

n

n∑
i=1

(fi(0)− inf
x∈Rd

fi(x)) ≤ ln1/2ε2

L
12K =

ln1/2ε2

L

12∆L

12ln1/2ε2
= ∆6.

For Assumption 1(ii), for any i, using the f̃K,BK
i

has l-Lipschitz continuous gradient, we have∥∥∥∇f̃K,BK
i

(CT
i x/b)−∇f̃K,BK

i
(CT

i y/b)
∥∥∥2

≤ l2
∥∥CT

i (x− y)/b
∥∥2
, (C.10)

Because ‖∇fi(x)−∇fi(y)‖2 =
∥∥∥ ln1/2ε2

Lb Ci

(
∇f̃K,BK

i
(CT

i x/b)−∇f̃K,BK
i

(CT
i y/b)

)∥∥∥2

, and us-

ing C>i Ci = Id/n, we have

‖∇fi(x)−∇fi(y)‖2 ≤
(
ln1/2ε2

L

)2
l2

b4
∥∥CT

i (x− y)
∥∥2

= nL2
∥∥CT

i (x− y)
∥∥2
, (C.11)

where we use b = lε
L . Summing i = 1, . . . , n and using each Ci are orthogonal matrix, we have

E‖∇fi(x)−∇fi(y)‖2 ≤ L2‖x− y‖2. (C.12)

Then with

d ≥ 2 max(9n3K2, 12n2KR2) log

(
2n3K2

p

)
+ n2K ∼ O

(
n2∆2L2

ε4
log

(
n2∆2L2

ε4p

))
,

from Lemma 2 of Carmon et al. [10] (or similarly Lemma 7 of Woodworth & Srebro [37] and Theorem
3 of Woodworth & Srebro [36], also refer to Lemma 5 in the end of the paper), with probability at
least 1 − p, after T = nK

2 iterations (at the end of iteration T − 1), for all IT−1
i with i ∈ [d], if

IT−1
i < K, then for any ji ∈ {IT−1

i + 1, . . . ,K}, we have
〈
bi,ji , ρ(CT

i x/b)
〉
≤ 1

2 , where IT−1
i

denotes that the algorithm A has called individual function i with IT−1
i times (

∑n
i=1 I

T−1
i = T )

6If x0 6= 0, we can simply translate the counter example as f ′(x) = f(x− x0), then f ′(x0)− infx∈Rd f ′(x) ≤ ∆.
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at the end of iteration T − 1, and bi,j denotes the j-th column of BK
i . However, from (C.7), if〈

bi,ji , ρ(CT
i x/b)

〉
≤ 1

2 , we will have ‖∇f̃K,BK
i

(CT
i x/b)‖ ≥ 1

2 . So fi can be solved only after K
times calling it.

From the above analysis, for any algorithm A, after running T = nK
2 = ∆Ln1/2

24lε2 iterations, at
least n2 functions cannot be solved (the worst case is when A exactly solves n

2 functions), so

∥∥∥∇f(xnK/2)
∥∥∥2

=
1

n2

∥∥∥∥∥ ∑
i not solved

ln1/2ε2

Lb
Ci∇f̃K,BK

i
(CT

i x
nK/2/b)

∥∥∥∥∥
2

a
=

1

n2

∑
i not solved

∥∥∥n1/2ε∇f̃K,BK
i

(CT
i x

nK/2/b)
∥∥∥2 (C.7)
≥ ε2

8
, (C.13)

where in a
=, we use C>i Cj = 0d/n, when i 6= j, and C>i Ci = Id/n.

Lemma 5. Let {x}0:T with T = nK
2 is informed by a certain algorithm in the form (3.7). Then

when d ≥ 2 max(9n3K2, 12n3KR2) log(2n2K2

p ) + n2K, with probability 1− p, at each iteration
0 ≤ t ≤ T , xt can only recover one coordinate.

Proof. The proof is essentially same to [10] and [36]. We give a proof here. Before the poof, we give
the following definitions:

1. Let it denotes that at iteration t, the algorithm choses the it-th individual function.

2. Let Iti denotes the total times that individual function with index i has been called before
iteration k. We have I0

i = 0 with i ∈ [n], i 6= it, and I0
i0 = 1. And for t ≥ 1,

Iti =

{
It−1
i + 1, i = it.

It−1
i , otherwise.

(C.14)

3. Let yti = ρ(CT
i x

t) =
CT

i xt

√
R2+‖CT

i xt‖2
with i ∈ [n]. We have yti ∈ Rd/n and ‖yti‖ ≤ R.

4. Set Vt
i be the set that

(⋃n
i=1

{
bi,1, · · ·bi,min(K,Iti )

})⋃{
y0
i ,y

1
i , · · · ,yti

}
, where bi,j

denotes the j-th column of BK
i .

5. Set U t
i be the set of

{
bi,min(K,It−1

i +1), · · · ,bi,K
}

with i ∈ [n]. U t =
⋃n
i=1 U

t
i. And set

Ũ t

i =
{
bi,min(K,1), · · · ,bi,min(K,It−1

i )

}
. Ũ t

=
⋃n
i=1 Ũ

t

i.

6. Let Pt
i ∈ R(d/n)×(d/n) denote the projection operator to the span of u ∈ Vt

i. And let Pt⊥
i

denote its orthogonal complement.

Because At performs measurable mapping, the above terms are all measurable on ξ and BnK , where
ξ is the random vector in A. It is clear that if for all 0 ≤ t ≤ T and i ∈ [n], we have∣∣〈u,yti〉∣∣ < 1

2
, for all u ∈ U t

i. (C.15)

then at each iteration, we can only recover one index, which is our destination. To prove that (C.15)
holds with probability at least 1− p, we consider a more hard event Gt as

Gt =
{∣∣∣〈u,P(t−1)⊥

i yti

〉∣∣∣ ≤ a‖P(t−1)⊥
i yti‖ | u ∈ U t (not U t

i), i ∈ [n]
}
, t ≥ 1, (C.16)

with a = min
(

1
3(T+1) ,

1
2(1+

√
3T )R

)
. And G≤t =

⋂t
j=0 G

j .
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We first show that if G≤T happens, then (C.15) holds for all 0 ≤ t ≤ T . For 0 ≤ t ≤ T , and
i ∈ [n], if U t

i = ∅, (C.15) is right; otherwise for any u ∈ U t
i, we have∣∣〈u,yti〉∣∣

≤
∣∣∣〈u,P(t−1)⊥

i yti

〉∣∣∣+
∣∣∣〈u,P(t−1)

i yti

〉∣∣∣
≤ a‖P(t−1)⊥

i yti‖+
∣∣〈u,Pt−1

i yti
〉∣∣ ≤ aR+R

∥∥Pt−1
i u

∥∥ , (C.17)

where in the last inequality, we use ‖P(t−1)⊥
i yti‖ ≤ ‖y

(t−1)
i ‖ ≤ R.

If t = 0, we have Pt−1
i = 0d/n×d/n, then

∥∥Pt−1
i u

∥∥ = 0, so (C.15) holds. When t ≥ 1, suppose
at t− 1, G≤t happens then (C.15) holds for all 0 to t− 1. Then we need to prove that ‖Pt−1

i u‖ ≤
b =
√

3Ta with u ∈ U t
i and i ∈ [n]. Instead, we prove a stronger results: ‖Pt−1

i u‖ ≤ b =
√

3Ta
with all u ∈ U t and i ∈ [n]. Again, When t = 0, we have ‖Pt−1

i u‖ = 0, so it is right, when t ≥ 1,
by Graham-Schmidt procedure on y0

i ,bi0,min(I0
i0
,K), · · · ,yt−1

i ,bit−1,min(It−1

it−1 ,K), we have

∥∥Pt−1
i u

∥∥2
=

t−1∑
z=0

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣
2

+

t−1∑
z=0, Iz

iz
≤K

∣∣∣∣∣∣
〈

P̂
(z−1)⊥
i biz,Iziz

‖P̂
(z−1)⊥
i biz,Iziz ‖

,u

〉∣∣∣∣∣∣
2

, (C.18)

where

P̂
(z−1)

i = P(z−1)
i +

(
P(z−1)⊥
i yzi

)(
P(z−1)⊥
i yzi

)T

∥∥∥P(z−1)⊥
i yzi

∥∥∥2 .

Using biz,Iziz⊥u for all u ∈ U t, we have∣∣∣〈P̂(z−1)⊥
i biz,Iziz ,u

〉∣∣∣ (C.19)

=
∣∣∣0− 〈P̂(z−1)

i biz,Iziz ,u
〉∣∣∣

≤
∣∣∣〈P(z−1)

i biz,Iziz ,u
〉∣∣∣+

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz,Iziz

〉〈
P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣ .
For the first term in the right hand of (C.19), by induction, we have∣∣∣〈P(z−1)

i biz,Iziz ,u
〉∣∣∣ =

∣∣∣〈P(z−1)
i biz,Iziz ,P

(z−1)
i u

〉∣∣∣ ≤ b2. (C.20)

For the second term in the right hand of (C.19), by assumption (C.16), we have∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz,Iziz

〉〈
P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣ ≤ a2. (C.21)

Also, we have ∥∥∥P̂(z−1)⊥
i biz,Iziz

∥∥∥2

(C.22)

= ‖biz,Iziz ‖
2 −

∥∥∥P̂(z−1)

i biz,Iziz

∥∥∥2

= ‖biz,Iziz ‖
2 −

∥∥∥P(z−1)
i biz,Iziz

∥∥∥2

−

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz,Iziz

〉∣∣∣∣∣
2

≥ 1− b2 − a2.
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Substituting (C.19) and (C.22) into (C.18), for all u ∈ U t, we have∥∥Pt−1
i u

∥∥2 ≤ ta2 + t
(a2 + b2)2

1− (a2 + b2)

a2+b2≤(3T+1)a2≤a
≤ Ta2 + T

a2

1− a
a≤1/2

≤ 3Ta2 = b2. (C.23)

Thus for (C.17), t ≥ 1, because u ∈ U t
i ⊆ U t, we have

∣∣〈u,yti〉∣∣ ≤ (a+ b)R
a≤ 1

2(1+
√

3T )R

≤ ≤ 1

2
. (C.24)

This shows that if G≤T happens, (C.15) holds for all 0 ≤ t ≤ T . Then we prove that P(G≤T ) ≥ 1−p.
We have

P
(

(G≤T )c
)

=

T∑
t=0

P
(

(G≤t)c | G<t
)
. (C.25)

We give the following definition:

1. Denote ît be the sequence of i0:t−1. Let Ŝt be the set that contains all possible ways of ît

(|Ŝt| ≤ nt).

2. Let Ũj

ît
= [bj,1, · · · ,bj,min(K,It−1

j )] with j ∈ [n], and Ũît = [Ũ1
ît
, · · · , Ũn

ît
]. Ũît is

analogous to Ũ t, but is a matrix.

3. Let Uj

ît
= [bj,min(K,Itj); · · · ;bj,K ] with j ∈ [n], and Uît = [U1

ît
, · · · ,Un

ît
]. Uît is

analogous to U t, but is a matrix. Let Ū = [Ũît ,Uît ].

We have that

P
(

(G≤t)c | G<t
)

(C.26)

=
∑
ît0∈Ŝt

Eξ,Uît0

(
P
(

(G≤t)c | G<t, ît = ît0, ξ,Uît0

)
P
(
ît = ît0 | G

<t, ξ,Uît0

))
.

For
∑
ît0∈Ŝt Eξ,Uît0

P
(
ît = ît0 | G

<t, ξ,Uît0

)
=
∑
ît0∈Ŝt P

(
ît = ît0 | G

<t
)

= 1, in the rest, we

show that the probability P
(

(G≤t)c | G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0,

)
for all ξ0, Ũ0 is small. By

union bound, we have

P
(

(G≤t)c | G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0

)
(C.27)

≤
n∑
i=1

∑
u∈Ut

P
(〈

u,P(t−1)⊥
i yti

〉
≥ a‖P(t−1)⊥

i yti‖ | G
<t, ît = ît0, ξ = ξ0, Ũît0

= Ũ0

)
.

Note that ît0 is a constant. Because given ξ and Ũît0
, under G≤t, both P(t−1)

i and yti are known. We
prove

P
(
Uît0

= U0 | G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0

)
= P

(
Uît0

= ZiU0 | G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0

)
,(C.28)
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where Zi ∈ Rd/n×d/n, ZT
i Zi = Id, and Ziu = u = ZT

i u for all u ∈ Vt−1
i . In this way, P(t−1)⊥

i u

‖P(t−1)⊥
i u‖

has uniformed distribution on the unit space. To prove it, we have

P
(
Uît0

= U0 | G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0

)
=

P(Uît0
= U0,G<t, ît = ît0, ξ = ξ0, Ũît0

= Ũ0)

P(G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0)

=
P(G<t, ît = ît0 | ξ = ξ0,Uît0

= U0, Ũît0
= Ũ0)p(ξ = ξ0,Uît0

= U0, Ũît0
= Ũ0)

P(G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ)

,(C.29)

And

P
(
Uît0

= ZiU0 | G<t, ît = ît0, ξ = ξ0, Ũî0
= Ũ0

)
=

P(G<t, ît = ît0 | ξ = ξ0,Uît0
= U0, Ũît0

= ZiŨ0)p(ξ = ξ0,Uît0
= ZiU0, Ũît0

= Ũ0)

P(G<t, ît = ît0, ξ = ξ0, Ũît0
= Ũ0)

(C.30)

For ξ and Ū are independent. And p(Ū) = p(ZiŪ), we have p(ξ = ξ0,Uît0
= U0, Ũît0

= Ũ0) =

p(ξ = ξ0,Uît0
= ZiU0, Ũît0

= Ũ0). Then we prove that if G<t and ît = ît0 happens under

Uît0
= U0, ξ = ξ0, Ũît0

= Ũ0, if and only if G<t and ît = ît0 happen under Uît0
= ZiU0, ξ =

ξ0, Ũît0
= Ũ0.

Suppose at iteration l − 1 with l ≤ t, we have the result. At iteration l, suppose G<l and îl = îl0
happen, given Uît0

= U0, ξ = ξ0, Ũît0
= Ũ0. Let x′ and (̂i′)j are generated by ξ = ξ0,Uît0

=

ZiU0, Ũît0
= Ũ0. Because G<l happens, thus at each iteration, we can only recover one index until

l − 1. Then (x′)j = xj and (̂i′)j = îj . with j ≤ l. By induction, we only need to prove that Gl−1′

will happen. Let u ∈ U l−1, and i ∈ [n], we have∣∣∣∣∣
〈
Ziu,

P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ =

∣∣∣∣∣
〈
u,ZT

i

P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ a=
∣∣∣∣∣
〈
u,

P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ , (C.31)

where in a
=, we use P(l−2)⊥

i yl−1
i is in the span of V l

i ⊆ Vt−1
i . This shows that if G<t and

ît = ît0 happen under Uît0
= U0, ξ = ξ0, Ũît0

= Ũ0, then G<t and ît = ît happen under

Uît0
= ZiU0, ξ = ξ0, Ũît0

= Ũ0. In the same way, we can prove the necessity. Thus for any

u ∈ Ut, if ‖P(t−1)⊥
i yti‖ 6= 0 (otherwise,

∣∣∣〈u,P(t−1)⊥
i yti

〉∣∣∣ ≤ a‖P(t−1)⊥
i yti‖ holds), we have

P

(〈
u,

P(t−1)⊥
i yti

‖P(t−1)⊥
i yti‖

〉
≥ a | G<t, ît = ît0, ξ = ξ0, Ũît0

= Ũ0

)
a
≤ P

(〈
P(t−1)⊥
i u

‖P(t−1)⊥
i u‖

,
P(t−1)⊥
i yti

‖P(t−1)⊥
i yti‖

〉
≥ a | G<t, ît = ît0, ξ = ξ0, Ũît0

= Ũ0

)
b
≤ 2e

−a2(d/n−2T )
2 , (C.32)

where in
a
≤, we use ‖P(t−1)⊥

i u‖ ≤ 1; and in
b
≤, we use P(t−1)⊥

i yt
i

‖P(t−1)⊥
i yt

i‖
is a known unit vector

and P(t−1)⊥
i u

‖P(t−1)⊥
i u‖

has uniformed distribution on the unit space. Then by union bound, we have
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Algorithm Online Finite-Sum
First-order
Stationary
Point

GD / SGD [26] ε−4 nε−2

SVRG / SCSG [3, 24, 32] ε−3.333 n+ n2/3ε−2

SPIDER-SFO (this work) ε−3 n+ n1/2ε−2 ∆

First-order
Stationary
Point

(Hessian-
Lipschitz
Required)

Perturbed GD / SGD [15, 20] poly(d)ε−4 nε−2

NEON+GD
/ NEON+SGD [4, 38] ε−4 nε−2

AGD [21] N/A nε−1.75

NEON+SVRG
/ NEON+SCSG [3, 24, 32] ε−3.5

(ε−3.333)
nε−1.5 + n2/3ε−2

NEON+FastCubic/CDHS [1, 8, 35] ε−3.5 nε−1.5 + n3/4ε−1.75

NEON+Natasha2 [2, 4, 38] ε−3.5

(ε−3.25)
nε−1.5 + n2/3ε−2

SPIDER-SFO+ (this work) ε−3 n1/2ε−2 Θ

Table 1: Comparable results on the gradient cost for nonconvex optimization algorithms that use only
individual (or stochastic) gradients. Note that the gradient cost hides a poly-logarithmic factors of d,
n, ε. For clarity and brevity purposes, we record for most algorithms the gradient cost for finding an
(ε,O(ε0.5))-approximate second-order stationary point. For some algorithms we added in a bracket
underneath the best gradient cost for finding an (ε,O(εα))-approximate second-order stationary point
among α ∈ (0, 1], for the fairness of comparison.
∆: we provide lower bound for this gradient cost entry.
Θ: this entry is for n ≥ Ω(ε−1) only, in which case SPIDER-SFO+ outperforms NEON+FastCubic/CDHS.

P
((

G≤t
)c
| G<t

)
≤ 2(n2K)e

−a2(d/n−2T )
2 . Thus

P
((

G≤T
)c)

≤ 2(T + 1)n2K exp

(
−a2(d/n− 2T )

2

)
T= nK

2

≤ 2(nK)(n2K) exp

(
−a2(d/n− 2T )

2

)
. (C.33)

Then by setting

d/n ≥ 2 max(9n2K2, 12nKR2) log(
2n3K2

p
) + nK

≥ 2 max(9(T + 1)2, 2(2
√

3T )2R2) log(
2n3K2

p
) + 2T

≥ 2 max(9(T + 1)2, 2(1 +
√

3T )2R2) log(
2n3K2

p
) + 2T

≥ 2

a2
log(

2n3K2

p
) + 2T, (C.34)

we have P
((

G≤T
)c)
≤ p. This ends proof.

D Comparison with Concurrent Works

We detail our main result for applying SPIDER to first-order methods in the list below:

(i) For the problem of finding an ε-approximate first-order stationary point, under Assumption 1
our results indicate a gradient cost of O(min(ε−3, n1/2ε−2)) which supersedes the best-known
convergence rate results for stochastic optimization problem (1.2) [Theorems 1 and 2]. Before
this work, the best-known result isO

(
min(ε−3.333, n2/3ε−2)

)
, achieved by Allen-Zhu & Hazan
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Figure 1: Gradient cost comparison of GD/SGD, SVRG/SCSG and 
SPIDER-SFO (Algorithm 1) for SFO. 
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Figure 2: Gradient cost comparison of GD/SGD, SVRG/SCSG and 
SPIDER-SFO (Algorithm 1) for finding an (\ep, \sqrt{\ep})-approximate 
local minimizer. Both axis is on logarithmic scale of the relevant 
parameters. Note we assume Hessian Lipschitz condition. 
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Figure 1: Left panel: gradient cost comparison for finding an ε-approximate first-order stationary
point. Right panel: gradient cost comparison for finding an (ε,O(ε0.5))-approximate second-order
stationary points (note we assume Hessian Lipschitz condition). Both axes are on the logarithmic
scale of ε−1.

[3], Reddi et al. [32] in the finite-sum case and Lei et al. [24] in the online case, separately.
Moreover, such a gradient cost achieves the algorithmic lower bound for the finite-sum setting
[Theorem 3].

(ii) For the problem of finding (ε, δ)-approximate second-order stationary point x, the gradient cost
is Õ(ε−3+ε−2δ−2+δ−5) in the online case and Õ(n1/2ε−2+n1/2ε−1δ−2+ε−1δ−3+δ−5+n).
In the classical definition of second-order stationary point where δ = O(ε0.5), such gradient cost
is simplyO(ε−3) in the online case. In comparison, to the best of our knowledge the best-known
results only achieve a gradient cost of O(ε−3.5) under similar assumptions [2, 4, 31, 35, 39].

We summarize the comparison with concurrent works that solve (1.2) under similar assumptions in
Table 1. In addition, we provide Figure 1 which draws the gradient cost against the magnitude of n for
both an approximate stationary point.7 For simplicity, we leave out the complexities of the algorithms
that has Hessian-vector product access and only record algorithms that use stochastic gradients only.8

Specifically, the yellow-boxed complexities in Table 1 achieved by NEON+FastCubic/CDHS [4] and
nonconvex AGD [21] for finding approximate second-order stationary points in the finite-sum case
using momentum technique, are the only result that has not been outperformed by our SPIDER-SFO+

algorithm in certain parameter regimes (n ≤ O(ε−1) in this case).

E Experiments

We use SPIDER-SFO to optimize a synthetic function and a neural network. The synthetic
function is similar to [35], with the stochasticity coming from a random coordinate shift instead of
the noise on the gradient oracle. In the experiment of neural networks, we train a fully connected
network on MNIST dataset.

E.1 Synthetic function

We optimize the following function:

Ea,b[w(x1 − a) + 10(x2 − b)2],

where a and b are independently drawn from N (0, 0.1). w(·) is a W-shaped scalar function with a
local maximum at the origin and two local minima on either side. We defer the exact form of w(·)

7One of the results not included in this table is Carmon et al. [9], which finds an ε-approximate first-
order stationary point in O(nε−1.75) gradient evaluations. However, their result relies on a more stringent
Hessian-Lipschitz condition, in which case a second-order stationary point can be found in similar gradient cost
[21].

8Due to the NEON method [4, 38], nearly all existing Hessian-vector product based algorithms in stochastic
optimization can be converted to ones that use stochastic gradients only.
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Figure 2: Results on synthetic non-convex optimization problem.

to appendix. We initialize with x1 = x2 = 0, and use SPIDER-SFO to optimize the function in an
online manner. We compare SPIDER with SGD and SVRG. For each algorithm, we tune the learning
rate with a grid search and plot the optimal choice. The hyper-parameters and grid search settings
can be found later.

We plot the relationship between function value and number of gradient oracles called in Figure 2.
It can be seen that SPIDER escapes saddle point and converges to the global minimum faster than
both SGD and SVRG.

Exact form of w: The function w(·) in the experiments of synthetic experiment is defined as [35]

w(x) =



√
ε(x+ (L+ 1)

√
ε)2 − 1

3 (x+ (L+ 1)
√
ε)3 − 1

3 (3L+ 1)ε3/2, x ≤ −L
√
ε;

εx+ ε3/2

3 −L
√
ε < x ≤ −

√
ε;

−
√
εx2 − x3

3 , −
√
ε < x ≤ 0;

−
√
εx2 + x3

3 , 0 < x ≤
√
ε;

−εx+ ε3/2

3

√
ε < x ≤ L

√
ε;

√
ε(x− (L+ 1)

√
ε)2 − 1

3 (x− (L+ 1)
√
ε)3 − 1

3 (3L+ 1)ε3/2, L
√
ε ≤ x.

(E.1)
We set ε = 0.01 and L = 5 in the experiments.

Hyper-parameters: For SGD, we use minibatch of size 100. For SPIDER-SFO, we set s1 = 1000,
s2 = 100 and q = 10. We set the ε̃ in the algorithm as 10−10. For SVRG, we set the larger batch size
with 1000 and the smaller batch size as 100, and update the large batch gradient every 10 iterations.

Learning rate: For each algorithm, we grid search the learning rate from set

{0.1, 0.3, 0.01, 0.03, 0.001, 0.003, 0.0001, 0.0003}

and choose the best one.

23



0 1 2 3 4 5 6
Oracles(×105)

10 1

100

Tr
ai

ni
ng

 L
os

s

SGD
SCSG
SPIDER

Figure 3: Results on MNIST classification.

E.2 Neural network

In addition to the synthetic function, we also train a two hidden-layer fully connected neural
network for classification on the MNIST dataset. Results are presented in Figure 3. In addition to
SPIDER and SGD, we also compare with SCSG [24], an online version of SVRG. For both SPIDER
and SGD, we set the larger batch size as 512 and the smaller batch size as 32.

In the real experiment on MNIST, we find that SPIDER only achieves a slight improvement. We
leave designing a practical version of SPIDER in the near future.

All the experiments with neural networks are implemented with PyTorch. Implementation details
are as follows:

Dataset: We use MNIST dataset with 50000 training data. Each data point is a picture with 28×28
pixels with one of 10 labels. We train a network to minimize the cross-entropy loss.

Network architecture: We use a 2 hidden-layer fully connected neural network, where each
hidden layer contains 512 neurons. The weights of the network are initialized randomly with normal
distribution N (0, 0.01).

Hyper-parameters: For SGD, we use minibatch of size 512. For SPIDER-SFO, we set s1 = 512,
s2 = 32 and q = 16. For SCSG, we set the larger batch size with 512 and the smaller batch size as
32.

Learning rate: For each algorithm, we grid search the learning rate from set

{0.1, 0.3, 0.01, 0.03}

and choose the best one.
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