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A Auxiliary results

We state four useful auxiliary results that will be used later.

The first one is from [2].
Lemma A.1. Let X be a compact and convex subset of Rd. Then for any a ∈ X , y ∈ Rd:

〈ProjX (y)− a,ProjX (y)− y〉 ≤ 0.

The second one is the envelope theorem [3].
Lemma A.2. Let f : Rn × Rm → R be a continuously differentiable function. Let U be a compact
set and consider the problem

max
x∈U

f(x, θ). (A.1)

Let x∗ : O → Rm be a continuous function defined on an open set O ⊂ Rm such that for each
θ ∈ O, x∗(θ) solves the problem in Equation A.1. Define V : Rm → R where V (θ) = f(x∗(θ), θ).
Then V (θ) is differentiable on O and:

∇V (θ) = ∇ f(x∗(θ), θ). (A.2)

The next two concern behavior of (deterministic and random) sequences.

The third one can be found in [1].
Lemma A.3. Let an, bn be two non-negative sequences such that

∑∞
n=1 an =∞,

∑∞
n=1 anbn <∞.

If there exists a K > 0 such that |bn+1 − bn| ≤ Kan. Then, limn→∞ bn = 0.

The last one is Lemma A6 from [5].
Lemma A.4. Let {Xn}∞n=1 be a sequence of non-negative random variables on a probability space.
Let {γn}∞n=1, {βn}∞n=1 be two non-negative sequences such that

∑∞
n=1 γn =∞ and

∑∞
n=1 γnβn <

∞. Assume there exists a constant C such that for all n ≥ 1, E[Xn] ≤ βn and |Xn+1 −Xn| ≤ Cγn
almost surely. Then Xn → 0, a.s..

B Problem setup

B.1 Prelude: Single-Agent Online Learning

We start with a brief recap on the standard single-agent online learning problem [6]. In single-agent
online learning, an agent has an action space A ⊂ Rd that is a convex and compact set and is
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interacting with an unknown environment. On each iteration n, the agent takes an action at, observes
the reward function rt(·) (that can be time-varying) and recevies the reward rt(at). The agent aims to
select actions so as to minimize regret RegAlg

T = maxa∈A
∑T
t=1{rt(a)− rt(at)}, where the actions

at’s are generated by the learning algorithm Alg.

A classical result therein is that provided rt(·)’s are concave functions and the gradient ∇ rt(at) is
available on each iteration1, a simple algorithm, known as online gradient descent2 (OGD) achieves
O(
√
T ) regret that is universally tight [7]. Futher, online gradient descent (OGD) achieves O(log T )

regret if rt(·)’s are strongly concave with bounded first and second derivatives [4]. In OGD (see
Algorithm 1), ProjX (·) is the Euclidean projection operator: it projects the iterate to the closest point
(in Euclidean distance) in the action space (if it ever steps out of X ). γn is a step-size sequence that
satisfies the usual summability condition:

∑∞
n=1 γ

2
n <∞,

∑∞
n=1 γn =∞.

Algorithm 1: Online Gradient Descent Learning

Require: An arbitrary a0 ∈ Rd
1: n← 0, y0 ← a0

2: repeat
3: yn+1 = yn + γn+1∇rt(an)
4: an+1 = ProjX (yn+1)
5: n← n+ 1
6: until end

We next list all the algorithms mentioned in the main text for ease of use, as they will be referenced
throughout the results and proofs in this appendix.

Algorithm 2: Multi-Agent OGD Learning

Require: Each agent i picks an arbitrary a0
i ∈ Rdi

1: n← 0, y0
i ← a0

i
2: repeat
3: for each agent i do
4: yn+1

i = yni + γn+1∇airi(an)

5: an+1
i = ProjXi

(yn+1
i )

6: end for
7: n← n+ 1
8: until end

Algorithm 3: Multi-Agent OGD Learning under Asynchronous Feedback Loss

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1∇airi(An), if In+1

i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

1In particular, this means that the whole function rt(·) need not be observed.
2More specifically, it is called online gradient descent with lazy projection. There is also online gradient

descent with eager projection; we do not discuss that variant due to space limitation. We also point out that
we are technically doing gradient ascent as opposed to descent here, because we are working with rewards as
opposed to costs. But since this point is easily understood, we do not introduce any new terminology for the
same algorithm.
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Algorithm 4: Multi-Agent ROGD Learning under Asynchronous Feedback Loss

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1

∇ai
ri(A

n)

pi
, if In+1

i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

Algorithm 5: Multi-Agent ROGD Learning under Asynchronous Feedback Loss: Stochastic Rewards

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1

∇ai
Ri(A

n,ωn+1)

pi
, if In+1

i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

Algorithm 6: Multi-Agent ROGD Learning under Asynchronous Feedback Loss: Noisy Gradient

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1(

∇ai
ri(A

n)

pi
+ ξn+1

i ), if In+1
i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

Assumption 1. There exists a constant V > 0 such that: ∀a ∈ X ,∀i, ‖∇aiRi(a, ω)‖2 ≤ V for
Π-almost every ω.

Assumption 2. E[‖∇aiRi(a, ω)‖22] <∞,∀a ∈ X ,∀i.

C Algorithm and energy function

We recall L(y) = ‖a∗‖22 − ‖ProjX (y)‖22 + 2〈y,ProjX (y)− a∗〉. To prove Lemma 3.2, we break it
into two steps, which are stated and proved in Lemma C.1 and Lemma C.2 respectively. Further, we
prove a more general case by defining L(a, y) = ‖a‖22 − ‖ProjX (y)‖22 + 2〈y,ProjX (y)− a〉.

Lemma C.1. For any a ∈ X , y ∈ Rd, L(a, y) ≥ 0 with equality if and only if ProjX (y) = a.
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Proof. Per the definition of the Lyapunov function, we have:
L(a, y)− ‖ProjX (y)− a‖22 =

‖a‖22 − ‖ProjX (y)‖22 + 2〈y,ProjX (y)− a〉 −
{
‖ProjX (y)‖22 − 2〈ProjX (y), a〉+ ‖a‖22

}
= −2‖ProjX (y)‖22 + 2〈y − ProjX (y),ProjX (y)− a〉+ 2〈ProjX (y),ProjX (y)− a〉+ 2〈ProjX (y), a〉
= 2〈y − ProjX (y),ProjX (y)− a〉 ≥ 0,

(C.1)

where the last inequality follows from Lemma A.1. Consequently, L(a, y)− ‖ProjX (y)− a‖22 = 0.
And if L(a, y) = 0, we must have ‖ProjX (y)− a‖22, therefore implying ProjX (y) = a. Similarly,
one can also see here that if L(a, yn) → 0, then ‖ProjX (yn) − a‖22 → 0, thereby implying
ProjX (yn)→ x.

Lemma C.2. Fix any a ∈ X .

1. For any two points y, ŷ ∈ Rd:
‖ProjX (y)− ŷ‖22 − ‖ProjX (ŷ)− ŷ‖22 ≤ ‖y − ŷ‖22.

2. For any y,∆y ∈ Rd:
L(a, y + ∆y)− L(a, y) ≤ 2〈∆y,ProjX (y)− a〉+ ‖∆y‖22.

Proof. We first prove the first claim. By expanding it, we have:
‖ProjX (y)− ŷ‖22 − ‖ProjX (ŷ)− ŷ‖22 = ‖ProjX (y)− y + y − ŷ‖22 − ‖ProjX (ŷ)− ŷ‖22
= ‖y − ŷ‖22 + ‖ProjX (y)− y‖22 + 2〈ProjX (y)− y, y − ŷ〉 − ‖ProjX (ŷ)− ŷ‖22
= ‖y − ŷ‖22 −

{
‖ProjX (ŷ)− ŷ‖22 − ‖ProjX (y)− y‖22 − 2〈y − ProjX (y), ŷ − y〉

}
.

(C.2)

Now define the function f(a, y) = ‖a − y‖22. It follows easily that the solution to the problem
maxa∈X ‖a − y‖22 is x∗(y) = ProjX (y). Consequently, by Lemma A.2, V (y) = f(x∗(y), y) is a
differential function in y and its derivative can be computed explicitly as follows:

∇V (y) = ∇ f(x∗(y), y) = 2(y − x∗(y)) = 2(y − ProjX (y)). (C.3)

Futher, since for each a ∈ X , f(a, y) is a convex function in y, and taking the maximum preserves
convexity, we have V (y) is also a convex function in y. This means that

V (ŷ)− V (y)− 〈∇V (y), ŷ − y〉 ≥ 0.

By Equation (C.3) and that V (y) = f(x∗(y), y) = ‖ProjX (y)− a‖22, the above equation becomes:

‖ProjX (ŷ)− ŷ‖22 − ‖ProjX (y)− y‖22 − 2〈y − ProjX (y), ŷ − y〉 ≥ 0.

Consequently, Equation (A.1) then immediately yields:
‖ProjX (y)− ŷ‖22 − ‖ProjX (ŷ)− ŷ‖22 ≤ ‖y − ŷ‖22.

We now prove the second part. Expanding using the definition of the Lyapunov function, we have:
L(a, y + ∆)− L(a, y) = ‖a‖22 − ‖ProjX (y + ∆)‖22 + 2〈y + ∆,ProjX (y + ∆)− a〉

−
{
‖a‖22 − ‖ProjX (y)‖22 + 2〈y,ProjX (y)− a〉

}
= ‖ProjX (y)‖22 − ‖ProjX (y + ∆)‖22 − 2〈y,ProjX (y)− a〉+ 2〈y + ∆,ProjX (y + ∆)− a〉
= ‖ProjX (y)‖22 − ‖ProjX (y + ∆)‖22 + 2〈y,ProjX (y + ∆)− ProjX (y)〉
+ 2〈∆,ProjX (y)− a+ ProjX (y + ∆)− ProjX (y)〉
= 2〈∆,ProjX (y)− a〉+ 2〈y + ∆,ProjX (y + ∆)− ProjX (y)〉
+ ‖ProjX (y)‖22 − ‖ProjX (y + ∆)‖22
= 2〈∆,ProjX (y)− a〉+ ‖ProjX (y)− (y + ∆)‖22 − ‖ProjX (y + ∆)− (y + ∆)‖22
≤ 2〈∆,ProjX (y)− a〉+ ‖∆‖22

(C.4)
where the last equality follows from completing the squares and the last inequality follows from the
first part of the lemma.
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D Almost sure convergence to Nash equilibria

Lemma D.1.
∞∑
t=0

γn+1 E[〈∇ar(At), a∗ −At〉] <∞. (D.1)

Proof. Per the gradient update rule in ROGD, we have Y n+1
i ={

Y ni + γn+1
∇ai

ri(A
n)

pi
, if In+1

i = 1

Y ni , if In+1
i = 0

This implies that ‖Y n+1
i −Y ni ‖22 ≤ ‖γn+1

∇ai
ri(A

n)

pi
‖22, a.s.,

and consequently:

‖Y n+1 − Y n‖22 =

N∑
i=1

‖Y n+1
i − Y ni ‖22 ≤

N∑
i=1

γ2
n+1

p2
i

‖∇airi(An)‖22. (D.2)

Since ri(·) is continuously differentiable in ai (per the regularity assumption in a continuous game),
and each Xi is a compact space, ‖∇airi(a)‖22 is a bounded function on X . Therefore define:

Cmax = sup
i∈N

max
a∈X
‖∇airi(a)‖22, p =

N∑
i=1

1

p2
i

.

Equation (D.2) implies that (almost surely):

‖Y n+1 − Y n‖22 ≤ γ2
n+1pCmax. (D.3)

By the second statement in Lemma C.2 and Equation (D.3), we have:

L(a∗, Y n+1)− L(a∗, Y n) ≤ 2γn+1〈Y n+1 − Y n, An − a∗〉+ γ2
n+1‖Y n+1 − Y n‖22

≤ 2γn+1〈Y n+1 − Y n, An − a∗〉+ γ2
n+1pCmax.

(D.4)

Denote by 1E the indicator function, which evaluates to 1 if the event E happens and evaluates to 0
otherwise. We then take the expectation of both sides of Equation (D.4) and obtain:

E[L(a∗, Y n+1)]− E[L(a∗, Y n)] ≤ 2E[〈Y n+1 − Y n, An − a∗〉] + γ2
n+1pCmax

= 2E
[
E[〈Y n+1 − Y n, An − a∗〉 | Y n]

]
+ γ2

n+1pCmax

= 2E
[
E[

N∑
i=1

〈Y n+1
i − Y ni , Ani − a∗i 〉 | Y n]

]
+ γ2

n+1pCmax

= 2E
[ N∑
i=1

E[〈Y n+1
i − Y ni , Ani − a∗i 〉 | Y n]

]
+ γ2

n+1pCmax

= 2γnE

[
N∑
i=1

{
E[〈0, Ani − a∗i 〉1{In+1

i =0} | Y
n] + E[〈γn+1

∇airi(An)

pi
, Ani − a∗i 〉1{In+1

i =1} | Y
n]
}]

+ γ2
n+1pCmax

= 2E

[
N∑
i=1

{
〈0, Ani − a∗i 〉E[1{In+1

i =0} | Y
n] + 〈γn+1

∇airi(An)

pi
, Ani − a∗i 〉E[1{In+1

i =1} | Y
n]
}]

+ γ2
n+1pCmax

= 2E

[
N∑
i=1

{
〈0, Ani − a∗i 〉E[1{In+1

i =0}] + 〈γn+1
∇airi(An)

pi
, Ani − a∗i 〉E[1{In+1

i =1}]
}]

+ γ2
n+1pCmax

= 2E

[
N∑
i=1

〈γn+1
∇airi(An)

pi
, Ani − a∗i 〉pi

]
+ γ2

n+1pCmax

= 2γn+1E

[
N∑
i=1

〈∇airi(An), Ani − a∗i 〉

]
+ γ2

n+1pCmax

= 2γn+1E
[
〈∇ar(An), An − a∗〉

]
+ γ2

n+1pCmax = −2γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ γ2

n+1pCmax,

(D.5)
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where the first equality follows from the tower property, the fifth equality follows from that An
is adapted to Y n, the sixth equality follows from the feedback loss process is independent of any
previous iterate and the seventh equality follows from the expectation of an indicator function equals
the probability of the event.

Now telescoping yields:

− E[L(a∗, Y 0)] ≤ E[L(a∗, Y T+1)]− E[L(a∗, Y 0)] =

T∑
t=0

E[L(a∗, Y n+1)]− E[L(a∗, Y n)]

≤ −2

T∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ 2

T∑
t=0

γ2
n+1pCmax

≤ −2

∞∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ 2

∞∑
t=0

γ2
n+1pCmax,

(D.6)

where the first inequality follows from that the Lyapunov function is always non-negative (Lemma C.1)
and the last inequality follows since the second inequality is true for any T (and we can hence let T
tend to∞. Since the step-size is square summable, we have 2

∑∞
t=0 γ

2
n+1pCmax <∞, and

−∞ > −E[L(a∗, Y 0)]− 2

∞∑
t=0

γ2
n+1pCmax ≥ −2

∞∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
.

This immediately implies
∑∞
t=0 γn+1E

[
〈∇ar(An), a∗ −An〉

]
<∞, and hence the claim is estab-

lished.

Lemma D.2. For every n, there exists a constant C > 0 such that:

〈∇ar(An+1), a∗ −An+1〉 − 〈∇ar(An), a∗ −An〉 ≤ Cαn+1 (D.7)

Proof. The result follows from the following chain of inequalities, where all the equalities and
inequalities hold almost surely:

〈∇ar(An+1), a∗ −An+1〉 − 〈∇ar(An), a∗ −An〉 =

〈∇ar(An+1)−∇ar(An) +∇ar(An), a∗ −An+1〉 − 〈∇ar(An), a∗ −An〉 =

〈∇ar(An+1)−∇ar(An), a∗ −An+1〉+ 〈∇ar(An), An −An+1〉 =

≤ ‖∇ar(An+1)−∇ar(An)‖2‖a∗ −An+1‖2 + ‖∇ar(An)‖2‖An −An+1‖2
≤ C2‖An+1 −An‖2‖a∗ −An+1‖2 + C3‖An −An+1‖2
= C2‖ProjX (Y n+1)− ProjX (Y n)‖2‖a∗ −An+1‖2 + C3‖‖ProjX (Y n+1)− ProjX (Y n)‖2
= C2C4‖ProjX (Y n+1)− ProjX (Y n)‖2 + C3‖‖ProjX (Y n+1)− ProjX (Y n)‖2
= C5‖ProjX (Y n+1)− ProjX (Y n)‖2 ≤ C5‖Y n+1 − Y n‖2
≤ C5

√
pCmaxγn+1,

(D.8)

where the first inequality follows from Cauchy-Schwartz, the second inequality follows from that
∇ar is Lipschitz continuous, the second-to-last equality follows from the actions space is compact,
the second-to-last inequality follows from ProjX (·) is a non-expansive map and the last inequality
follows from Equation (D.3). The result then follows by defining C , C5

√
pCmax.

Theorem D.3. Let the reward functions be given from a variationally stable game. Then for any
strictly positive probabilities {pi}Ni=1, ROGD converges almost surely to the set of Nash equilibria:
limn→∞ dist(An,X ∗) = 0 a.s., as3 n→∞, where An is a sequence generated from Algorithm 4.

3Here the point-to-set distance is defined in the standard way: dist(An,X ∗) = infa∗∈X∗ ‖An − a∗‖2.
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Remark 1. As a quick outline here (the details are in appendix), pick an arbitrary Nash equilibrium
a∗ ∈ X ∗. Lemma D.1 and Lemma D.2 will together ensure that limn→∞〈∇ar(At), a∗ − At〉 =
0, a.s. Since 〈∇ar(a), a∗ − a〉 > 0 if and only if a /∈ X ∗ and 〈∇ar(a), a∗ − a〉 = 0 if and only if
a ∈ X ∗, it then follows by continuity of∇ar(·) that limn→∞〈∇ar(At), a∗ −At〉 = 0, a.s. implies
limn→∞ dist(An,X ∗) = 0 a.s..

Although not mentioned in this theorem, another useful and interesting structural insight to point
out here is that as 〈∇ar(At), a∗ −At〉 converges to 0, if it ever becomes 0 at n, then At ∈ X ∗, and
furthermore, the joint action will stay exactly at that Nash equilibrium forever. Why? There are two
cases to consider.

1. First, this Nash equilibrium a∗ is an interior point in X . In this case, ∇ar(a∗) = 0 and
hence∇ar(An) = 0. Consequently, per the ROGD update rule, whether any agent updates
or not does not matter: either the gradient is not received, in which case no gradient update
happens; or a gradient is received, but at this Nash equilibrium, it is 0 and therefore nobody
will want to make any update.

2. Second, this Nash equilibrium a∗ is a boundary point in X . In this case,∇ar(a∗) may not
be 0, but it always points outside the feasible action set X . Consequently, even if an agent
does receive a gradient and hence makes an gradient update, its action will immediately get
projected back to the same point. As a result, even though the Y n variables can still change,
the joint action An will stay exactly at X .

Proof. First, setting γn = γn+1, βn = E[〈∇ar(An), a∗ − An〉] and Xn = 〈∇ar(An), a∗ − An〉.
Then all the sequences involved are non-negative. And by Lemma D.1 and Lemma D.2, we have:∑∞

n=1 γn =∞,
∑∞
n=1 γnβn <∞, E[Xn] ≤ βn, |Xn+1 −Xn| ≤ Cγn. Consequently, Lemma A.4

implies Xn = 〈∇ar(An), a∗ −An〉 → 0 almost surely.

Now fix any sequence {An}∞n=0. We show that if 〈∇ar(An), a∗−An〉 → 0, then dist(An,X ∗)→ 0.
For suppose not, then there exists a subsequence Ank such that dist(Ank ,X ∗) ≥ ε,∀k, for some
ε > 0. Consider the set S = X − N (X ∗, ε), where N (X ∗, ε) is an ε-open neighborhood around
X ∗. By its definition, a ∈ X is in S if and only if dist(a,X ) ≥ ε. Further, S is a closed
and bounded set. Therefore, since ∇ar(·) is a continuous function on X , it has a minimium
〈∇ar(an), a∗ − an〉 achieves a minimum value cmin on S. In addition, by variational stability and
the fact that 〈∇ar(a), a∗ − a〉 = 0 if and only if a ∈ X ∗, we know cmin > 0. Consequently
〈∇ar(Ank), a∗ −Ank〉 ≥ cmin,∀k. This contradicts immediately 〈∇ar(An), a∗ −An〉 → 0. Since
this argument is path-by-path, the convergence is almost sure since 〈∇ar(An), a∗−An〉 → 0 almost
surely.

E Extensions: stochastic rewards and noisy gradients

In this section, we extend the multi-agent learning under asychronous feedback loss setup to situations
where agents realized rewards in each iteration are random (Section E.1). This setting, as we then
establish in Section E.2, is equivalent to an equally interesting setting where the reward function
is deterministic but the gradient is noisy. After discussing these two equivalent setups, we proceed
to establish convergence to Nash equilibria results. We show that in bounded noise support case,
we still obtain almost sure convergence to Nash for ROGD learning under asynchronous feedback
loss (Section E.3). We finally look at the hardest case and establish that in the presence of both
asynchronous feedback loss and unbounded noise support, ROGD learning converges to Nash
equilibria in probability (Section E.4).

E.1 Multi-Agent Learning with Stochastic Rewards

Let (Ω,F ,Π) be some underlying probability space, where Π is the probability measure. We now
consider the more general setting where agent i’s reward is given by:

ri(a) = E[Ri(a;ω)] =

∫
Ω

Ri(a;ω)dΠ(ω). (E.1)
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Each agent i’s reward function at time n is now the random quantity4 Ri(·, ωn+1), where
ω1, ω2, . . . , ωn+1 be drawn iid according to Π. Further, at time t, each agent now only observes the
gradient5 with respect to this random reward function: ∇Ri(An, ωn+1). One important feature in
this formulation is that even though the reward functions are independent across time steps (because
they are drawn iid), they can be correlated across agents for the same iteration n: this is because
we have allowed the underlying randomness ω to be drawn from a joint probability space Ω shared
by all agents. Of course, this includes as a special case the setting wehre each agent i has its own
independent randomness for its reward function.

ROGD learning under this more general setup is now given in Algorithm 7 below:

Algorithm 7: Multi-Agent ROGD Learning under Asynchronous Feedback Loss: Stochastic Rewards

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1

∇ai
Ri(A

n,ωn+1)

pi
, if In+1

i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

We conclude this subsection with two more points.

First, variational stability is a condition on r(a). In the current context, per Equation (E.1), varia-
tional stability can also be interpreted to mean that Ri(a;ω)’s are variationally stable on average:∑N
i=1〈∇airi(a), ai−a∗i 〉 =

∑N
i=1〈∇ai E[R(a;ω)], ai−a∗i 〉 = E[

∑N
i=1〈∇ai R(a;ω), ai−a∗i 〉] ≤ 0.

Definition E.1. The stochastic game G = (N ,X =
∏N
i=1 Xi, {Ri(·, ω)}Ni=1), is mean variationally

stable if its corresponding mean game G = (N ,X =
∏N
i=1 Xi, {E[Ri(·, ω)]}Ni=1) is variationally

stable.

Second, two assumptions on the stochastic gradient that will be used independently later:

Assumption 3. There exists a constant V > 0 such that: ∀a ∈ X ,∀i, ‖∇aiRi(a, ω)‖2 ≤ V for
Π-almost every ω.

Assumption 4. E[‖∇aiRi(a, ω)‖22] <∞,∀a ∈ X ,∀i.
Remark 2. Assumption 3 means that ∇aiRi(a, ω) has finite support, while Assumption 4 allows for
unbounded support but only assumes bounded second moments. Of course, Assumption 3 implies
Assumption 4 immediately.

E.2 Equivalence to Multi-Agent Learning with Noisy Gradient

We can alternatively consider the extension of multi-agent learning under asynchronous feedback loss
setting given in Algorithm 4 to the setting where the reward function ri(·) is fixed and deterministic
in each iteration, but the received gradient is corrupted by noise. In other words, in each iteration n,
if agent i receives a gradient, then instead of receving the exact gradient ∇airi(An), he receives a
noisy version corrupted by an additive noise. In more detail, this is given next in Algorithm 8:

4Compare this to the previous setting, where agent i’s reward function in each iteration n is ri(·) =
E[Ri(·;ωn+1)].

5Here it is understood that the same regularity conditions be imposed on each Ri(·, ω) to ensure
r1(·), . . . , rN (·) form a continuous game. For instance, if we assume each Ri(a;ω) is continuous in a
and continuously differentiable in ai for Π-almost every ω and ∇ai R(a;ω) is Lipschitz continuous in a for
Π-almost every ω, then dominated convergence implies that all the regularity conditions on ri(a) also hold and
one can freely exchange expectation with gradient: ∇airi(a) = ∇ai E[Ri(a;ω)] = E[∇ai Ri(a;ω)].
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Algorithm 8: Multi-Agent ROGD Learning under Asynchronous Feedback Loss: Noisy Gradient

Require: Each agent i picks an arbitrary A0
i ∈ Rdi

1: n← 0, Y 0
i ← A0

i
2: repeat
3: for each agent i do

4: Y n+1
i =

{
Y ni + γn+1(

∇ai
ri(A

n)

pi
+ ξn+1

i ), if In+1
i = 1

Y ni , if In+1
i = 0

5: An+1
i = ProjXi

(Y n+1
i )

6: end for
7: n← n+ 1
8: until end

It turns out iid stochastic reward functions (as described in the previous subsection) corresponds to
martingale difference noise ξn+1 here, as formalized in the following lemma:
Lemma E.2. ROGD under stochastic rewards as given in Algorithm 7 is equivalent to ROGD under
noisy gradient as given in Algorithm 8 with ξn+1 = (ξn+1

1 , ξn+1
2 , . . . , ξn+1

N ) being a martingale
difference sequence. Specifically, ∀n:

1. ξn is a martingale adapted to Y 0, Y 1, . . . , Y n.

2. E[‖ξn+1‖2] <∞ and E[ξn+1 | Y 0, Y 1, . . . , Y n] = 0.

Furthermore,

1. If Assumption 3 holds, then ‖ξn‖2 ≤ V∗ almost surely for all n (for some positive finite
constant V∗).

2. If Assumption 4 holds, then E[‖ξn‖22] <∞.

Remark 3. This can be quickly seen by noting that ξn+1
i in Algorithm 8 corresponds to

∇ai
Ri(A

n,ωn+1)−E[∇ai
Ri(A

n,ωn+1)]

pi
in Algorithm 7, which is zero-mean conditioned on all the

past iterates. We leave all the verifcation details to appendix.

E.3 Noise with Bounded Support: Almost Sure Convergence to Nash Equilibria

In this subsection, we work under Assumption 3 (i.e. where the noisy gradient has bounded support).
It turns out that in this case, we can still get almost sure convergence to Nash equilibria. By a
finer-grained analysis utilizing the martingale difference nature of the noise term ξn, we obtain the
same control on the variational product sequence (as in Lemma D.1 and Lemma D.2) as given in the
following lemma (the details given in the appendix):
Lemma E.3. Let A0, A1, . . . , An be given from Algorithm 7 (or equivalently per Lemma 7, from
Algorithm 8). Then under Assumption 3, the following two statements hold:

1.
∑∞
t=0 γn+1 E[〈∇ar(At), a∗ −At〉] <∞.

2. 〈∇ar(An+1), a∗ −An+1〉 − 〈∇ar(An), a∗ −An〉 ≤ Cαn+1, a.s.

Consequently, by the exact same reasoning as in Remark ??, we have the following almost sure
convergence result:
Theorem E.4. Let the stochastic reward functions {Ri(a, ω)}Ni=1 be given from a mean variationally
stable stochastic game. Then under Assumption 3, for any strictly positive probabilities {pi}Ni=1,
ROGD converges almost surely to the set of Nash equilibria (of the corresponding mean game):
limn→∞ dist(An,X ∗) = 0 a.s., as n→∞, where An is a sequence generated from Algorithm 7 (or
from Algorithm 8).
Remark 4. We mention in passing that even though almost sure convergence to Nash equilibria is
still guaranteed here, there is an important difference here: if An ever hits a Nash equilibrium, unlike
in Remark ??, it can still drift away from it due to noisy gradient. Due to space limitation, we do not
expand on this point.
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E.4 Noise with Unbounded Support: Convergence to Nash Equilibria in Probability

Finally, we allow the noisy gradient to have unbounded support with only bounded second moments.
In this case, the almost sure inequality in the second part of Lemma F.2 does not hold. However, it
still holds in expectation, as indicated by the following lemma:

Lemma E.5. Let A0, A1, . . . , An be given from Algorithm 7 (or equivalently per Lemma 7, from
Algorithm 8). Then under Assumption 4, the following two statements hold:

1.
∑∞
t=0 γn+1 E[〈∇ar(At), a∗ −At〉] <∞.

2. E[〈∇ar(An+1), a∗ −An+1〉]− E[〈∇ar(An), a∗ −An〉] ≤ Cαn+1.

The above then allows us to conclude limn→∞ E[〈v(An), a∗−An〉] = 0.And by a simple application
of Markov’s inequality, we obtain the convergence result in this case (see appendix for details):

Theorem E.6. Let the stochastic reward functions {Ri(a, ω)}Ni=1 be given from a mean variationally
stable stochastic game. Then under Assumption 4, for any strictly positive probabilities {pi}Ni=1,
ROGD converges in probability to the set of Nash equilibria (of the corresponding mean game):
∀ε > 0, limn→∞Prob(dist(An,X ∗) > ε) = 0, whereAn is a sequence generated from Algorithm 7
(or from Algorithm 8).

F Proofs to Extensions: to stochastic rewards and noisy gradients

Lemma F.1. ROGD under stochastic rewards as given in Algorithm 7 is equivalent to ROGD under
noisy gradient as given in Algorithm 8 with ξn+1 = (ξn+1

1 , ξn+1
2 , . . . , ξn+1

N ) being a martingale
difference sequence. Specifically, for every n:

1. ξn is a martingale adapted to Y 0, Y 1, . . . , Y n.

2. E[‖ξn+1‖2] <∞ and E[ξn+1 | Y 0, Y 1, . . . , Y n] = 0.

Furthermore,

1. If Assumption 3 holds, then ‖ξn‖2 ≤ V∗ almost surely for all n (for some positive finite
constant V∗).

2. If Assumption 4 holds, then E[‖ξn‖22] <∞.

Proof. Set ξn+1
i = 1

pi
(∇ai Ri(An, ωn+1) − E[∇ai Ri(An, ωn+1)]) = 1

pi
(∇ai Ri(An, ωn+1) −

∇airi(An)) we see that the gradient update in Algorithm 8 (when the gradient is not lost) becomes:

Y n+1
i = Y ni + γn+1(

∇airi(An)

pi
+ ξn+1

i ) = Y ni + γn+1
∇aiRi(An, ωn+1)

pi
, (F.1)

which is exactly the gradient update in Algorithm 7.

Now it remains to check that ξn+1 = (ξn+1
1 , ξn+1

2 , . . . , ξn+1
N ) is a martingale difference sequence

martingale adapted to Y 0, Y 1, . . . , Y n+1.

First, it is easy to see that ξn+1 is adapted to Y 0, Y 1, . . . , Y n+1: each ξn+1
i is determined by

Y n+1
i , Y ni , A

t and since An+1
i = ProjXi

(Y n+1
i ), An is adapted to Y n. Consequently, the sequence

Y 0, Y 1, . . . , Y n+1 completely determines ξn+1. Next

E[‖ξn+1‖2] =
1

pi
E[
∥∥∥∇ai Ri(An, ωn+1)− E[∇ai Ri(An, ωn+1)]

∥∥∥
2
]

≤ 1

pi

{
E[
∥∥∥∇ai Ri(An, ωn+1)

∥∥∥
2
] +
∥∥∥E[∇ai Ri(An, ωn+1)]

∥∥∥
2

}
≤ 2

pi
E[‖∇ai Ri(An, ωn+1)‖2] <∞,

(F.2)
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where the second inequality follows from Jense’s inequality and the last inequality follows from the
fact that bounded second moments imply bounded first moments (note that under either Assumption 3
or Assumption 4, second moments are bounded). Third,

E[ξn+1 | Y 0, Y 1, . . . , Y n] =
1

pi
E[∇ai Ri(An, ωn+1)− E[∇ai Ri(An, ωn+1)] | Y 0, Y 1, . . . , Y n]

=
1

pi

{
E[∇ai Ri(An, ωn+1)]− E[∇ai Ri(An, ωn+1)]

}
= 0,

(F.3)

where the second equation follows from An is adapted to Y 0, Y 1, . . . , Y n and ωn+1 is independent
of Y 0, Y 1, . . . , Y n.

Finally, when Assumption 3 holds and using the fact that E[∇ai Ri(An, ωn+1)] =
∇ai E[Ri(A

n, ωn+1)] = ∇ai ri(a), we have:

‖ξn+1‖2 =
1

pi

∥∥∥∇ai Ri(An, ωn+1)− E[∇ai Ri(An, ωn+1)]
∥∥∥

2

≤ 1

pi

{
‖∇ai Ri(An, ωn+1)‖2 + ‖E[∇ai Ri(An, ωn+1)]‖2

}
≤ 1

pi

{
V + sup

a∈X
‖∇ai ri(a)‖2

}
, V∗ <∞,

(F.4)

where the last inequality follows from that∇ai ri(a) is continuous function and X is compact.

When Assumption 4 holds, we have

E[‖ξn+1‖22] =
1

pi
E[
∥∥∥∇ai Ri(An, ωn+1)− E[∇ai Ri(An, ωn+1)]

∥∥∥2

2
]

≤ 2

pi

{
E[
∥∥∥∇ai Ri(An, ωn+1)

∥∥∥2

2
] +
∥∥∥E[∇ai Ri(An, ωn+1)]

∥∥∥2

2

}
≤ 2

2

pi
E[‖∇ai Ri(An, ωn+1)‖22] <∞,

(F.5)

where the second-to-last inequality follows from Jensen’s inequality.

Lemma F.2. Let Y 0, Y 1, . . . , Y n be given from Algorithm 7 (or equivalently per Lemma 7, from
Algorithm 8). Then under Assumption 4, the following two statements hold:

1.
∑∞
t=0 γn+1 E[〈∇ar(At), a∗ −At〉] <∞.

2. E[〈∇ar(An+1), a∗ −An+1〉]− E[〈∇ar(An), a∗ −An〉] ≤ Cαn+1.

Proof. We start by proving the first statement. Per the gradient update rule in Algorithm 8, we

have Y n+1
i =

{
Y ni + γn+1(

∇ai
ri(A

n)

pi
+ ξn+1), if In+1

i = 1

Y ni , if In+1
i = 0

This implies that ‖Y n+1
i −Y ni ‖22 ≤

‖γn+1(
∇ai

ri(A
n)

pi
+ ξn+1

i )‖22 ≤ 2(
γ2
n+1

p2i
‖∇airi(An)‖22 + γ2

n+1‖ξn+1
i ‖22), a.s., and consequently:

‖Y n+1 − Y n‖22 =

N∑
i=1

‖Y n+1
i − Y ni ‖22 ≤ 2

N∑
i=1

{γ2
n+1

p2
i

‖∇airi(An)‖22 + γ2
n+1‖ξn+1

i ‖22
}

≤ 2

N∑
i=1

{γ2
n+1

p2
i

‖∇airi(An)‖22 + V 2
∗ γ

2
n+1

}
,

(F.6)

where the last inequality follows from Assumption 3. Since ri(·) is continuously differentiable in ai
(per the regularity assumption in a continuous game), and each Xi is a compact space, ‖∇airi(a)‖22
is a bounded function on X . Therefore define:

Cmax = sup
i∈N

max
a∈X
‖∇airi(a)‖22, p =

N∑
i=1

1

p2
i

.

Equation (F.12) implies that (almost surely):

‖Y n+1 − Y n‖22 ≤ 2(pCmax +NV 2
∗ )γ2

n+1 , Cγ2
n+1. (F.7)
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By the second statement in Lemma C.2 and Equation (F.13), we have:

L(a∗, Y n+1)− L(a∗, Y n) ≤ 2γn+1〈Y n+1 − Y n, An − a∗〉+ γ2
n+1‖Y n+1 − Y n‖22

≤ 2γn+1〈Y n+1 − Y n, An − a∗〉+ Cγ2
n+1.

(F.8)

Again we use 1E as the indicator function, and take the expectation of both sides of Equation (D.4)
to obtain:

E[L(a∗, Y n+1)]− E[L(a∗, Y n)] ≤ 2E[〈Y n+1 − Y n, An − a∗〉] + Cγ2
n+1

= 2E
[
E[〈Y n+1 − Y n, An − a∗〉 | Y n]

]
+ Cγ2

n+1 = 2E
[
E[

N∑
i=1

〈Y n+1
i − Y ni , Ani − a∗i 〉 | Y n]

]
+ Cγ2

n+1

= 2E
[ N∑
i=1

E[〈Y n+1
i − Y ni , Ani − a∗i 〉 | Y n]

]
+ Cγ2

n+1

= 2γnE

[
N∑
i=1

{
E[〈0, Ani − a∗i 〉1{In+1

i =0} | Y
n] + E[〈γn+1(

∇airi(An)

pi
+ ξn+1

i ), Ani − a∗i 〉1{In+1
i =1} | Y

n]
}]

+ Cγ2
n+1

= 2γnE

[
N∑
i=1

{
〈0, Ani − a∗i 〉E[1{In+1

i =0} | Y
n] + E[〈γn+1(

∇airi(An)

pi
+ ξn+1

i ), Ani − a∗i 〉1{In+1
i =1} | Y

n]
}]

+ Cγ2
n+1

= 2E

[
N∑
i=1

{
E[〈γn+1ξ

n+1
i , Ani − a∗i 〉1{In+1

i =1} | Y
n] + 〈γn+1

∇airi(An)

pi
, Ani − a∗i 〉E[1{In+1

i =1} | Y
n]
}]

+ Cγ2
n+1

= 2E

[
N∑
i=1

{
E[〈γn+1ξ

n+1
i , Ani − a∗i 〉 | Y n]E[1{In+1

i =1}] + 〈γn+1
∇airi(An)

pi
, Ani − a∗i 〉E[1{In+1

i =1}]
}]

+ Cγ2
n+1

= 2E

[
N∑
i=1

{
piγn+1 E[〈ξn+1

i , Ani − a∗i 〉 | Y n] + 〈γn+1
∇airi(An)

pi
, Ani − a∗i 〉pi

}]
+ Cγ2

n+1

= 2E

[
N∑
i=1

〈γn+1
∇airi(An)

pi
, Ani − a∗i 〉pi

]
+ Cγ2

n+1

= 2γn+1E

[
N∑
i=1

〈∇airi(An), Ani − a∗i 〉

]
+ Cγ2

n+1

= 2γn+1E
[
〈∇ar(An), An − a∗〉

]
+ Cγ2

n+1 = −2γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ Cγ2

n+1,

(F.9)

where in the fourth-to-the-last equality, we have used the fact that ξn is a martingale adapted the
Y 0, Y 1, . . . , Y n and hence in particular, E[〈ξn+1

i , Ani − a∗i 〉 | Y n] = 0,∀i. Now telescoping yields:

− E[L(a∗, Y 0)] ≤ E[L(a∗, Y T+1)]− E[L(a∗, Y 0)] =

T∑
t=0

E[L(a∗, Y n+1)]− E[L(a∗, Y n)]

≤ −2

T∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ 2C

T∑
t=0

γ2
n+1 ≤ −2

∞∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
+ 2C

∞∑
t=0

γ2
n+1,

(F.10)

where the first inequality follows from that the Lyapunov function is always non-negative (Lemma C.1)
and the last inequality follows since the second inequality is true for any T (and we can hence let T
tend to∞. Since the step-size is square summable, we have 2

∑∞
t=0 Cγ

2
n+1 <∞, and

−∞ > −E[L(a∗, Y 0)]− 2

∞∑
t=0

Cγ2
n+1 ≥ −2

∞∑
t=0

γn+1E
[
〈∇ar(An), a∗ −An〉

]
.

This immediately implies
∑∞
t=0 γn+1E

[
〈∇ar(An), a∗ −An〉

]
<∞, and hence the claim.
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Next, for the second statement, using the same chain of inequalities as in Equation (D.8) and by
Equation (F.13), we have:

〈∇ar(An+1), a∗ −An+1〉 − 〈∇ar(An), a∗ −An〉 = C5‖Y n+1 − Y n‖2 ≤ C5

√
Cγn+1. (F.11)

Theorem F.3. Let the stochastic reward functions {Ri(a, ω)}Ni=1 be given from a mean variationally
stable stochastic game. Then under Assumption 3, for any strictly positive probabilities {pi}Ni=1,
ROGD converges almost surely to the set of Nash equilibria (of the corresponding mean game):
limn→∞ dist(An,X ∗) = 0 a.s., as n→∞, where An is a sequence generated from Algorithm 7 (or
from Algorithm 8).

Proof. This follows the exact same reasoning as in the proof to Theorem D.3.

Lemma F.4. Let Y 0, Y 1, . . . , Y n be given from Algorithm 7 (or equivalently per Lemma 7, from
Algorithm 8). Then under Assumption 4, the following two statements hold:

1.
∑∞
t=0 γn+1 E[〈∇ar(At), a∗ −At〉] <∞.

2. E[〈∇ar(An+1), a∗ −An+1〉]− E[〈∇ar(An), a∗ −An〉] ≤ Cαn+1.

Proof. Similar to the proof to Lemma F.2, per the gradient update rule in Algorithm 8, we have

Y n+1
i =

{
Y ni + γn+1(

∇ai
ri(A

n)

pi
+ ξn+1), if In+1

i = 1

Y ni , if In+1
i = 0

and hence:

‖Y n+1 − Y n‖22 =

N∑
i=1

‖Y n+1
i − Y ni ‖22 ≤ 2

N∑
i=1

{γ2
n+1

p2
i

‖∇airi(An)‖22 + γ2
n+1‖ξn+1

i ‖22
}

≤ 2

N∑
i=1

{γ2
n+1

p2
i

Cmax + γ2
n+1‖ξn+1

i ‖22
}
≤ 2pCmaxγ

2
n+1 + 2γ2

n+1

N∑
i=1

‖ξn+1
i ‖22.

(F.12)

Taking the expectation of both sides therefore yields Equation (F.12) implies that (almost surely):

E[‖Y n+1−Y n‖22] ≤ 2pCmaxγ
2
n+1 +2γ2

n+1

N∑
i=1

E[‖ξn+1
i ‖22] ≤ 2pCmaxγ

2
n+1 +2γ2

n+1B , Cγ2
n+1,

(F.13)
where the last inequality follows from Assumption 4 (for some finite positive constant C). The rest
of the proof then follows similarly as the proof to Lemma F.2.

Theorem F.5. Let the stochastic reward functions {Ri(a, ω)}Ni=1 be given from a mean variationally
stable stochastic game. Then under Assumption 4, for any strictly positive probabilities {pi}Ni=1,
ROGD converges in probability to the set of Nash equilibria (of the corresponding mean game):
∀ε > 0, limn→∞Prob(dist(An,X ∗) > ε) = 0, whereAn is a sequence generated from Algorithm 7
(or from Algorithm 8).

Proof. First, setting an = γn+1, bn = E[〈∇ar(An), a∗−An〉] Lemma F.4 implies that and since all
the sequences involved are non-negative,

∑∞
n=1 an =∞,

∑∞
n=1 anbn <∞ and |bn+1−bn| ≤ Kan.

Consequently, limn→∞ bn = limn→∞ E[〈v(An), a∗ −An〉] = 0 by Lemma A.3. Now, fix any ε, by
Markov’s inequality, we have:

Prob(〈∇ar(An), a∗ −An〉 > ε) ≤ E[〈∇ar(An), a∗ −An〉]
ε

→ 0,

when n → ∞. Consequently, 〈∇ar(An), a∗ − An〉 converges to 0 in probability. By the same
argument as in the proof to Theorem D.3 and leveraging the continuity of the reward function r(·),
An converges to X ∗ in probability.
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