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A Similarity Kernel for Models and GP parameters

Model-based optimization requires as input a notion of similarity. We use an RBF kernel between
feature importances for decision trees, and between a gradient-based notion of feature importance for
neural networks (average magnitude of the normalized input gradients for each class logit).

We use the scikit-learn implementation of Gaussian processes [1]. We set it to normalize y automat-
ically, restart the optimizer 10 times, and add α = 10−7 to the diagonal of the kernal at fitting to
mitigate numerical issues. We used the default settings for all other hyperparameters, including the
RBF kernel (on the model features above) for the covariance function.

B Experimental Details: Identifying a Collection of Predictive Models

We train decision trees for the synthetic, mushroom and census datasets with a test accuracy thresholds
of 0.9, 0.95 and 0.8 respectively. On the synthetic dataset, 0.9 is slightly higher than the accuracy
we can achieve on the interpretable dimensions. We make this choice to avoid learning the same,
simple model over and over again. On the mushroom dataset, we can achieve a validate accuracy
of 1 with decision trees, and on the Census dataset, we can achieve a validate accuracy of 0.83 with
decision trees. In both cases, we set the accuracy thresholds slightly below these numbers to ensure
that we can generate distinct models that meet the accuracy threshold. For each of these, we train 500
models.

To produce a variety of high-performing decision trees, we randomly sample the following hyperpa-
rameters: max depth [1-7], minimum number of samples at a leaf [1, 10, 100], max features used
in a split [2 - num_features], and splitting strategy [best, random]. The first two hyperparameters
are chosen to encourage simple solutions, while the last two hyperparameters are chosen to increase
the diversity of discovered trees. We use the scikit-learn implementation [1], of decision trees and
perform a post-processing step that removes leaf nodes iteratively when it does not decrease accuracy
on the validation set (as in Wu et al. [4]).

We train neural networks for the covertype dataset with an accuracy threshold of 0.75. We can achieve
an accuracy of 0.71 with logistic regression, so we set the threshold slightly above that to justify
the use of more complex neural networks. For the neural network models, we randomly sample the
following hyperparameters: L1 weight penalty [0, 0.0001, 0.001, 0.01], L2 weight penalty [0, 0.0001,
0.001, 0.01], L1 gradient regularization [0, 0.01], activation function [relu, tanh], architectures [three
100-node layers, two 100-node layers, one 100-node layer, one 25-node layer, one 250-node layer].
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These are then jointly trained according to the procedure in Ross et al. [3] for 50 epochs for batch
size 512 with Adam. (We train between 1 and 4 models simultaneously, another randomly sampled
hyperparameter). For this dataset, we train 250 models.

Figure 1: We build a synthetic data set with two noise dimensions, two dimensions that enable
a lower-accuracy, interpretable explanation, and two dimensions that enable higher-accuracy, less
interpretable explanation. The purple data points are positive and the yellow are negative. Data points
were generated for each set of two features independently, then points sharing the same label in all
dimensions were randomly concatenated to form the final dataset.

C Experimental Details: Parameters and Sensitivity to Local Region
Choices

We can ask humans to perform the simulation task directly using decision trees, but for the neural
networks, we must train simple, local models as explanations (we use local decision trees). This
procedure requires first sampling a local dataset for each point x we explain. We modify the procedure
in Ribeiro et al. [2] to sample 10, 000 points x′ in a radius around the point x defined by its 20 nearest
neighbors by Euclidean distance. We then binarize their predictions M(x′) to whether they match
M(x) and subsample the more common class to balance the labels. We do not fit explanations for
points x where the original sampled points x′ have a class imbalance greater than 0.75; we consider
these points not on the boundary. Finally, we return the simplest tree we train on this local dataset
with accuracy above a threshold on a validate set. We randomly set aside 20% of the sampled points
for validation, and use the rest for training. (Note: if we were provided local regions by domain
experts, we could use those.)

Our procedure for sampling points around some input x uses two hyperparameters: a scaling factor
for the empirical variance, and a mixing weight for the uniform distribution for categorical features
that we use to adjust the empirical distribution of the point’s 20 nearest neighbors. We use 0.01 to
weight the variance and 0.05 to weight the categorical distributions. Finally, when training the trees,
we set a local fidelity accuracy threshold of 90% on a validation set and iteratively fit trees with larger
maximum depth (up to depth 10) until one achieves this threshold. (We assume data points with local
models deeper than this will not be interpretable, so fitting deeper trees will not improve our search
for the most interpretable model.) We require at least 5 samples at each leaf. We use the scikit-learn
implementation [1] to learn the trees and perform a post-processing step that removes leaf nodes
iteratively when it does not decrease accuracy on the validation set (as in Wu et al. [4]).

How sensitive are the results to these choices? In Figure 2a, we first identify which of our K = 250
models would be preferred by each interpretability proxy if the local regions were determined by
variance parameters set to [0.001, 0.01, 0.1] and the mixing weights set to [0.01, 0.05, 0.1] (9
combinations). Next, for each of those 9 models, we identify what rank it would have had among
the K models if one of the other variance or weight parameters had been used. Thus, a rank of 0
indicates that the model identified as the best by one parameter setting is the same as the best model
under the second setting; more generally a rank of r indicates that the best model by one parameter
setting is the r-best model under the second setting. The generally low ranks in the figure indicate
agreement amongst the different choices for local parameter settings. The highest mismatch values
for the number of nodes proxy all correspond to the variance scaling factor 0.1 (which we do not use).
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(a) We found the best model by each proxy for every
setting of the region hyperparameters, and computed
its rank by the same proxy for every other setting of
the region hyperparameters. Each × corresponds to
one of these pairs. The highest values all correspond to
the variance scaling factor 0.1. The other two settings
of this hyperparameter tend to agree on how to rank
neural networks.
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(b) We found the best model(s) by each proxy and
computed their rank by the same proxy computed on
a sample of data points. The comparable values of
the lines across all three plots indicate that we need
a similar number of samples to robustly rank neural
networks for the smallest, middle and largest region
settings (we do not include cross pairs).

Figure 2: Neural network local explanation sensitivity analysis

Do we need more points to estimate model rank correctly for any of these region settings? We
find the best model(s) by each proxy, then we re-rank models using a small sample of points to
compute the same proxy. We do this for the smallest, middle and largest settings of the local region
parameters (we do not include cross-pairs of parameters in these results). Figure 2b shows that
different hyperparameter settings require similar numbers of input samples x to robustly approximate
the integral for p(M) in equation 4 for a variety of interpretability proxies substituted for HIS.

D Experimental Details: Human Subject Experiments

In our experiments, we needed to sample input points x to approximate the prior p(M) in equations 2
and 4. For globally interpretable models, we ask users about the same data points across all models
to reduce variance. In the locally interpretable case, we would only conduct user studies for points
near the boundary (in B(M)) and would thus sample points specific to each model’s boundary. Each
quiz contained 8 or 16 questions per model (8 for the pipeline experiments, 16 for the Amazon Turk
experiments), with the order randomized across participants. There was also an initial set of 3 practice
questions. If the participant answered these correctly, we allowed them to move directly to the quiz.
If they did not, we gave them an additional set of 3 practice questions. We excluded people who
answered fewer than 3 of each set of practice questions correctly from the Amazon Mechanical Turk
experiments.

Experiments with Machine Learning Graduate Students and Postdocs For the full pipeline
experiment, models were chosen sequentially based on the subjects’ responses. We collected
responses from 7 subjects for each model in the experiment with the census dataset, and from 9
subjects for each model with the mushroom dataset.1 Accuracies were all above 85%. We ran 10
iterations of the algorithm, each a quiz consisting of 8 questions about one model, and two evaluations
at the end of the same format. We used the mean response time across users to determine p(M).
We did not exclude responses, and participants were compensated for their participation. Using the
same set of subjects across all of these experiments substantially reduced response variance, although

1We recorded 2 extra responses for iteration number 4, and 2 fewer responses for iteration number 5 in the
census experiment, and 1 extra response in iteration number 3 for the mushroom experiment due to a technical
error discovered after the experiment, but we do not believe these affected our overall results. (Extra responses
are from the same set of participants.)
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(a) An example of our interface with a tree trained on
the census dataset with the fewest non-zero features.
In our experiments, we show people a decision tree
explanation and a data point including only the features
that appear in the tree. We then ask them to simulate
the prediction according to the explanation.
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(b) We asked a single user to take the same quiz 10
times to measure the effect of repetition on response
time. The difference in mean response time between the
first and last quiz is around 2 seconds. The y-axis scale
is the same as that in 4a so the magnitude of the learning
effect can be directly compared to the magnitude of the
differences between models in our experiment.

Figure 3: Interface and learning effect

the smaller total number of subjects means we did not see statistically significant differences in our
results.

Experiments with Amazon Mechanical Turk We had initially hoped to use Amazon Mechanical
Turk for our interpretability experiments. Here, we were forced to use a between-subjects design
(unlike above), because it would be challenging to repeatedly contact previous participants to take
additional quizzes as we chose models to evaluate based on the acquisition function.

In pilot studies, we collected 33 and 24 responses for the two models selected by the pipeline (the first
had a medium mean path length, and the second had a high mean path length), after excluding people
who did not get one of the two sets of practice questions right, or who took less than 5 seconds or
more than 5 minutes for any of the questions on the quiz. The majority of respondents were between
18 and 34. We asked participants 16 questions with a 30 second break halfway through. We paid
them $2 for completing the quiz.

The first model, which had a medium mean path length, had a mean time of 31.62s (28.61s -
34.63s), and a median time of 26.86s (23.09s - 30.63s) (standard error and median standard error in
parentheses respectively). The second model with a high mean path length had a mean response time
of 30.94s (28.66s - 33.22s), and a median response time of 30.32s (27.47s - 33.17s). These intervals
are clearly overlapping. We could gather more samples to reduce the variance, but cost grows quickly;
running one experiment with the end-to-end pipeline with these sample sizes would have cost around
$1, 000.
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