
Appendix A. Additional Explanations on AQM

In our problem setting, three modules exist: an answer-generator, a question-generator and a guesser.
The objective function of three modules is as follows.

Answer-generator: argmaxat
p(at|c, qt, a1:t−1, q1:t−1)

Guesser: argmaxc p(c|a1:t, q1:t)
Question-generator: argmaxqt I[C,At; qt, a1:t−1, q1:t−1]

If at is a sentence, the probability of the answer-generator is extracted from the multiplication of the
word probability of RNN. For the objective function of question-generator, we use information gain
I of the class C and the current answer At, where the previous history (a1:t−1, q1:t−1) and a current
question qt are given.

I[C,At; qt, a1:t−1, q1:t−1]

=H[C; a1:t−1, q1:t−1]−H[C|At; qt, a1:t−1, q1:t−1]

=−
∑
c

p(c|a1:t−1, q1:t−1) ln p(c|a1:t−1, q1:t−1)

+
∑
at

∑
c

p(c, at|qt, a1:t−1, q1:t−1) ln p(c|at, qt, a1:t−1, q1:t−1)

=
∑
at

∑
c

p(c, at|qt, a1:t−1, q1:t−1) ln
p(c|at, qt, a1:t−1, q1:t−1)
p(c|a1:t−1, q1:t−1)

=
∑
at

∑
c

p(c|a1:t−1, q1:t−1)p(at|c, qt, a1:t−1, q1:t−1) ln
p(at|c, qt, a1:t−1, q1:t−1)
p(at|qt, a1:t−1, q1:t−1)

(4)

For the derivation of the last line, Bayes rule is used. We also assume that p(c|qt, a1:t−1, q1:t−1) =
p(c|a1:t−1, q1:t−1), because asking a question itself does not affect the posterior of class c.

In calculating information gain I , AQM directly assigns each probability value to the equation of I ,
and sums out at and c. However, all probability functions in Equation 4 are the distribution from the
answerer. Our approach is to approximate the answerer’s answer distribution p(at|c, qt, a1:t−1, q1:t−1)
to the likelihood p̃(at|c, qt, a1:t−1, q1:t−1). We use the approximated information gain Ĩ to select an
adequate question.

Ĩ[C,At; qt, a1:t−1, q1:t−1]

=
∑
at

∑
c

p̂(c|a1:t−1, q1:t−1)p̃(at|c, qt, a1:t−1, q1:t−1) ln
p̃(at|c, qt, a1:t−1, q1:t−1)
p̃′(at|qt, a1:t−1, q1:t−1)

(5)

In calculating Ĩ , p̃ can be obtained by approximated answer distribution model. However, there are
other probability functions p̂, p̂′, and p̃′ beside the answer distribution. These three functions can be
again calculated from p̃. The posterior p̂ can be calculated by the likeilhood p̃ and the prior p̂′.

p̂(c|a1:t, q1:t) ∝ p̂′(c)
t∏

j=1

p̃(aj |c, qj , a1:j−1, q1:j−1) (6)

During the conversation, the posterior can be calculated in a recursive way using p̂(c|a1:t, q1:t) ∝
p̃(at|c, qt, a1:t−1, q1:t−1) · p̂(c|a1:t−1, q1:t−1). p̂′ needs to be pre-defined. It can be a uniform distri-
bution or other knowledge can be also applied to give adequate prior. p̃′ can be again calculated with
p̃ and p̂.

p̃′(at|qt, a1:t−1, q1:t−1) =
∑
c

p̂(c|a1:t−1, q1:t−1)p̃(at|c, qt, a1:t−1, q1:t−1) (7)
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When the answerer’s answer distribution p(at|c, qt, a1:t−1, q1:t−1) is fixed, the questioner achieves
an ideal performance when the likelihood p̃ is the same as p(at|c, qt, a1:t−1, q1:t−1).

Appendix B. MNIST Counting Dialog

To clearly explain the mechanism of AQM, we introduce the MNIST Counting Dialog task, which is
a toy goal-oriented visual dialog problem, illustrated in Figure 4 (Left). In the example of Figure 4
(Left), asking about the number of 1 digits or 6 digits classifies a target image perfectly if property
recognition accuracy on each digit in the image λnumber is 100%. Asking about the number of 0
digits does not help classify, because all images have one zero. If λnumber is less than 100%, asking
about the number of 1 digits is better than asking about the number of 6 digits, because the variance
of the number of 1 digits is larger than that of the 6 digits.

An answering model in questioner is trained for 30K training data. 22 questions (for from red to
stroke) and corresponding 22 answerer’s answers are used for learning each instance of the training
data. Answering model in questioner is count-based. For true answer areal and answerer’s answer
afeat of the question qt, the questioner’s likelihood p̃ is as follow.

p̃(at|c, qt, a1:t−1, q1:t−1) ∝ p̃′′(at|c, qt)

=
#afeat|areal + ε

#areal + ε′
(8)

This equation uses an independence assumption. #areal is the number of areal for the training data
where the answer for the class c and the question qt is areal. #afeat|areal is the number of case
where areal and afeat appears together. ε and ε′ is the constant for normalization. As the questioner
uses the answer inferred from the answerer in the training phase, our setting in MNIST Counting
Dialog corresponds to depA in GuessWhat?!.

Appendix C. Objective Function of Goal-Oriented Visual Dialog

There have been several kinds of visual-language tasks including image captioning [38] and VQA
[39, 24], and recent research goes further to propose multi-turn visual dialog tasks [12]. This section
discusses the objective functions in research on goal-oriented dialog, mainly based on the case of
goal-oriented visual dialog studies [6, 13].

Visual Dialog In Visual Dialog [7], two agents also communicate with questioning and answering
about the given MSCOCO image. Unlike GuessWhat?!, an answer can be a sentence and there is
no restriction for the dialog answerer. Das et al. used this dataset to make a goal-oriented dialog
task, where the questioner guesses a target image from 9,627 candidates in the test dataset [13]. It
is noticeable that, however, the questioner only uses the caption of the image, not the image itself
when generating questions, because the goal of the task is to figure out the target image. The dataset
includes a true caption of each image achieving percentile ranks of around 90%. In their self-play
experiments, adding information via a dialog improved the percentile ranks to around 93%, where the
questioner and answerer were trained with deep SL and deep RL methods. This means that the models
predict the correct image to be more exact than 93% of the rest images in the test dataset. Note that
their models only improved around 3% of the percentile rank at most, which implies that the caption
information is more important than the dialog. There are also relevant issues on the performance
which can be informed in the author’s Github repository2. According to their explanation, 0-th turn
the percentile rank (only using the caption information) could be improved further by fine-tuning
the hyperparameters, but in this case, the percentile rank did not increase much (around 0.3 of the
percentile rank) during the conversation.

Objective 1: Score In goal-oriented visual dialog research, the score is used as one of the main
measurements of dialog efficiency. However, a high score can be achieved via optimization over
p(c|a1:T , q1:T ), which is the objective function of RL. In particular, the agent can achieve a high
score although the probability distribution of both the questioner and answerer is not bound to a
human’s distribution, even when human-like dialog is generated. For example, in GuessWhat?!, Han

2https://github.com/batra-mlp-lab/visdial-rl
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et al. showed that pre-defined questions about location can provide an accuracy of 94.34% in five
turns [40]. Their methods divided an image evenly into three parts using two vertical or horizontal
lines for three cases of answer {yes, no, n/a}. A natural language-based protocol can also be created
using size, color, category, or other major properties of the object.

Objective 2: Service One of the ultimate objectives of goal-oriented dialog research is to create
an agent that can be used in a real service [3]. However, successful reports have been limited.
Chattopadhyay et al. reported the human-machine performance of the deep RL method in a study
on Visual Dialog [13, 41]. In their method, questioner and answerer were both fine-tuned by RL.
Thus, the answerer’s answering distribution differed from the training data. This RL method also
used the objective function of deep SL as the regularizer, conserving generated dialog as human-like.
Nevertheless, the RL algorithm deteriorated the score in the game with a human, compared to deep
SL. The authors also assessed six measures of generated dialog quality: accuracy, consistency, image
understanding, detail, question understanding, and fluency. However, the human subjects reported
that the deep RL algorithm performed worse than the deep SL algorithm for all measures, except
“detail.”

Objective 3: Language Emergence Plenty of research has recently been published on language
emergence with RL in a multi-agent environment. Some studied artificial (i.e., non-natural) language
[19, 5], whereas others attempted to improve the quality of generated natural dialog. One of the best
progress found in the latter study is the improvement on the quality of a series of questions in a
multi-turn VQA. When deep RL is applied, the questioner generates fewer redundant questions than
deep SL [18, 13]. It can be understood that the questioner in these methods are optimized by both
p(qt|a1:t−1, q1:t−1) and p(c|a1:T , q1:T ). Deep RL methods use deep SL algorithms as a pre-training
method [18], or use the objective function of p(c|a1:T , q1:T ) + λ · p(qt|a1:t−1, q1:t−1) [13]. These
studies focused on or achieved improvement of the questioner more than the answerer. It is because
the answerer gets the objective function directly for each answer (i.e., VQA), whereas the questioner
does not.

Appendix D. Analyzing RL via AQM

AQM’s Property 1. The performance of AQM’s questioner is optimal, where the likelihood p̃ is
equivalent to the answering distribution of the opponent p. For the guesser module, the performance
of the guesser with the posterior p̂ is optimal when p̃ is p. The performance of question-generator
also increases as the p̃ becomes more similar to the opponent, when the p̂ is fixed.

RL’s Property 1. AQM and RL approaches share the same objective function. Two algorithms
have the same objective function with the assumption that qt only considers the performance of the
current turn. The assumption is used in the second line of the following equation.

argmax
qt

max
qt−

ln p(c|a1:T , q1:T )

≈ argmax
qt

ln p(c|a1:t, q1:t)

= argmax
qt

E

[
ln
p(at|c, qt, a1:t−1, q1:t−1)
p(at|qt, a1:t−1, q1:t−1)

]
= argmax

qt

I[C,At; qt, a1:t−1, q1:t−1]

(9)

qt− denotes {q1:t−1, qt+1:T }. In the third line, at ∼ p(at|c, qt, a1:t−1, q1:t−1), c ∼
p(c|a1:t−1, q1:t−1), and Bayes rule is used. The assumption in the second line can be alleviated
via multi-step AQM, which uses I[C,At:t+k; qt:t+k, a1:t−1, q1:t−1] as the objective function of the
question-generator module. In the multi-step AQM, the optimal question cannot be selected in a
greedy way, unlike original AQM. The multi-step AQM needs to search in a tree structure; a Monte
Carlo tree search [42] can be used to find a reasonable solution.

The RL and AQM question-generator are closely related, as is the discriminative-generative pair
of classifiers [43]. AQM’s question-generator and guesser module explicitly have a likelihood p̃,
whereas the RL’s modules do not have explicitly. The properties of AQM including optimal conditions
and sentence dynamics can be extended to RL. The complexity of RL’s question-generator can be

14



decomposed to tracking class posteriors p(c|a1:t−1, q1:t−1) and history (a1:t−1, q1:t−1) for multi-turn
question answering. For human-like learning, the context for language generation p(qt|a1:t−1, q1:t−1)
is also required; Q-sampler corresponds to this context.

RL’s Property 2. Optimizing both questioner and answerer with rewards makes the agent’s
performance with human worse. This is true, even when the process improves a score during self-play
or uses tricks to maintain a human-like language generation. The property of self-play in a cooperative
goal-oriented dialog task is different from the case of AlphaGo, which defeated a human Go champion
[44]. For example, in GuessWhat?!, the reversed response of the answerer (e.g., “no” for “yes”) may
preserve the score in the self-play, but it makes the score in the human-machine game near 0%.

According to AQM’s Property 1, for the play of a machine questioner and a human answerer, the
performance is optimal only if the approximated answerer’s distribution p̃ of AQM’s questioner
is the same as the human’s answering distribution. According to RL’s Property 1, RL and AQM
shares the optimality condition about the distribution of the opponent. Fine-tuning an answerer agent
with a reward makes the distribution of the agent different from a human’s. Therefore, fine-tuning
both agents decreases performance in service situations. The experiment with a human, studied by
Chattopadhyay et al. explained in Appendix C, empirically demonstrates our claim.

RL’s Property 3. An alternative objective function exists, which is directly applicable to each
question. A reward can only be applied when one game is finished. If the goal of training is to make
language emergence itself or to make an agent for service, two agents can communicate with more
than just question-answering for back-propagation, such as sharing attention for the image [12].
Cross-entropy for the guesser of each round can be considered to replace the reward. Information
gain can also be used not only for AQM but also for alternative objectives of back-propagation.

Appendix E. Future Works

RL with Theory of Mind RL methods can be enhanced in a service scenario by considering the
answering distribution of human. It is advantageous for the machine questioner to ask questions for
which the human answer is predictable [20]. In other words, a question having a high VQA accuracy
is preferred. The model uncertainty of the questioner can also be measured and utilized with recent
studies on Bayesian neural networks and uncertainty measures [45]. Because the questioner has the
initiative of dialog, the questioner does not need to necessarily learn the entire distribution of human
conservation. The question, which the questioner uses frequently in self-play, can be asked more to a
human. Then, the obtained question-answer pairs can be used for improving the answerer, like in
active learning.

Combining Seq2seq with AQM RL optimizes p(c|a1:t, q1:t) for the questioner in goal-oriented
dialog. In the perspective of natural dialog generation, however, RL can be understood as that the
questioner are optimized by both p(qt|a1:t−1, q1:t−1) and p(c|a1:T , q1:T ), as described in Appendix
D. On the other hand, the Q-sampler in AQM corresponds to regularizing with p(qt|a1:t−1, q1:t−1) in
the deep RL approach. If the Q-sampler in our experiment is replaced with seq2seq trained by a deep
SL method, AQM can generate a question by optimizing both sentence probability from the seq2seq
model and information gain. AQM can use following terms in every turn to generate questions.

I[C,At; qt, a1:t−1, q1:t−1] + λ · p̃†(qt|a1:t, q1:t) (10)

λ is a balancing parameter. p̃† is a probability distribution of language modeling of the seq2seq model.
Comparing with the gen1Q setting in the discussion section, this algorithm could make the dialog
more related to the history of dialog. In this idea, AQM can be understood as a way to boost deep SL
methods.

Online Learning Fine-tuning on the model is required for a novel answerer, a non-stationary
environment [29], or a multi-domain problem. We think that fine-tuning on the answerer model
would be more robust than on the question-generating RNN model, making AQM would have an
advantage, because research on training an answerer model on VQA tasks has been more progressed
than training an RNN for the questioner. On the other hand, if the experiences of many users are
available, model-agnostic meta learning (MAML) can be applied for few-shot learning [46].
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