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Abstract

A widespread folklore for explaining the success of Convolutional Neural Net-
works (CNNs) is that CNNs use a more compact representation than the Fully-
connected Neural Network (FNN) and thus require fewer training samples to accu-
rately estimate their parameters. We initiate the study of rigorously characterizing
the sample complexity of estimating CNNs. We show that for an m-dimensional
convolutional filter with linear activation acting on a d-dimensional input, the sam-
ple complexity of achieving population prediction error of ε is rOpm{ε2q 2, whereas
the sample-complexity for its FNN counterpart is lower bounded by Ωpd{ε2q sam-
ples. Since, in typical settings m ! d, this result demonstrates the advantage of
using a CNN. We further consider the sample complexity of estimating a one-
hidden-layer CNN with linear activation where both the m-dimensional convolu-
tional filter and the r-dimensional output weights are unknown. For this model,
we show that the sample complexity is rO

`

pm` rq{ε2
˘

when the ratio between
the stride size and the filter size is a constant. For both models, we also present
lower bounds showing our sample complexities are tight up to logarithmic factors.
Our main tools for deriving these results are a localized empirical process analysis
and a new lemma characterizing the convolutional structure. We believe that these
tools may inspire further developments in understanding CNNs.

1 Introduction

Convolutional Neural Networks (CNNs) have achieved remarkable impact in many machine learn-
ing applications, including computer vision (Krizhevsky et al., 2012), natural language process-
ing (Yu et al., 2018) and reinforcement learning (Silver et al., 2016). The key building block of
these improvements is the use of convolutional (weight sharing) layers to replace traditional fully
connected layers, dating back to LeCun et al. (1995). A common folklore of explaining the suc-
cess of CNNs is that they are a more compact representation than Fully-connected Neural Networks
(FNNs) and thus require fewer samples to estimate. However, to our knowledge, there is no rigorous
characterization of the sample complexity of learning a CNN.

The main difficulty lies in the convolution structure. Consider the simplest CNN, a single convolu-
tional filter with linear activation followed by average pooling (see Figure 1a), which represents a

˚Equal contribution.
2We use the standard big-O notation in this paper and use rOp¨q when we ignore poly-logarithmic factors.
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function F1 : Rd ÞÑ R of the form:

F1px;wq “
r´1
ÿ

`“0

wJP`sx, (1)

where w P Rm is the filter of size m and a stride size of s, r « d{s is the total number of times filter
w is applied to an input vector x P Rd, and P`sx :“ rx`s`1, x`s`2, . . . , x`s`ms is an m-dimensional
segment of the feature vector x. Noting that F1 is a linear function of x, we can also represent F1

by a one-layer fully connected neural network (linear predictor):

F FNN
1 px, θq “ θJx (2)

for some θ P Rd. Suppose we have n samples txi, yiu
n
i“1 where x is the input and y is the label and

use the least squares estimator:

pθ :“ arg min
θPRd

n
ÿ

i“1

pyi ´ θ
Jxiq

2.

By a classical results analyzing the prediction error for linear regression (see for instance (Wasser-

man, 2013)), under mild regularity conditions, we need n — d{ε2 to have
b

Ex„µ|pθJx´ θJ0 x|2 ď ε,
where µ is the input distribution and θ0 is the optimal linear predictor. The proof for FNN is fairly
simple because we can write pθ “

`

XJX
˘´1

XJY (normal equation) where X and Y are the ag-
gregated features and labels, respectively and then directly analyze this expression.

On the other hand, the network F1 can be viewed as a linear regression model with respect to w, by
considering a “stacked” version of feature vectors rxi “

řr´1
`“0 P

`
sx P Rm. The classical analysis of

ordinary least squares in linear regression does not directly yield the optimal sample complexity in
this case, because the distributional properties of rxi as well as the spectral properties of the sample
covariance

ř

i rxirx
J
i are difficult to analyze due to the heavy correlation between coordinates of

rx corresponding to overlapping patches. We discuss further details of this aspect after our main
positive result in Theorem 1.

In this paper, we take a step towards understanding the statistical behavior of the CNN model de-
scribed above. We adopt tools from localized empirical process theory (van de Geer, 2000) and
combine them with a structural property of convolutional filters (see Lemma 2) to give a complete
characterization of the statistical behavior of this simple CNN.

We first consider the problem of learning a convolutional filter with average pooling as in Eq.(1)
using the least squares estimator. We show in the standard statistical learning setting, under fairly
natural conditions on the input distribution, pw satisfies

b

Ex„µ|F1px, pwq ´ F1px,w0q|
2 “ rO

´

a

m{n
¯

,

where µ is the input distribution and w0 is the underlying true convolutional filter. Notably, to
achieve an ε error, the CNN only needs rOpm{ε2q samples whereas the FNN needs Ωpd{ε2q. Since
the filter size m ! d, this result clearly justifies the folklore that the convolutional layer is a more
compact representation. Furthermore, we complement this upper bound with a minimax lower
bound which shows the error bound rOp

a

m{nq is tight up to logarithmic factors.

Next, we consider a one-hidden-layer CNN (see Figure 1b):

F2px;w, aq “
r´1
ÿ

`“0

a`w
JP`sx, (3)

where both the shared convolutional filter w P Rm and output weights a P Rr are unknown. This
architecture is previously considered in Du et al. (2017b). However the focus of that work is to un-
derstand the dynamics of gradient descent. Using similar tools as in analyzing a single convolutional
filter, we show that the least squares estimator achieves the error bound rOp

a

pm` rq{nq if the ratio
between the stride size and the filter size is a constant. Further, we present a minimax lower bound
showing that the obtain rate is tight up to logarithmic factors.

To our knowledge, these theoretical results are the first sharp analyses of the statistical efficiency of
the CNN. These results suggest that if the input follows a (linear) CNN model, then it can be learned
more easily than treating it as a FNN since a CNN model reuses weights.
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Figure 1: CNN architectures that we consider in this paper.

1.1 Comparison with Existing Work

Our work is closely related to the analysis of the generalization ability of neural networks (Arora
et al., 2018; Anthony & Bartlett, 2009; Bartlett et al., 2017b,a; Neyshabur et al., 2017; Konstantinos
et al., 2017). These generalization bounds are often of the form:

Lpθq ´ Ltrpθq ď D{
?
n (4)

where θ represents the parameters of a neural network, Lp¨q and Ltrp¨q represent population and
empirical error under some additive loss, and D is the model capacity and is finite only if the
(spectral) norm of the weight matrix for each layer is bounded. Comparing with generalization
bounds based on model capacity, our result has two advantages:

1. If Lp¨q is taken to be the mean-squared3 error E| ¨ |2, Eq. (4) implies an rOp1{ε4q sample complex-
ity to achieve a standardized mean-square error of

a

E| ¨ |2 ď ε, which is considerably larger
than the rOp1{ε2q sample complexity we established in this paper.

2. Since the complexity of a model class in regression problems typically depends on the magni-
tude of model parameters (e.g., }w}2), generalization error bounds like Eq. (4) are not scale-
independent and deteriorate if }w}2 is large. In contrast, our analysis has no dependency on the
scale of w and also places no constraints on }w}2.

On the other hand, we consider the special case where the neural network model is well-specified
and the label is generated according to a neural network with unbiased additive noise (see Eq. (5))
whereas the generalization bounds discussed in this section are typically model agnostic.

1.2 Other Related Work

Recently, researchers have been making progress in theoretically understanding various aspects of
neural networks, including hardness of learning (Goel et al., 2016; Song et al., 2017; Brutzkus &
Globerson, 2017), landscape of the loss function (Kawaguchi, 2016; Choromanska et al., 2015;
Hardt & Ma, 2016; Haeffele & Vidal, 2015; Freeman & Bruna, 2016; Safran & Shamir, 2016; Zhou
& Feng, 2017; Nguyen & Hein, 2017b,a; Ge et al., 2017b; Zhou & Feng, 2017; Safran & Shamir,
2017; Du & Lee, 2018), dynamics of gradient descent (Tian, 2017; Zhong et al., 2017b; Li & Yuan,
2017), provable learning algorithms (Goel & Klivans, 2017a,b; Zhang et al., 2015), etc.

Focusing on the convolutional neural network, most existing work has analyzed the convergence
rate of gradient descent or its variants (Du et al., 2017a,b; Goel et al., 2018; Brutzkus & Globerson,
2017; Zhong et al., 2017a). Our paper differs from them in that we do not consider the computational
complexity but only the sample complexity and information theoretical limits of learning a CNN. It
is an open question when taking computational budget into account, what is the optimal estimator
for CNN.

3Because the standardized mean-square error
a

E| ¨ |2 is not a sum of independent random variables, it is
difficult, if not impossible, to apply generalization error bounds directly for

a

E| ¨ |2.
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Convolutional structure has also been studied in the dictionary learning (Singh et al., 2018; Huang &
Anandkumar, 2015) and blind de-convolution (Zhang et al., 2017) literature. These papers studied
the unsupervised setting where their goal is to recover structured signals from observations generated
according to convolution operations whereas our paper focuses on the supervised learning setting
with predictor having the convolution structure.

1.3 Organization

This paper is organized as follows. In Section 2, we formally setup the problem and assumptions. In
Section 3 we present our main theoretical results for learning a convolutional filter (see Eq. (1)). In
Section 4 we present our main theoretical results for learning a one-hidden-layer CNN (see Eq. (3)).
In Section 5, we use numerical experiments to verify our theoretical findings. We conclude and list
future directions in Section 6. Most technical proofs are deferred to the appendix.

2 Problem specification and assumptions

Let txi, yiuni“1 be a sample of n training data points, where xi P Rd denotes the d-dimensional
feature vector of the ith data point and yi P R is the corresponding real-valued response. We
consider a generic model of

yi “ F pxi;w0q ` εi, where Erεi|xis “ 0. (5)

In the model of Eq. (5), F represents a certain network parameterized by a fixed but unknown pa-
rameter w0 that takes a d-dimensional vector xi as input and outputs a single real-valued prediction
F pxi;w0q. tεiuni“1 represents stochastic noise inherent in the data, and is assumed to have mean
zero. The feature vectors of training data txiuni“1 are sampled i.i.d. from an unknown distribution µ
supported on Rd.

Throughout this paper we make the following assumptions:

(A1) Sub-gaussian noise: there exists constant σ2 ă 8 such that for any t P R, Eetεi ď eσ
2t2{2;

(A2) Sub-gaussian design: there exists constant ν2 ă 8 such that for any a P Rd, Eµx “ 0 and
Eµ exptaJxu ď exptν2}a}22{2u;

(A3) Non-degeneracy: there exists constant κ ą 0 such that λminpEµxxJq ě κ.

We remark that the assumptions (A1) through (A3) are quite mild. In particular, we only impose
sub-Gaussianity conditions on the distributions of xi and εi, and do not assume they are gener-
ated/sampled from any exact distributions. The last non-degeneracy condition (A3) assumes that
there is a non-negligible probability mass along any direction of the input distributions. It is very
likely to be satisfied after simple pre-processing steps of input data, such as mean removal and
whitening of the sample covariance.

We are interested in learning a parameter pwn using a training sample tpxi, yiquni“1 of size n so as to
minimize the standardized population mean-square prediction error

errµppwn,w0;F q “

b

Ex„µ |F px; pwnq ´ F px;w0q|
2
. (6)

3 Convolutional filters with average pooling

We first consider a convolutional network with one convolutional layer, one convolutional filter,
an average pooling layer and linear activations. More specifically, for a single convolutional filter
w P Rm of size m and a stride of size s, the network can be written as

F1px;wq “
r´1
ÿ

`“0

wJP`sx, (7)

where r « d{s is the total number of times filter w is applied to an input vector x, and P`sx :“
rx`s`1, x`s`2, . . . , x`s`ms is an m-dimensional segment of the d-dimensional feature vector xi.
For simplicity, we assume that m is divisible s and let J “ m{s P N denote the number of strides
within a single filter of size m.
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3.1 The upper bound

Given training sample tpxi, yiquni“1, we consider the following least-squares estimator:

pwn P arg min
wPRm

1

n

n
ÿ

i“1

pyi ´ F1pxi;wqq
2
. (8)

Note the subscript n which emphasizes that pwn is trained using a sample of n data points. In
addition, because the objective is a quadratic function in w, Eq. (8) is actually a convex optimization
problem and a global optimal solution pwn can be obtained efficiently. More specifically, pwn admits
the closed-form solution of pwn “ p

řn
i“1 rxirx

J
i q
´1

řn
i“1 yirxi, where rxi “

řr´1
`“0 P

`
sxi is the stacked

version of input feature vector xi.

The following theorem upper bounds the expected population mean-square prediction error
errµp pwn, w0;F1q of the least-square estimate pwn in Eq. (8).

Theorem 1. Fix an arbitrary δ P p0, 1{2q. Suppose (A1) through (A3) hold and ν
a

logpn{δq ě κ,
n Á κ´2ν2m logpνd log δ´1q logpnδ´1q. Then there exists a universal constant C ą 0 such that
with probability 1´ δ over the random draws of x1, . . . , xn „ µ,

Eerrµp pwn, w0;F1q ď C

c

σ2m logpκ´1νd logpδ´1qq

n
conditioned on x1, . . . , xn. (9)

Here the expectation is taken with respect to the randomness in tεiuni“1.

Theorem 1 shows that, with n “ rΩpmq samples, the expected population mean-square error
errµp pwn, w0;F1q scales as rOp

a

σ2m{nq. This matches the 1{
?
n statistical error for classical para-

metric statistics problems, and also confirms the “parameter count” intution that the estimation error
scales approximately with the number of parameters in a network (m in network F1).

We next briefly explain the strategies we employ to prove Theorem 1. While it’s tempting to directly
use the closed-form expression pwn “ p

řn
i“1 rxirx

J
i q
´1

řn
i“1 yirxi to analyze pwn, such an approach

has two limitations. First, because we consider the population mean-square error errµp pwn, w0;F1q,
such an approach would inevtiably require the analysis of spectral properties (e.g., the least eigen-
value) of

řn
i“1 rxirx

J
i , which is very challenging as heavy correlation occurs in rxi when filters are

overlapping (i.e., s ă m and J ą 1). It is likely that strong assumptions such as exact isotropic
Gaussianity of the feature vectors are needed to analyze the distributional properties rxi (Qu et al.,
2017). Also, such an approach relies on closed-forms of pwn and is difficult to extend to other poten-
tial activations such as the ReLU activation. when no closed-form expressions of pwn exist.

To overcome the above difficulties, we adopt a localized empirical process approach introduced in
(van de Geer, 2000) to upper bound the expected population mean-square prediction error. At the
core analysis is an upper bound on the covering number of a localized parameter set, with an inter-
esting argument that partitions a d-dimensional equivalent regressor for compactification purposes
(see Lemmas 2 and 4 in the appendix for details). Our proof does not rely on the exact/closed-form
expression of pwn, and has the potential to be extended to other activation functions, as we discuss in
Section 6. The complete proof of Theorem 1 is placed in the appendix.

3.2 The lower bound

We prove the following information-theoretic lower bound on Eerrµp pwn, w0q of any estimator pwn
calculated on a training sample of size n.
Theorem 2. Suppose x1, . . . , xn„N p0, Iq and ε1, . . . , εn „ N p0, σ2q. Suppose also that m´ s is
an even number. Then there exists a universal constant C 1 ą 0 such that

inf
pwn

sup
w0PRm

Eerrµpwn, w0;F1q ě C 1
c

σ2m

n
. (10)

Remark 1. Theorem 2 is valid for any pair of (filter size, stride) combinations pm, sq, provided that
m is divisible by s and m ´ s is an even number. The latter requirement is a technical condtion in
our proof and is not critical, because one can double the size of m and s, and the lower bound in
Theorem 2 remains asymptotically on the same order.
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Theorem 2 shows that any estimator pwn computed on a training set of size n must have a worst-case
error of at least

a

σ2m{n. This suggests that our upper error bound in Theorem 1 is tight up to
logarithmic factors.

Our proof of Theorem 2 draws on tools from standard information-theoretical lower bounds such as
the Fano’s inequality (Yu, 1997; Tsybakov, 2009). The high-level idea is to construct a finite candi-
date set of parameters W Ď Rm and upper bound the Kullback-Leibler (KL) divergence of induced
observable distributions and the population prediction mean-square error between parameters in the
candidate set W . The complete proof of Theorem 2 is placed in the appendix.

4 Convolutional filters with prediction layers

We consider a slightly more complicated convolutional network with two layers: the first layer is a
single convolutional filter of size m, applied r times to a d-dimensional input vector with stride s;
the second layer is a linear regression prediction layer that produces a single real-valued output.

For such a two-layer network the parameter w can be specified as w “ pw, aq, where w P Rm is the
weights in the first-layer convolutional filter and a P Rr is the weight in the second linear prediction
layer. The network F2px;wq “ F2px;w, aq can then be written as

F2px;w, aq “
r´1
ÿ

`“0

a`w
JP`sx. (11)

Note that in Eq. (11) the vector a P Rr is labeled as a “ pa0, a1, . . . , ar´1q for convenience that
matches with the labels of the operator P`s for ` “ 0, . . . , r ´ 1.

Compared to network F1 with average pooling, the new network F2 can be viewed as a weighted
pooling of convolutional filters, with weights a P Rr unknown and to be learnt. A graph illustration
of the network F2 is given in Figure 1b.

4.1 The upper bound

We again consider the least-squares estimator

pwn “ p pwn,panq P arg min
wPRm,aPRr

1

n

n
ÿ

i“1

pyi ´ F2pxi;w, aqq
2
. (12)

Again, we use subscript n to emphasize that both pwn and pan are computed on a training set
txi, yiu

n
i“1 of size n.

Unlike the least squares problem in Eq. (8) for the F1 network, the optimization problem in Eq. (12)
has two optimization variables w, a and is therefore no longer convex. This means that popular
optimization algorithms like gradient descent do not necessarily converge to a global minima in
Eq. (12). Nevertheless, in this paper we choose to focus on the statistical properties of p pwn,panq and
assume global minimality of Eq. (12) is achieved. On the other hand, because Eq. (12) resembles
the matrix sensing problem, it is possible that all local minima are global minima and saddle points
can be efficiently escaped (Ge et al., 2017a), which we leave as future work.

The following theorem upper bounds the population mean-square prediction error of any global
minimizer pwn “ p pwn,panq of Eq. (12).
Theorem 3. Fix arbitrary δ P p0, 1{2q and define J :“ m{s, where m is the filter size and
s is the stride. Suppose (A1) through (A3) hold and ν

a

logpn{δq ě κ, n Á κ´2ν2prJ `
mq logpνd log δ´1q logpnδ´1q. Then there exists a universal constant C ą 0 such that with proba-
bility 1´ δ over the random draws of x1, . . . , xn „ µ,

Eerrµp pwn,w0;F2q ď C

c

σ2prJ `mq logpκ´1νd logpδ´1qq

n
conditioned on x1, . . . , xn.

(13)
Here the expectation is taken with respect to the randomness in tεiuni“1.

Theorem 3 is proved by a similar localized empirical process arguments as in the proof of Theorem
1. Due to space costraints we defer the complete proof of Theorem 3 to the appendix.
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(a) Filter size m “ 2.
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(b) Filter size m “ 8.
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(c) Filter size m “ 16.

Figure 2: Experiments on the problem of learning a convolutional filter with average pooling de-
scribed in Section 3 with stride size s “ 1.

Theorem 3 shows that errµp pwn,w0;F2q can be upper bounded by rOp
a

σ2prJ `mq{nq, provided
that at least n “ rΩprJ `mq samples are available. Compared to the intuitive “parameter count” of
r`m (r parameters for a andm parameters forw), our upper bound has an additional multiplicative
J “ m{s term, which is the number of strides within each m-dimensional filter. Therefore, our
upper bound only matches parameter counts when J is very small (e.g., non-overlapping filters or
fast-moving filters where the stride s is at least a constant fraction of filter size m), and becomes
large when the stride s is very small, leading to many convolutions being computed.

We conjecture that such an increase in error/sample complexity is due to an inefficiency in one
of our key technical lemmas. More specifically, in Lemma 7 in which we derive upper bounds
on covering number of localized parameter sets, we use the boundedness and low-dimensionality
of each segment of differences of equivalent parameters for compactification purposes; such an
argument is not ideal, as it overlooks the correlation between different segments, connected by an
r-dimensional parameter a. A sharper covering number argument would potentially improve the
error analysis and achieve sample complexity scaling with r `m.

4.2 The lower bound

We prove the following information-theoretical lower bound on Eerrµppwn,w0q of any estimator
pwn “ p pwn,panq calculated on a training sample of size n.

Theorem 4. Suppose x1, . . . , xn„N p0, Iq and ε1, . . . , εn „ N p0, σ2q. Then there exists a univer-
sal constant C 1 ą 0 such that

inf
pwn

sup
w0

Eerrµppwn,w0;F2q ě C 1
c

σ2pr `mq

n
. (14)

Theorem 4 shows that the error of any estimator pwn computed on a training sample of size n must
scale as

a

σ2pr `mq{n, matching the parameter counts of r `m for F2. It is proved by reducing
the regression problem under F2 to two separate ordinary linear regression problems and invoking
classical lower bounds for linear regression models (Wasserman, 2013; Van der Vaart, 1998). A
complete proof of Theorem 4 is given in the appendix.

5 Experiments

In this section we use simulations to verify our theoretical findings. For all experiments, we let
the ambient dimension d be 64 and the input distribution be Gaussian with mean 0 and identity
covariance. We use the population mean-square prediction error defined in Eq. (6) as the evaluation
metric. In all plots, CNN represents using convolutional parameterization corresponding to Eq. (1)
or Eq. (3) and FNN represents using fully connected parametrization corresponding to Eq. (2).

In Figure 2 and Figure 3, we consider the problem of learning a convolutional filter with average
pooling which we analyzed in Section 3. We vary the number of samples, the dimension of filters
and the stride size. Here we compare parameterizing the prediction function as a d-dimensional
linear predictor and as a convolutional filter followed by average pooling. Experiments show CNN
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(b) Filter size m “ 8.
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(c) Filter size m “ 16.

Figure 3: Experiments on the problem of learning a convolutional filter with average pooling de-
scribed in Section 3 with stride size s “ m, i.e., non-overlapping.
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(a) Stride size s “ 1.
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(b) Stride size s “ m{2.
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(c) Stride size s “ m, i.e., non-
overlapping.

Figure 4: Experiment on the problem of one-hidden-layer convolutional neural network with a
shared filter and a prediction layer described in Section 4. The filter size m is chosen to be 8.

parameterization is consistently better than the FNN parameterization. Further, as number of training
samples increases, the prediction error goes down and as the dimension of filter increases, the error
goes up. These facts qualitatively justify our derived error bound rO

`

m
n

˘

. Lastly, in Figure 2 we
choose stride s “ 1 and in Figure 3 we choose stride size equals to the filter size s “ m, i.e.,
non-overlapping. Our experiment shows the stride does not affect the prediction error in this setting
which coincides our theoretical bound in which there is no stride size factor.

In Figure 4, we consider the one-hidden-layer CNN model analyzed in Section 4. Here we fix the
filter size m “ 8 and vary the number of training samples and the stride size. When stride s “ 1,
convolutional parameterization has the same order parameters as the linear predictor parameteriza-
tion (r “ 57 so r ` m “ 65 « d “ 64) and Figure 4a shows they have similar performances.
In Figure 4b and Figure 4c we choose the stride to be m{2 “ 4 and m “ 8 (non-overlapping),
respectively. Note these settings have less parameters (r `m “ 23 for s “ 4 and r `m “ 16 for
s “ 8) than the case when s “ 1 and so CNN gives better performance than FNN.

6 Conclusion and Future Directions

In this paper we give rigorous characterizations of the statistical efficiency of CNN with simple ar-
chitectures. Now we discuss how to extend our work to more complex models and main difficulties.

Non-linear Activation: Our paper only considered CNN with linear activation. A natural question
is what is the sample complexity of learning a CNN with non-linear activation like Recitifed Linear
Units (ReLU). We find that even without convolution structure, this is a difficult problem. For
linear activation function, we can show the empirical loss is a good approximation to the population
loss and we used this property to derive our upper bound. However, for ReLU activation, we can
find a counter example for any finite n, which breaks our Lemma 3. We believe if there is a better
understanding of non-smooth activation which can replace our Lemma 3, we can extend our analysis
framework to derive sharp sample complexity bounds for CNN with non-linear activation function.

Multiple Filters: For both models we considered in this paper, there is only one shared filter. In
commonly used CNN architectures, there are multiple filters in each layer and multiple layers. Note

8



that if one considers a model of k filters with linear activation with k ą 1, one can always replace
this model by a single convolutional filter that equals to the summation of these k filters. Thus,
we can formally study the statistical behavior of wide and deep architectures only after we have
understood the non-linear activation function. Nevertheless, we believe our empirical process based
analysis is still applicable.
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Appendix: Proofs

We first define some notations that will be used throughout the proofs of our results. Note that
because the activation function we consider in this paper is the identity mapping, both networks F1

and F2 can be written as a “structured linear regression” model

F1{2px;wq “ xx, θpwqy where θpwq P Θ1{2 Ď Rd. (15)

Here Θ1{2 is a subset of Rd subject to additional structural constraints corresponding to F1 or F2.
We can then define/rewrite “population” and “empirical” mean-square prediction errors as

err2
µpw,w

1;F q “ Eµ
ˇ

ˇxx, θpwq ´ θpw1qy
ˇ

ˇ

2
“: }θpwq ´ θpw1q}2µ;

xerr
2
Xpw,w

1;F q “
1

n

n
ÿ

i“1

ˇ

ˇxxi, θpwq ´ θpw
1qy

ˇ

ˇ

2
“: }θpwq ´ θpw1q}2X ;

For any set Θ Ď Rd, error parameter ε ą 0 and a distance metric dp¨, ¨q : Rd ˆ Rd Ñ R`, define
Npε; Θ, dq as the covering number of Θ in dp¨, ¨q, which is the size of the smallest finite cover set
H Ď Rd such that supφPΘ minφ1PH dpφ, φ

1q ď ε.

A Proof of Theorem 1 (upper bound, average pooling)

For the convolutional model with an average pooling layer F1px;wq “
řr´1
`“0 w

JP`sx, a linear model
θpwq P Rd as in Eq. (15) can be produced as

θpwq “
r´1
ÿ

`“0

S`sw where S`sw “ r0, . . . , 0
loomoon

`s zeros

, w1, . . . , wm, 0, . . . , 0s P Rd.

Our first lemma is the following “basic inequality”, which upper bounds xerr
2
Xp pwn, w0;F q “

}θp pwnq ´ θpw0q}
2
X using a weighted sum of noise variables.

Lemma 1. n ¨ }θp pwnq ´ θpw0q}
2
n ď 2

řn
i“1 εixxi, θp pwnq ´ θpw0qy.

Proof. By definition of pwn, we have
řn
i“1pyi´xxi, θp pwnqyq

2 ď
řn
i“1pyi´xxi, θpw0qyq

2. Plugging
in yi “ xxi, θpw0qy ` εi, breaking up the squares and cancelling out the common

řn
i“1 ε

2
i terms on

both sides of the inequality, we have
řn
i“1 |xxi, θp pwnq´θpw0qy|

2`2
řn
i“1 εixxi, θp pwnq´θpw0qy ď

0. Re-arranging the terms we proved the lemma.

We next adopt a localized empirical process approach (van de Geer, 2000) to upper bound
řn
i“1 εixxi, θp pwnq ´ θpw0qy. Define

ΘX,F1
:“ tθpwq ´ θp rwq : w, rw P Rm, }θpwq ´ θp rwq}X ď 1u . (16)

Re-scaling pw0, pwnq ÞÑ pw0, pwnq{}θpwq ´ θp rwq}X and εi ÞÑ εi{σ, we have

1

n

n
ÿ

i“1

εixxi, θp pwnq ´ θpw0qy ď σ}θp pwnq ´ θpw0q}X ¨ sup
φPΘX,F1

1

n

n
ÿ

i“1

rεixxi, φy. (17)

For φ P Rd denote GXn pφq :“
řn
i“1 rεixxi, φy{

?
n as a random variable with randomness induced by

the noise variables trεiuni“1. Because trεiuni“1 are i.i.d. centered sub-Gaussian random variables with
parameter 1, it is easy to verify that for any φ, φ1 P Rd, GXn pφq´GXn pφ1q is a centered sub-Gaussian
random variable with sub-Gaussian parameter γ2 ď σ2}φ´φ1}2X . Using Dudley’s entropic integral
(Dudley, 1967), we have

E sup
φPΘX,F1

GXn pφq À
ż 8

0

b

logNpε; ΘX,F1
, } ¨ }Xqdε, (18)
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Combining Eq. (18) with Lemma 1, we immediately have

E}θp pwnq ´ θpw0q}X À

c

1

n
¨

ż 8

0

b

logNpε; ΘX,F1
, } ¨ }Xqdε. (19)

In the rest of the proof we upper bound the integration of covering numbers in Eq. (19). We first
consider a “population” version of the localized set ΘX,F1 :

Θµ,F1 :“ tθpwq ´ θp rwq : w, rw P Rm, }θpwq ´ θp rwq}µ ď 1u (20)

and upper bounds the covering number Npε; Θµ,F1
, } ¨ }Xq. We shall discuss how such an upper

bound can be converted into a bound on Npε; ΘX,F1
, } ¨ }Xq later this section.

We first state two technical lemmas.
Lemma 2. For any φ “ θpwq ´ θp rwq P Θµ,F1

it holds that }w ´ rw}2 ď κ´1J2, where J “ m{s.

Proof. By definition, for any φ “ θpwq ´ θp rwq P Θµ,F1
it holds that Eµ|xθpwq ´ θp rwq, xy|2. The

non-degeneracy condition (A3) of µ then implies

}θpwq ´ θp rwq}22 ď κ´2Eµ|xθpwq ´ θp rwq, xy|2 ď κ´2. (21)

Let Q0
sw, . . . ,Q

J´1
s w be J “ m{s segments of w, each of length s. Let also Q0

sθ, . . . ,Q
r´1
s θ be r

segments of θ P Rd, each of length s too. Then

Q`srθpwq ´ θp rwqs “

minpJ´1,`q
ÿ

`1“0

Q`spw ´ rwq. (22)

Because }θpwq ´ θp rwq}2 ď κ´1, it holds that }Q`srθpwq ´ θp rwqs}2 ď }θpwq ´ θp rwq}2 ď κ´1 for
all ` P t0, 1, . . . , r ´ 1u because Q`srθpwq ´ θp rwqs partitions θpwq ´ θp rwq into disjoint segments.

Since Q0
srθpwq ´ θp rwqs “ Q0

spw ´ rwq, we know that }Q0
spw ´ rwq}2 “ }Q0

srθpwq ´ θp rwqs}2 ď
}θpwq ´ θp rwq}2. Similarly, because Q1

srθpwq ´ θp rwqs “ Q0
spw ´ rwq ` Q1

spw ´ rwq, we have
}Q1

spw ´ rwq}2 ď }Q1
srθpwq ´ θp rwqs}2 ` }Q

0
spw ´ rwq}2 ď 2}θpwq ´ θp rwq}2. Continuing this

argument we have }Q`spw ´ rwq}2 ď p`` 1q}θpwq ´ θp rwq}2. Subsequently,

}w ´ rw}2 ď
J´1
ÿ

`“0

}Q`spw ´ rwq}2 ď J2 ¨ }θpwq ´ θp rwq}2 ď κ´1J2. (23)

Lemma 3. Fix arbitrary δ P p0, 1{2q. With probability 1´δ over the random draws of x1, . . . , xn „

µ, for any φ “ θpwq´ θp rwq, φ1 “ θpw1q´ θp rw1q P Rm it holds that }φ´φ1}2X À ν2
a

d3 logp1{δq ¨
}w ´ rw ´ w1 ` rw1}22.

Proof. By definition we have that

}φ´ φ1}2X “
1

n

n
ÿ

i“1

ˇ

ˇxxi, φ´ φ
1y
ˇ

ˇ

2
ď λmaxppΣnq}φ´ φ

1}22, (24)

where λmaxppΣnq is the largest eigenvalue of sample covariance pΣn “
1
n

řn
i“1 xix

J
i .

Let Σ0 :“ EµxxJ denote the population covariance under µ. Because µ is sub-Gaussian with
parameter ν2 (A2), by standard concentration inequality of sub-Gaussian sample covariances (e.g.,
(Vershynin, 2012)) we have with probability 1´ δ that

}pΣn ´ Σ0}op À ν2
a

d logp1{δq{n. (25)

Note that }Σ0}op must also be upper bounded by ν2 because of the sub-Gaussianity of µ. Therefore,
with probability 1´ δ

}φ´ φ1}2X À ν2

˜

1`

c

d logp1{δq

n

¸

}φ´ φ1}22 À ν2
a

d logp1{δq ¨ }φ´ φ1}22. (26)
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Finally, recall the definition that φ´φ1 “ θpwq´θp rwq´θpw1q`θp rw1q “
řr´1
`“0 S

`
spw´ rw´w1` rw1q,

implying that }φ ´ φ1}2 ď r ¨ }w ´ rw ´ w1 ` rw1}2 ď d}w ´ rw ´ w1 ` rw1}2. The lemma is thus
proved.

We are now ready to state and prove our key covering number lemma of Θµ,F1 in } ¨ }X .
Lemma 4. With probability 1 ´ δ over the random draw of x1, . . . , xn „ µ, it holds for all ε ą 0
that logNpε; Θµ,F1

, dµp¨, ¨qq À m logpνd logpδ´1q{εκq .

Proof. For any R ą 0 denote BmpRq :“ tz P Rm : }z}2 ď Ru as the centered m-dimensional
Euclidean ball of radius R. By Lemma 2, we know that tw ´ rw : θpwq ´ θp rwq P Θµ,F1

u Ď

Bmpκ´1J2q.

Let H Ď Rm be a finite covering set of Bmpκ´1J2q in } ¨ }2 up to a difference precision parameter
ε1 ą 0 to be specified later, meaning that sup∆wPBmpκ´1J2qmin∆w1PH }∆w ´∆w1}2 ď ε1. Again
using the standard covering number of m-dimensional unit balls (e.g., (van de Geer, 2000)), the size
of |H| can be upper bounded by log |H| À m logpJ2{κε1q.

Let ΦpHq :“ tφ1 “ θpw1q ´ θp rw1q : w1 ´ rw1 P Hu be the induced d-dimensional parameter sets by
H. Clearly log |ΦpHq| ď log |H|. On the other hand, by Lemma 3 and the fact that tw´ rw : θpwq´
θp rwq P Θµ,F1u Ď Bmpκ´1J2q, we have supφPΘµ,F1

minφ1PΦpHq }φ´φ
1}X À νpd3 logp1{δqq1{4 ¨ε1.

Putting ε1 — ε{νpd3 logp1{δqq1{4 we proved the lemma.

Finally, we show how an upper bound on Npε; Θµ,F1
, } ¨ }Xq can be turned into an upper bound on

Npε1; ΘX,F1
, } ¨ }Xq for a potentially different precision parameter ε1. This is done by considering

the following “restricted eigenvalue” (Bickel et al., 2009) type conditions.

Lemma 5. Fix arbitrary δ P p0, 1{2q. If ν
a

logpn{δq ě κ and n Á

κ´2ν2m logpκ´1νd log δ´1q logpnδ´1q, then with probability 1´ δ we have that }φ}2X ě 1{2}φ}2µ
uniformly for all φ P Θµ,F1 .

Proof. Because both } ¨ }µ and } ¨ }X are linear (i.e., }aφ} “ a}φ} for all a P R), it suffices to
consider φ P Θµ,F1 with }φ}µ “ 1 only.

We first consider the case of fixed φ P Θµ,F1
. Because }φ}2µ “ 1, we have }φ}22 ď κ´2 thanks

to (A3). In addition, because x1, . . . , xn „ µ are independent sub-Gaussian random vectors with
sub-Gaussian parameter ν2, we have with probability 1 ´ 0.1δ that maxi }xi}2 À ν

a

logpn{δq.
Subsequently, maxi |xφ, xiy|

2 À κ´1ν
a

logpn{δq. Conditioned on this event, using Hoeffding’s
concentration inequality (Hoeffding, 1963) we have with probabilty 1´ δ1 that

ˇ

ˇ}φ}2X ´ }φ}
2
µ

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

|xxi, φy|
2 ´ Eµ|xx, φy|2

ˇ

ˇ

ˇ

ˇ

ˇ

À κ´1ν
a

logpn{δq ¨

c

logp1{δ1q

n
. (27)

Next consider a finite covering set Hpε1q of Θµ,F1
in distance metric }¨}X up to a precision parameter

ε1 ą 0 to be specified later; that is, supφPΘµ,F1
minφ1PHpε1q }φ´φ

1}X ď ε1. Lemma 4 guarantees the
existence of such a covering set with size log |Hpε1q| À m logpνd logpδ´1q{ε1κq with probability
1´ 0.1δ. On the other hand,

ˇ

ˇ}φ}2X ´ }φ
1}2X

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

xxi, φy
2 ´ xxi, φ

1y2

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

xxi, φ` φ
1yxxi, φ´ φ

1y

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e

1

n

n
ÿ

i“1

|xxi, φ` φ1y|2

g

f

f

e

1

n

n
ÿ

i“1

|xxi, φ´ φ1y|2

ď }φ` φ1}X ¨ }φ´ φ
1}X ď p2}φ}X ` }φ´ φ

1}Xq ¨ }φ´ φ
1}X .

Because }φ}µ “ 1, we have }φ}X ď maxi }xi}2 ¨}φ}2 À κ´1ν
a

logpn{δqwith probability 1´0.1δ
uniformly for all φ P Θµ,F1

. Subsequently,
ˇ

ˇ}φ}2X ´ }φ
1}2X

ˇ

ˇ À pκ´1ν
a

logpn{δq ` ε1qε1. (28)
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Setting ε1 — Op1q, δ1 “ 0.1δ{|Hpε1q| and combining Eqs. (27,28) we proved the desired lemma.

Corollary 1. Under the same conditions in Lemma 4, Npε; ΘX,F1
, } ¨ }Xq ď Npε{2; Θµ,F1

, } ¨ }Xq.

Combining Lemmas 1, 4 and Corollary 1 we have with probability 1´ δ that

E}θp pwnq ´ θpw0q}X À

c

σ2m logpκ´1νd logpδ´1qq

n
. (29)

Invoking Lemma 5 again we can upper bound }θp pwnq ´ θpw0q}µ “ errµp pwn, w0;F q.

B Proof of Theorem 2 (lower bound, average pooling)

We use the standard Fano’s inequality (Yu, 1997; Tsybakov, 2009) to prove the minimax lower
bound in Theorem 2. Below we state a commonly used variant of Fano’s inequality from (Tsybakov,
2009), also known as the Tsybakov’s master theorem:
Lemma 6. Let W “ pw0, w1, . . . , wM q be a finite collection of parameters and let Pj be the
distribution induced by parameter wj , for j P t0, . . . ,Mu. Let also D : W ˆ W Ñ R` be a
semi-distance. Suppose the following conditions hold:

1. Dpwj , wkq ě 2ρ ą 0 for all j, k P t0, . . . ,Mu;

2. Pj ! P0 for every j P t1, . . . ,Mu; 4

3. 1
M

řM
j“1 KLpPj}P0q ď γ logM ;

then the following bound holds:

inf
pw

sup
wjPW

Pr
j
rDp pw,wjq ě ρs ě

?
M

1`
?
M

ˆ

1´ 2γ ´ 2

c

γ

logM

˙

. (30)

Recall that J “ m{s is the number of strides in each filter, which is assumed to be an integer. We
consider two cases separately.

The non-overlapping case J “ 1. Construct subset Z “ tz1, . . . , zmu P t´1, 1um such that

1. For every z P Z ,
řn
i“1 zi “ 0;

2. For every distinct pairs of z, z1 P Z , ∆Hpz, z
1q “

řm
i“1 1tzi ‰ z1iu ě d{16.

Using classical constructions of separable constant-weight codes (e.g., (Wang & Singh, 2016,
Lemma 9), (Graham & Sloane, 1980, Theorem 7)), such a subset Z exists with size log |Z| Á m.

Construct W “ tw0, w1, . . . , wMu Ď Rm as w0 “ 0 and wj “ δzj for j P t1, . . . ,Mu and some
δ ą 0 to be specified later. Recall that θpwq “

řr´1
`“0 S

`
sw. Note also that x1, . . . , xn „ N p0, Iq and

ε1, . . . , εn „ Np0, 1q. The conditions in Lemma 6 can be verified below:

1. For every w,w1 PW , Dpw,w1q :“ }θpwq ´ θpw1q}2 ě
?
rδ ¨ d{12 Á δ

?
rd;

2. For every wj P tw1, . . . , wMu, we have Pj ! P0 and furthermore KLpPj}P0q “

E
řn
i“1 |xxi, θpwjq ´ θpw0qy|

2{2σ2 “ n}θpwjq ´ θpw0q}
2
2{σ

2 À nrδ2{σ2.

Setting δ —
a

σ2m{nr and invoking Lemma 6 we have

inf
pw

sup
wjPW

Pr
j

«

} pw ´ wj}2 ě c0

c

σ2m

n

ff

ě
1

4
. (31)

Theorem 2 is then proved by applying the Markov’s inequality and noting that errµp pw,wq “
a

Eµ|xx, pw ´ wy|2 “ } pw ´ w}2.

4P ! Q means that the support of P is contained in the support of Q.
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The overlapping case J ą 1. Construct subset Z “ tz1, . . . , zmu P t´1, 1um such that

1. For every z P Z ,
řn
i“1 zi “ 0 and QJ´1

s z “ 0;

2. For every distinct pairs of z, z1 P Z , ∆Hpz, z
1q “

řm
i“1 1tzi ‰ z1iu ě d{16.

Using again the construction of separable constant-weight codes, such a subset Z exists with size
log |Z| Á m´ s ě m{2.

For every z P Z Ď Rm, construct wpzq P Rm as follows:

Q`sw :“ Q`sz ´
`´1
ÿ

`1“0

Q`
1

s z ` “ 0, 1, . . . , J ´ 1, (32)

It is then easy to verify that θpwpzqq “
řr´1
`“0 S

`
swpzq “ pz1, . . . , zm, 0, . . . , 0q.

Construct W “ tw0, w1, . . . , wMu Ď Rm as w0 “ 0 and wj “ δ1zj for j P t1, . . . ,Mu and some
δ1 ą 0 to be specified later. The analysis in the non-overlapping case remains valid:

1. For every w,w1 PW , Dpw,w1q :“ }θpwq ´ θpw1q}2 “ě δ1 ¨ d{12 Á δ
?
rd;

2. For every wj P tw1, . . . , wMu, we have Pj ! P0 and furthermore KLpPj}P0q “

E
řn
i“1 |xxi, θpwjq ´ θpw0qy|

2{2σ2 “ n}θpwjq ´ θpw0q}
2
2{σ

2 À nδ2{σ2.

Setting δ1 —
a

σ2m{n we complete the proof.

C Proof of Theorem 3 (upper bound, prediction layers)

We use a similar framework as in the proof of Theorem 1 to prove Theorem 3. For the convolutional
network with prediction layers, the parameterization θpw, aq P Rd takes the form of

θpw, aq “
r´1
ÿ

`“0

a`S
`
sw. (33)

Deifne

ΘX,F2
:“ tθpw, aq ´ θp rw,raq : w, rw P Rm, a,ra P Rr, }θpw, aq ´ θp rw,raq}X ď 1u. (34)

Using the same basic inequality and Dudley’s entropic integral as in the proof of Theorem 1, we
have

E}θp pwn,panq ´ θpw0, a0q}X À

c

1

n
¨

ż 8

0

b

logNpε; ΘX,F2 , } ¨ }Xqdε. (35)

We similarly also consider a population version of ΘX,F1 :

Θµ,F2
:“ tθpw, aq ´ θp rw,raq : w, rw P Rm, a,ra P Rr, }θpw, aq ´ θp rw,raq}µ ď 1u. (36)

The following lemma upper bounds the covering number of Θµ,F2
with respect to } ¨ }X .

Lemma 7. With probability 1 ´ δ over the random draw of x1, . . . , xn „ µ, it holds for all ε ą 0
that logNpε; Θµ,F2

, } ¨ }Xq À prJ `mq logpκ´1νd log δ´1q.

Proof. Consider any φ “ θpw, aq ´ θp rw,raq P Θµ,F2
. By definition, we know that }φ}µ ď 1, and

therefore }φ}2 ď κ´1 thanks to the non-degeneracy condition (A3).

Let Q0
sφ, . . . ,Q

r´1
s φ be the r disjoint segments of φ P Rd, each of length s. Let also

Q0
sw, . . . ,Q

J´1
s w be the J disjoint segments of w P Rm each of length s. Denote for convenience

that at “ at mod r and rat “ rat mod r, which extends the subscripts of a and ra to Z. Then

Q`sφ “
J´1
ÿ

j“0

a``jQ
j
sw ´ ra``jQ

j
s rw, ` “ 0, 1, . . . , r ´ 1. (37)
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Subsequently, for every ` we have Q`sφ P spantQjsw,Q
j
s rwu

J´1
j“0 , a linear subspace in Rs of dimen-

sion at most 2J . Note also that }Q`sφ}2 ď }φ}2 ď κ´1. We then have (recall that BspRq denotes the
centered m-dimensional Euclidean ball of radius R)

Θµ,F2
Ď tφ P Rm : DS Ď Rs,dimpSq ď J s.t. Q`sφ P S X Bspκ´1qu “: rΘ. (38)

Our construction of covering sets of rΘ (and therefore also Θµ,F2 ) can be divided into two steps. As a
first step, we construct covering set S “ tS˚1 , . . . ,S˚Nu such that each S˚k , ` P rN s is linear subspace
in Rs of dimension at most 2J , and furthermore for any linear subspace S Ď Rs, dimpSq ď 2J ,

min
S˚k PS

sup
zPSXBsp1q

inf
z1PS˚k XBsp1q

}z ´ z1}2 ď ε1, (39)

where ε1 ą 0 is an error tolerance parameter to be specified later. The following proposition gives
an upper bound on the size of such coverings, which is proved later.

Proposition 1. There exists S satisfying Eq. (39); furthermore, log |S| À m logpd{ε1q.

The next step is to construct, for each S˚k P S, a covering HpS˚k q “ tu˚1 , . . . , u˚T u Ď S˚k X Bsp1q
satisfying

sup
uPS˚k XBsp1q

min
u˚t PHpS

˚
k q

}u´ u˚t }2 ď ε2, (40)

where ε2 ą 0 is another error tolerance parameter to be specified later. The following proposition
gives an upper bound on the size of such coverings. Its proof is also given later.

Proposition 2. There exists HpS˚k q satisfying Eq. (40); furthermore, log |HpS˚k q| À J logp1{ε2q.

We now construct our final covering set as follows:

C :“
ď

S˚k PS

tφ P Rd : Q0
sφ, . . . ,Q

r´1
s φ P HpS˚k qu. (41)

For any φ P rΘ corresponding to linear subspace S in Rs, dimpSq ď 2J , one first finds S˚k P S

that best approximates S in the sense of Eq. (39). Then for each Q`sφ, ` P t0, . . . , r ´ 1u, one can
find u˚` P HpS˚k q that minimizes }Q`srφ ´ ru˚` }2 where ru˚` “ }Q

`
s
rφ}2ru

˚
` and Q`s

rφ P S˚` minimizes
}Q`spφ´

rφq}2. Define φ˚ P Rd as Q`sφ
˚ “ ru˚` . Then

}φ´ φ˚}2 ď
r´1
ÿ

`“0

}Q`spφ´
rφq}2 ` }Q

`
s
rφ´ ru˚` }2 ď rκ´1pε1 ` ε2q, (42)

where the last inequality holds by a scaling argument and the fact that }Q`sφ}2 ď κ´1. Finally,
because x1, . . . , xn „ µ are independent sub-Gaussian random vectors, using Eq. (25) we have
with probability 1´ δ that

}φ´ φ˚}X À ν2
a

d logp1{δq ¨ }φ´ φ˚}2 ď κ´1ν2
a

d3 logp1{δq ¨ pε1 ` ε2q. (43)

Setting ε1 “ ε2 — ε{pκ´1ν2
a

d3 logp1{δqq we proved that C is a valid covering set of rΘ (and also
Θµ,F2 ) in } ¨ }X up to precision ε.

Finally we count the number of elements in C. By Propositions 1 and 2, we have log |S| À
J logpκ´1νd log δ´1q and log |HpS˚` q| À J logpκ´1νd log δ´1q. By construction of C, we have
|C| ď |S| ˆmaxS˚k PS

|HpS˚k q|r. Subsequently, log |C| À prJ `mq logpκ´1νd log δ´1q.

Proof of Proposition 1. If 2J ě s then the proposition clearly holds. So we shall only prove the
proposition in cases where 2J ď s.

Let U ,V be two linear subspace of Rs of dimension at most 2J . Let U, V P Rsˆ2J be the corre-
sponding orthonormal basis of U and V , with orthogonal columns. Any u P U X Bsp1q can then
be written as u “ Uα with }α}2 “ 1. Consider v :“ V α. It is easy to verify that v P V X Bsp1q.
In addition, }u ´ v}2 “ }pU ´ V qα}2 ď }U ´ V }op ď }U ´ V }F . Subsequently, a covering of
tU P R2Jˆs : }U}F ď

?
2J}U}op “

?
2Ju in }¨}F up to precision ε1 implies a covering in the sense

of Proposition 1. By viewing U as a p2Jˆsq-dimensional vector in the Euclidean space, it is easy to
see that such a cover exists with size logN À p2Jsq logp2J{ε1q À Js logpd{ε1q “ m logpd{ε1q.
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Proof of Proposition 2. If 2J ě s then the proposition clearly holds, because one only needs to
invoke classical coverings of Bsp1q. So we shall only consider cases where 2J ď s.

Let U P R2Jˆs be an orthonormal basis of S˚k . Any u P S˚k X Bsp1q can be written as u “ Uα
for some }α}2 ď 1. For any other β P R2J , }β}2 ď 1, consider v “ Uβ. It is easy to verify that
v P S˚k X Bsp1q. Furthermore, }u ´ v}2 “ }Upα ´ βq}2 ď }α ´ β}2. Therefore, a covering of
B2Jp1q in } ¨ }2 up to precision ε2 implies a covering in the sense of Proposition 2. On the other
hand, standard covering number arguments (e.g., (van de Geer, 2000)) show that such a covering
exists with size logN À 2J logp1{ε2q.

Finally, we show that an upper bound on logNpε; Θµ,F1
, } ¨ }Xq implies an upper bound on

logNpε1; ΘX,F1
, } ¨ }Xq for a potentially different precision parameter ε1. Similar to the proof of

Theorem 1, the following lemma establishes a restricted eigenvalue type condition for network F2

and the parameter spaces Θµ,F1 ,ΘX,F1 it induces.

Lemma 8. Fix arbitrary δ P p0, 1{2q. If ν
a

logpn{δq ě κ and n Á κ´2ν2prJ `
mq logpκ´1νd log δ´1q logpnδ´1q, then with probability 1 ´ δ we have that }φ}2X ě 1{2}φ}2µ uni-
formly for all φ P Θµ,F2

.

The proof of Lemma 8 is identical to the proof of Lemma 5 except that a different covering number
lemma is invoked; therefore we omit the proof. Combining Lemmas 7, 8 with Eq. (35) we proved
Theorem 3.

D Proof of Theorem 4 (lower bound, prediction layers)

Because r`m ď 2 maxpr,mq, it suffices to prove minimax lower bounds of
a

σ2m{n and
a

σ2r{n
separately.

First consider a0 “ p1, 0, . . . , 0q and w0 P Rm free to vary. Then F2px; a0, w0q “ wJ0 P
0
sx reduces

to a standard linear regression problem withm covariates. It is a classical result (e.g., (Van der Vaart,
1998)) that the minimax mean-square error of learning an m-dimensional linear predictor is m{n;
more specifically,

inf
pwn

sup
w0PRm

E} pwn ´ w}2 Á
a

σ2m{n. (44)

On the other hand, because a0 “ p1, 0, . . . , 0q and x1, . . . , xn „ N p0, Iq, we have that
err2

µppwn,w0;F2q “ } pwn ´ w0}
2
2. Therefore, Eq. (44) implies a

a

σ2m{n lower bound on the
minimax mean-square error Eerrµppwn,w0;F2q.

Next consider w0 “ p1, 0, . . . , 0q and a P Rr free to vary. Denote rx :“ px0, xs, . . . , xpr´1qsq P

Rr. Then F2px; a0, w0q “ aJ0 rx. Also note that rx „ N p0, Irq because x P N p0, Idq. Using the
same analysis above we can establish a

a

σ2r{n lower bound on the minimax mean-square error
Eerrµppwn,w0;F2q.

Combining both cases we complete the proof of Theorem 4.
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