
This supplementary material is devoted to the theoretical proof of the universal approximation theorem
of ResNet. We start with the one dimensional case and some basic operations, then we extend the
result to high dimension by induction.

A Notation and preliminaries

In this section, we set up the notation and prepare some tools towards the universal approximation
theorem. We first define the class of piecewise constant functions with compact support and finitely
many discontinuities.
Definition A.1. A function h : Rd ! R is piecewise constant with compact support and finitely
many discontinuities if we can partition the space into finitely many grid cells such that h vanishes
outside the grid and is constant inside each grid cell. More precisely, for any coordinate i 2 [1, d],
there is a subdivision and ai0 < · · · < ai

Mi
such that

1. h = 0 outside I = [a10, a
1
M1

]⇥ [a20, a
2
M2

]⇥ · · ·⇥ [ad0, a
d

Md
];

2. h is constant on each small cube [a1
i1
, a1

i1+1)⇥ [a2
i2
, a2

i2+1)⇥ · · ·⇥ [ad
id
, ad

id+1).

We denote the family of piecewise constant function with compact support and finitely many dis-
continuities by PC(Rd

). For simplicity, in the following, we refer to them as piecewise constant
functions.
Theorem A.2. The class of piecewise constant functions is dense in `1(Rd

).

Theorem A.2 is a well known result, which can be directly derived from the definition of Lebesgue
measure. As a consequence, it is sufficient to prove that any piecewise constant function can be
approximated by a ResNet up to arbitrary accuracy. We start by providing some basic operations of
one-neuron residual blocks.
Proposition A.3 (Basic operations). The following operations are realizable by a single basic
residual block of ResNet with one hidden neuron:

(a) Shifting by a constant: R+
= R+ c for any c 2 R;

(b) Min or Max with a constant: R+
= min{R, c} or R+

= max{R, c} for any c 2 R;

(c) Min or Max with a linear transformation: R+
= min{R,↵R+ �} (or max) for any ↵,� 2 R;

where R represents the input layer in the basic residual block and R+ the output layer.

R

ReLU

R

+

+Id

Figure 8: Basic residual block with one neuron per hidden layer in dimension one.

Proof. It is sufficient to prove (c) since it implies (a) and (b). Indeed, given ↵,� 2 R, for any input R,

max{R,↵R+ �} = R+ [(↵� 1)R+ �]+
and min{R,↵R+ �} = R� [(1� ↵)R� �]+,

which are both realizable by basic residual blocks.

These basic operations will be extensively used in the upcoming construction. Intuitively, operation (a)
allows us to shift the function by a constant value; operation (b) allows us to cut off the level set
{R � c} or {R  c} and operation (c), which is more complex, can be used to adjust the slope of
the function.
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B Warm Up: One-Dimensional case

We start with the one-dimensional case, which is central to our construction. As mentioned above,
it is sufficient to approximate piecewise constant functions. Given a piecewise constant function h,
there is a subdivision �1 < a0 < a1 < · · · < a

M

< +1 such that

h(x) =

M

X

k=1

h
k

1
x2[ak�1,ak),

where h
k

is the constant value on the k-th subdivision I
k

= [a
k�1, ak). We will approximate h

via trapezoid functions, which are continuous approximations of indicator functions, as shown in
Figure 9.

x$� $�
a
k�1 a

k

I�
k

Figure 9: A trapezoid function, which is a continuous approximation of the indicator function. The
parameter � measures the quality of the approximation.

A trapezoid function is constant on the segment I�
k

= [a
k�1 + �, a

k

� �] and linear in the �-tolerant
region I

k

\I�
k

. As � goes to zero, the trapezoid function tends point-wise to the indicator function.

A natural idea to approximate a piecewise constant function is to construct a trapezoid function on
each subdivision I

k

and to then sum them up. This is the main strategy used in [21, 11] to show a
universal approximation theorem for fully connected networks with width at least d+ 1. However,
this strategy is not applicable for the ResNet structure because the summation requires memory of
past components, and hence requires additional units in every layer. The width constraint of ResNet
makes the difference here.
Proposition B.1. Given a piecewise constant function h, for any � > 0 satisfying 2� <
min

k=1,··· ,M{a
k

� a
k�1}, there exists a ResNet R such that

• R(x) = 0 for x 2 (�1, a0) and x 2 [a
M

,+1);

• R(x) = h
k

for x 2 I�
k

= [a
k�1 + �, a

k

� �], for any k = 1, · · · ,M ;

• R is bounded with �khk1  R  khk1,

where k · k1 denotes the infinity norm.

Proof. We construct our approximation in a sequential way, building the components of the trapezoid
function one after another. With this sequential construction, we can only build increasing trapezoid
functions as shown in Figure 10.

x

· · ·

a0 a1 a2 a3 a
M�1 a

M

increasing

Figure 10: An increasing trapezoid function.
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The construction is performed by induction on the subdivisions: for any m 2 [0,M ], we build a
ResNet R

m

satisfying

C1. R
m

= 0 on (�1, a0];

C2. R
m

is a trapezoid function on each I
k

, for any k = 1, · · · ,m;

C3. R
m

= (k + 1)khk1 on I�
k

= [a
k�1 + �, a

k

� �] for any k = 1, · · · ,m;

C4. R
m

is bounded on (�1, a
m

] by 0  R
m

 (m+ 1)khk1;

C5. R
m

(x) = � (m+1)khk1
�

(x� a
m

) if x 2 [a
m

,+1).

Initialization of the induction: for m = 0, we start with the identity function and sequentially build

• R+
= max{x, a0} = x+ [a0 � x]+ (Cutting off x  a0);

• R++
= R+ � a0 (Shifting);

• R0 = R++ � (khk1+�)
�

[R++
]+.

An illustration of the construction is shown in Figure 11 and the desired properties C1-C5 follow
immediately from the construction.

x

R+

a0

a0

x

R++

a0

x

R0

a0

�khk1
�

(x� a0)

Figure 11: An illustration of constructing the initial function R0.

Induction from Rm to Rm+1: given R
m

, we stack three modules of one-neuron residual blocks
on top of it to build R

m+1. More precisely, we use R
m

as input and sequentially perform

(a) R+
m

= R
m

+

⇣

2 +

1
m+1

⌘

[�R
m

]+.

(b) R++
m

= R+
m

� 2

h

R+
m

� (m+ 2)khk1 am+1�am

2�

i

+
.

(c) R
m+1 = min{R++

m

, (m+ 2)khk1}.

An illustration of the construction is shown in Figure 12.

x

R
m

a0 a
m

1

x

R+
m

a0 a
m

2

x

R++
m

a
m

a
m+1

3

x

R
m+1

a
m

a
m+1

4

Figure 12: The construction of R
m+1 based on R

m

. We build the next trapezoid function (red) and
keep the previous ones (blue) unchanged.

The first operation (a) adjusts the slope of the linear function on [a
m

,+1). This is possible since
R

m

is positive on (�1, a
m

] and is negative on [a
m

,+1). The activation function [�R
m

]+ in
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operation (a) is active if and only if R
m

 0, yielding

R+
m

=

(

R
m

if x < a
m

,
(m+2)khk1

�

(x� a
m

) if x 2 [a
m

,+1).

The second operation (b) folds the linear function in the middle of [a
m

, a
m+1]. This is possible since

the slope on [a
m

,+1) is made steep enough such that the linear tail overpasses the largest value of
previous subdivisions after an increment of size �. More precisely, we show that the ReLU activation
function in (b) is active if and only if x � am+am+1

2 .

• When x < a
m

, R+
m

= R
m

, then by C4, R
m

is upper bounded by (m+ 1)khk1, yielding

R+
m

= R
m

 (m+ 1)khk1 < (m+ 2)khk1  (m+ 2)khk1
a
m+1 � a

m

2�
,

where the last inequality holds since 2� < a
m+1 � a

m

. Thus the ReLU activation function in
operation (b) is not active when x < a

m

, meaning that
R++

m

(x) = R+
m

(x) = R
m

(x) when x < a
m

.

• When x � a
m

, R+
m

is a linear function with positive slope, which is increasing. Therefore, the
ReLU activation is active if and only if

(m+ 2)khk1
�

(x� a
m

) � (m+ 2)khk1
a
m+1 � a

m

2�
, x � a

m

+ a
m+1

2

.

As a result, the function R++
m

obtained after the second operation (b) is given by:

R++
m

=

8

>

<

>

:

R
m

if x < a
m

,
(m+2)khk1

�

(x� a
m

) if x 2 [a
m

, am+am+1

2 ),

� (m+2)khk1
�

(x� a
m+1) if x 2 [

am+am+1

2 ,+1).
Finally, the last operation (c) cuts off the level set {R++

m

� (m+ 2)khk1}, leading to the following
expression:

R
m+1 =

8

>

>

>

>

<

>

>

>

>

:

R
m

if x < a
m

,
(m+2)khk1

�

(x� a
m

) if x 2 [a
m

, a
m

+ �),
(m+ 2)khk1 if x 2 [a

m

+ �, a
m+1 � �),

� (m+2)khk1
�

(x� a
m+1) if x 2 [a

m+1 � �,+1).
It is then easy to check that conditions C1-C5 hold, which enrolls the induction. Thus, we are able to
build an increasing trapezoid function R

M

supported on all the M subdivisions of h. Before moving
on, we remark that R

M

goes to �1 as x ! 1. This negative tail can be easily removed by a max
operator:

R⇤
M

= max{R
M

, 0},
which sets all the negative values to zero. The obtained function R⇤

M

is the desired increasing
trapezoid function as shown in Figure 10.

Adjusting the function values on each subdivision. Now the goal is to approximate h given the
increasing trapezoid function R⇤

M

. The target function h may take arbitrary function values on each
subdivision while R⇤

M

is always increasing. The idea is to properly adjust the level set of R⇤
M

based
on its increasing property. More concretely, we define its level set L

k

by
L
k

= {x | kkhk1 < R⇤
M

 (k + 1)khk1} for any k = 0, · · · ,M. (3)
By construction, the �-interior of the k-th subdivision I�

k

belongs to the k-th level set L
k

, i.e. I�
k

⇢ L
k

for any k � 1. Then, the operations applied to the level set L
k

automatically transfer to operations
applied to subdivision I�

k

.

For any k = M, · · · , 1, we sequentially construct R⇤
k�1 with

R⇤
k�1 = R⇤

k

+

h
k

� (k + 1)khk1
khk1

[R⇤
k

� kkhk1]+. (4)

We prove by induction that the operation from R⇤
k

to R⇤
k�1 successfully adjusts the k-th subdivision I�

k

to the desired value h
k

. In particular, for any k = M, · · · , 0, we show that R⇤
k

satisfies
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(a) R⇤
k

= 0 on (�1, a0] and [a
M

,+1);

(b) R⇤
k

= h
j

on I�
j

for any j = M, · · · , k + 1;

(c) R⇤
k

= (j + 1)khk1 on I�
j

for any j = k, · · · , 1;

(d) R⇤
k

is bounded with �khk1  R⇤
k

 (k + 1)khk1.

x

· · ·

a0 a1 a2 a3 a
M�1 a

M

Mkhk1

x

· · ·

a0 a1 a2 a
M�2 a

M�1 a
M

(M � 1)khk1

Figure 13: An illustration of the function adjustment procedure applied to the top level sets.

Induction on R

⇤
k. First, it is easy to check that R⇤

M

satisfies properties (a)-(d). By induction, we
assume that these properties are satisfied by R⇤

k

, and we show that they still hold for R⇤
k�1. From (4),

the activation function is inactive when

R⇤
k

 kkhk1.

We show that this is the case for any x 2 (�1, a0] [ [a
M

,+1) [ I�
M

· · · [ I�
k+1 [ I�

k�1 [ · · · [ I�1 :

• If x 2 (�1, a0] [ [a
M

,+1), from property (a), R⇤
k

= 0  kkhk1.

• If x 2 I�
j

for some j 2 M, · · · , k + 1, from property (b), R⇤
k

= h
j

 khk1  kkhk1.

• If x 2 I�
j

for some j 2 k � 1, · · · , 1, from property (c), R⇤
k

= (j + 1)khk1  kkhk1.

Therefore, we have

R⇤
k�1 = R⇤

k

when x 2 (�1, a0] [ [a
M

,+1) [ I�
M

· · · [ I�
k+1 [ I�

k�1 [ · · · [ I�1 .

This implies R⇤
k�1 satisfies (a) and (c). Moreover, property (b) follows directly from (4) since it

adjusts the level set {R⇤
k

� kkhk1} to value h
k

. Finally, property (d) holds by remarking that

R⇤
k

2 [kkhk1, (k + 1)khk1] =) R⇤
k�1 2 [�khk1, kkhk1],

which completes the induction.

The final step is to remark that the obtained R⇤
0 is the desired approximation of h. More precisely, we

have shown that

• R⇤
0 = 0 on (�1, a0] and [a

M

,+1).

• R⇤
0 = h

k

on I�
k

= [a
k�1 + �, a

k

� �] for any k = 1, · · · ,M .

• R⇤
0 is bounded with �khk1  R⇤

0  khk1.
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As a result, the difference between R⇤
0 and h can be bounded by

Z

R
|R⇤

0(x)� h(x)|dx  4M�khk1,

which can be made arbitrarily small by choosing an appropriate �. This completes the proof.

The function adjustment procedure is based on the property of separated level sets, which can be
applied even if the function is not an increasing trapezoid function. This is essential for dealing with
the higher dimensional case since the concept of monotonicity does not naturally generalize in high
dimension. Instead, we introduce the following notion of a grid indicator function.
Definition B.2. In d-dimensional space, a subset I is a hypercube if it is the Cartesian product of d
bounded intervals, i.e.

I = [a1, b1)⇥ [a2, b2)⇥ · · ·⇥ [ad, bd).

For small enough �, we denote by I� the �-interior of I , namely

I� = [a1 + �, b1 � �)⇥ [a2 + �, b2 � �)⇥ · · ·⇥ [ad + �, bd � �).

Definition B.3. We call a function g : Rd ! R a grid indicator function if there exist M disjoint
hypercubes (I

k

)

k=1,..,M such that

• g(x) = 0 if x /2 [M

k=1Ik;

• g(x) = g
k

if x 2 I�
k

, for any k = 1, ..M ;

• g
i

6= g
j

if i 6= j.

In other words, g is constant with different function values on the interior of different hypercubes.
For instance, an increasing trapezoid function is a grid indicator function when d = 1.

C Extension to higher dimensions

We extend our proof to high dimension by following the same path as our one dimensional construc-
tion. We first construct a d-dimensional grid indicator function and then adjust the function value on
each grid cell one after another. This last step of function adjustment is performed by sliding through
all the grid cells and adjusting the function value sequentially, which is essentially the same as the
one-dimensional case. Therefore, the main effort is to build a d-dimensional grid indicator function
that enjoys the separated level set property.

A piecewise constant function h : Rd ! R (following Definition A.1) can be represented as

h(x) =

M1:d
X

k=1

h
k

1
x2Ik ,

where M1:d =

Q

d

i=1 Mi

denotes the total number of hypercubes and each I
k

is a d-dimensional
hypercube of the form

I
k

= [a1
i1�1, a

1
i1
)⇥ [a2

i2�1, a
2
i2
)⇥ · · ·⇥ [ad

id�1, a
d

id
)

for some i1 2 [1,M1], i2 2 [1,M2], · · · , i
d

2 [1,M
d

]. Moreover, the support of h is denoted by

I = [M1:d
k=1 I

k

= [a10, a
1
M1

)⇥ [a20, a
2
M2

)⇥ · · ·⇥ [ad0, a
d

Md
).

Proposition C.1. Given a piecewise constant function h : Rd ! R, for any small enough � > 0,
there exists a ResNet R with one-neuron hidden layers such that

• R(x) = 0 if x /2 I .

• R(x) = h
k

for x 2 I�
k

, which is the �-interior of the k-th grid cell I
k

.

• R is bounded with �khk1  R  khk1.
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Proof. We perform an induction on the dimension d. It is shown in Section B that any one-dimensional
piecewise constant function can be approximated up to arbitrary accuracy when d = 1. Now assume
that this is true for d � 1, meaning that we can approximate any (d � 1)-dimensional piecewise
constant function.

Given a d-dimensional piecewise constant function h, we first decompose its support into a product
of one-dimensional intervals and (d� 1)-dimensional hypercubes. More precisely, we write

J
i

= [a1
i�1, a

1
i

) for i = 1 · · ·M1;

K
l

= [a2
i2�1, a

2
i2
)⇥ · · ·⇥ [ad

id�1, a
d

id
) for i2 2 [1,M2], · · · , id 2 [1,M

d

].

Therefore each I
k

can be represented by J
i

⇥K
l

, for some i 2 [1,M1] and l 2 [1 : M2:d]. Next, we
construct a (d� 1)-dimensional grid indicator function and a one-dimensional grid indicator function
matching the supports K

l

and J
i

respectively.

By induction, there is a (d� 1)-dimensional ResNet R
d�1 such that

• R
d�1(x2:d) = 0 if x2:d /2 K = [K

l

• R
d�1(x2:d) = (l + 1)khk1 for x2:d 2 K�

l

.

• R
d�1 is bounded with �(M2:d + 1)khk1  R

d�1  (M2:d + 1)khk1.

We use the notation x2:d to denote a d � 1-dimensional vector. Even though R
d�1 is (d � 1)-

dimensional, we can extend it to a d-dimensional network by setting all the weights of the first
coordinate to zero, as shown in Figure 14.

· · ·

Input: (x1, x2, · · · , xd

)

· · ·

+Id

· · ·

x1

x1

x1

weight = 0

Rd�1

Figure 14: Extension of a (d� 1)-dimensional ResNet R
d�1 to a d-dimensional ResNet by setting

all the weights of the first coordinate to zero.

Next, we construct an increasing trapezoid function R1 on the first coordinate x1 such that

• R1(x1) = 0 outside J = [J
i

;

• R1 is a trapezoid function on each J
i

, for i = 1 · · ·M1;

• R1(x1) =

⇣

M2;d + 1 +

i

M1+1

⌘

khk1 for x1 2 J�

i

;

• R1 is bounded with 0  R1  (M2:d + 2)khk1.

We concatenate R1 with R
d�1 into a d-dimensional ResNet. This is possible since R1 only operates

on the first coordinate while R
d�1 operates on the last d� 1 coordinates, see Figure 15.
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· · ·

Input: (x1, x2, · · · , xd

)

· · ·

+Id

· · ·

· · ·

· · ·

· · ·

· · ·

x1

x1

x1

weight = 0

weight = 0

Rd�1

R1

Figure 15: Concatenation of R1 and R
d�1 in a d dimension network.

Thanks to the identity mapping, we can pass the information forward even though the weights of
the hidden layers are set to zero. Thus, in the last layer of the above ResNet, we get R1(x1) in the
first neuron and R

d�1(x2:d) in one of the last d� 1 neurons. Now we are going to couple these two
neurons by summing them up. For technical reasons, we need to ensure the positiveness of R

d�1,
which can be easily obtained by performing a max operator

R+
d�1 = max{R

d�1, 0}.

Then we sum up R1 and R+
d�1 by performing

R+
1 = R1 + [R+

d�1]+ = R1 +R+
d�1.

+ =

Figure 16: Summing up one-dimensional grid indicator functions on the first (left) and second
(middle) coordinate. Both functions can be constructed independently by our one hidden unit ResNet.

The summation gives the desired shape inside each grid cell. However, some regions outside the grid
cells are also raised, but were supposed to be zero. We show that R+

1 enjoys a separated level set
property which allows us to scale the outside to zero again. More precisely,

(a) When x /2 I , one of the function R1, R+
d�1 vanishes, thus

R+
1 (x)  max{R1, R

+
d�1}  (M2:d + 2)khk1.
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(b) When x 2 I�
k

= J�

i

⇥K�

l

, then

R+
1 (x) = R1(x1) +R

d�1(x2:d)

=

✓

M2;d + 1 +

i

M1 + 1

◆

khk1 + (l + 1)khk1

> (M2:d + 3)khk1. (since i � 1 and l � 1).

As a result, we can reset Rd\I to zero by operating the level sets {R+
1  (M2:d + 2)khk1}:

R++
1 = max{R+

1 , (M2:d + 2)khk1}.
R⇤

1 =R++
1 � (M2:d + 2)khk1.

Then, we obtain a d-dimensional function R⇤
1 with

• R⇤
1 = 0 if x /2 I .

• R⇤
1 =

⇣

l + i

M1+1

⌘

khk1 on J�

i

⇥K�

l

.

• R⇤
1 is bounded with 0  R⇤

1  (M2:d + 1)khk1.

In particular, different pairs (i, l) yield different values of R⇤
1. Therefore R⇤

1 is a d-dimensional grid
indicator function of the desired hypercube I . Then it suffices to perform the function adjustment
procedure on each individual grid cell to obtain the final approximation, as in the one-dimensional
case. This completes the proof.

D Experimental settings

In this section, we provide more details of the experimental setting for the unit ball classification
problem.

Training set. The training/testing samples are 2-dimensional vectors. We classify x as a positive
sample if kxk2  1 and x as a negative sample sample if 2  kxk2  3. The training set contains
10

2 positive samples and 2 ⇤ 102 negative samples, being randomly generated.

x

?

yd

Figure 17: A five layer fully connected network with width d = 2.

Training algorithm. We train the network with logistic loss using SGD with momentum. We run
the algorithm for 10 epochs and we observe that after 5-8 epochs the loss on the training set saturates.

Visualizing the decision boundaries. After training, the learned neural network model provides
a classification function fN . We assign positive predictions to {fN > 0} and negative predictions
to {fN  0}. To visualize the decision boundary, we randomly sampled 2 ⇤ 103 points in the ball
B(0, 5) and use red point to represent positive predictions and blue points to represent negative
predictions.

E Proof of Proposition 2.1

We recall Proposition 2.1 in the main paper and prove it based on the result developed in [21].
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Proposition E.1. Let fN : Rd ! R be the function defined by a fully connected network N with
ReLU activation. Denote by P =

�

x 2 Rd | fN (x) > 0

 

the positive level set of fN . If each hidden
layer of N has at most d neurons, then

�(P ) = 0 or �(P ) = +1, where � denotes the Lebesgue measure.

In other words, the non-trivial level set of a narrow fully connected network is always unbounded.

Proof. When d = 1, the function fN defined by a fully connected network with one hidden unit per
layer is always monotone. Thus the statement holds.

When d � 2. We apply Lemma 1 of [21]: if a fully connected network N with ReLU activation has
at most d neurons per hidden layer, then

Z

Rd

|fN (x)|dx = 0 or +1.

It is clear that
R

Rd |fN (x)|dx = 0 implies �(P ) = 0. Thus it remains to consider the infinite case.
However, we cannot directly obtain �(P ) = 1, since the infinite `1 mass may be due to the negative
part of fN .

We are going to stack one more layer on top of N to build a new network N+ which removes its
negative part.

x

?

y

d � 2

ReLU

ReLU

x

?

y

d � 2

Figure 18: Extending N to N+.

More precisely, we take the exact same coefficients as N and duplicate the last linear transformation
into two ReLU activation functions such that

fN+
= ReLU(fN )� ReLU(fN � 1) =

8

<

:

1 if fN � 1;
fN if fN 2 (0, 1];
0 if fN  0.

Since N+ is also a fully connected network with at most d neurons per hidden layer, Lemma 1 of
[21] also applies to N+. Therefore,

Z

Rd

|fN+
(x)|dx =

Z

Rd

fN+
(x)dx = 0 or +1

Again the case when it is zero directly implies �(P ) = 0. Moreover, fN+ is upper bounded by one,
which yields

Z

Rd

fN+
(x)dx 

Z

Rd

1
fN>0dx = �(P ).

Therefore,
R

Rd |fN+
(x)|dx = 1 implies �(P ) = 1, which concludes the proof.

F Representing one-hidden unit ResNet by d+ 1 fully connected networks

In this section, we address the question about how a width d+1 fully connected network can represent
a one-hidden unit ResNet. This implies that width-(d+ 1) fully connected networks are universal
approximators, which is the minimum width needed [11].
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First, we remark that there are two types of connections in the ResNet: ReLU activations and linear
transformations (including the identity mapping), whereas in fully connected networks, ReLU is
applied to every neuron. In general, applying ReLU after a linear transformation modifies the output
since ReLU only takes positive values. However, in the special case that the linear transformation is
always positive, adding a ReLU activation will have no effect. The main idea of our construction is to
introduce a preprocessing step which projects the domain to a compact hypercube I . This projection
step does not affect the output of the network but it allows us to represent any linear operator L by a
shifted ReLU function:

L(x) = [L(x)� a]+ + a for any x 2 I where a = min

x2I

L(x). (5)

Then we can easily construct a fully connected network matching the given ResNet by adjusting the
bias coefficients.

· · ·
X1 X2 X

d

X0

· · ·
Y1 Y2 Y

d

+Id
�!

Y0

· · ·X̃1 X̃2 X̃
d

X̃0

· · ·

Ỹ0 Ỹ1 Ỹ2 Ỹ
d

Figure 19: Construction of a width-(d + 1) fully connected network based on a one-hidden unit
ResNet. ReLU activation is applied to each of the green nodes, whereas blue nodes only perform
linear transformations.

We first introduce the projection step. In fact, any ResNet we constructed has compact support since
it belongs to `1(Rd

). Therefore, given a ResNet R there is N > 0 such that R vanishes outside the
hypercube I = [�N,N ]

d. In particular,

R(x) = R(P(x)),

where P(x) is the coordinate-wise projection to the interval [�N,N ]. This relationship holds because
P(x) projects all the points outside I to its boundary and, by continuity, R vanishes on the boundary
of I . Therefore, the ResNet R is now applied to the compact domain I which allows us to apply
(5) to build a d+ 1 fully connected network F . The construction is shown in Figure 19, where two
consecutive layers of the ResNet is compressed into one layer of the fully connected network. More
precisely, we construct by induction, layer by layer, a network F such that:

• For any ReLU neuron in the ResNet, such as X0, Y0, we build a corresponding neuron ˜X0, ˜Y0 in
the fully connected network maintaining its value, i.e. ˜X0 = X0, ˜Y0 = Y0 on I .

• For any linear neuron in the ResNet, such as X1, · · · , Xd

, we build a corresponding neuron ˜X
i

in
the fully connected network with a shifted ReLU, meaning that ˜X

i

= X
i

+ a
i

for some a
i

2 R
such that ˜X

i

� 0 on I .

Technical part: induction step. Given the ˜X
i

, we construct the ˜Y
i

. In the ResNet, Y
i

has the
expression

Y0 =

"

d

X

i=1

�
i

Y
i

+ �
i

#

+

and Y
i

= X
i

+ ↵
i

X0.

For the induction, we now construct ˜Y
i

from ˜X
i

as

˜Y0 =

" 

d

X

i=1

↵
i

�
i

!

˜X0 +

d

X

i=1

�
i

˜X
i

+ �
i

�
d

X

i=1

�
i

a
i

#

+

and
˜Y
i

=

h

˜X
i

+ ↵
i

˜X0 � b
i

i

+
with b

i

= min

x2I

{ ˜X
i

+ ↵
i

˜X0}.
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Here, for the ReLU neurons, we appropriately adjust the bias to maintain the function value. Moreover,
the output layer, which is a linear transformation, can also be maintained in the same way as Y0. As a
consequence, the fully connected network F matches R on I , leading to

F(P(x)) = R(P(x)) = R(x).

Finally, we represent the projection by a shifted fully connected network, and concatenate F to it:

P(x
i

) =

⇥

2N � [N � x
i

]+

⇤

+
�N, 8i 2 [1, d]. (6)

Conclusion: Our construction shows that ResNet can be represented by a specific fully connected
network, and hence implies the same representation power as ResNet for this fully connected network
with width d + 1. But the proof does not imply the other direction in general. In particular, the
constructed fully connected network is very sparse: it has O(d) connections instead of the O(d2)
connections that fully connected networks generally have.
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