
A Theoretical Analysis

In this section, we provide detailed proofs of the theoretical results in the KDGAN framework. Let
p%α(y|x) = αpc(y|x) + (1 − α)p%t (y|x), which is referred to as the mixture distribution. We first
show that the optimal distribution of the discriminator balances between the true data distribution
pu(y|x) and the mixture distribution p%α(y|x), as stated below.

Lemma 4.1. For any fixed classifier and teacher, the value function U(c, t, d) is maximized if and
only if the distribution of the discriminator is given by p%d(x,y) = pu(y|x)/(pu(y|x)+p%α(y|x)).

Proof. Given the classifier pc(y|x) and the teacher p%t (y|x), the discriminator aims to maximize the
value function U(c, t, d) of the minimax game as

max
d

U(c, t, d)

= Ey∼pu [log p
%
d(x,y)] + αEy∼pc [log(1− p

%
d(x,y))] + (1− α)Ey∼p%t

[log(1− p%d(x,y))]

= Ey∼pu [log p
%
d(x,y)] + α

∑
y
pc(y|x) log(1− p%d(x,y)) + (1− α)

∑
y
p%t (y|x) log(1− p

%
d(x,y))

= Ey∼pu [log p
%
d(x,y)] +

∑
y

(
αpc(y|x) + (1− α)p%t (y|x)

)
log(1− p%d(x,y))

= Ey∼pu [log p
%
d(x,y)] +

∑
y
p%α(y|x) log(1− p%d(x,y))

=
∑

y
pu(y|x) log p%d(x,y) +

∑
y
p%α(y|x) log(1− p%d(x,y))

= F (p%d(x,y)).

The function F (p%d(x,y)) achieves the maximum if and only if the distribution of the discriminator
is equivalent to p%d(x,y) = pu(y|x)/pu(y|x)+p%α(y|x), completing the proof.

Next, we show that the equilibrium of the minimax game is achieved if and only if both the classifier
and the teacher perfectly model the true data distribution, which is summarized as follows.

Theorem 4.2. The equilibrium of the minimax game minc,tmaxd U(c, t, d) is achieved if and only
if pc(y|x) = p%t (y|x) = pu(y|x). At that point, U(c, t, d) reaches the value − log(4).

Proof. Let LMD = βLcDS(pc(y|x), p
%
t (y|x)) + γLtDS(p

%
t (y|x), pc(y|x)). Given the optimal distri-

bution of the discriminator in Lemma 4.1, the classifier and the teacher aim to minimize the value
function U(c, t, d) of the minimax game as follows,

min
s,t

U(c, t, d)

=
∑

y
pu(y|x) log

pu(y|x)
pu(y|x) + p%α(y|x)

+
∑

y
p%α(y|x) log(1−

pu(y|x)
pu(y|x) + p%α(y|x)

) + LMD

=
∑

y
pu(y|x) log

pu(y|x)
pu(y|x) + p%α(y|x)

+
∑

y
p%α(y|x) log

p%α(y|x)
pu(y|x) + p%α(y|x)

+ LMD

= − log(4) + LKL(pu(y|x)||
pu(y|x) + p%α(y|x)

2
) + LKL(p

%
α(y|x)||

pu(y|x) + p%α(y|x)
2

) + LMD

= − log(4) + 2LJS(pu(y|x)||p%α(y|x)) + βLcDS(pc(y|x), p%t (y|x)) + γLtDS(p
%
t (y|x), pc(y|x)).

Here, LKL is the Kullback–Leibler divergence. LJS is the Jensen-Shannon divergence which is non-
negative and reaches zero if and only if pu(y|x) = p%α(y|x). The distillation losses LcDS and LtDS
such as the L2 loss on logits [7] and the Kullback–Leibler divergence on distributions [23] achieve
the minimum at zero if and only if pc(y|x) = p%t (y|x). Therefore, the value function U(c, t, d)
reaches the minimum at − log(4) if and only if pc(y|x) = p%t (y|x) = p%α(y|x) = pu(y|x), which
completes the proof.

Further, we show that the high variance of a random variance can be reduced with a low-variance
random variance, which is summarized in Lemma 4.3.

Lemma 4.3. Let X and Y be random variables with Var(X) ≤ Var(Y). Let Z = λX + (1− λ)Y ,
then we have Var(Z) ≤ Var(Y) for all λ ∈ (0, 1).

13

Proof. Given Var(X) ≤ Var(Y), the covariance Cov(X,Y) is less than or equal to Var(Y) because

Cov(X,Y) ≤ |Cov(X,Y)| ≤
√
Var(X)Var(Y) ≤

√
Var(Y)Var(Y) ≤ Var(Y).

According to the properties of the variance, for all λ ∈ (0, 1), we have

Var(Z) = λ2 Var(X) + 2λ(1− λ) Cov(X,Y) + (1− λ)2 Var(Y)

≤ λ2 Var(Y) + 2λ(1− λ) Cov(X,Y) + (1− λ)2 Var(Y)

≤ λ2 Var(Y) + 2λ(1− λ)Var(Y) + (1− λ)2 Var(Y)

= Var(Y),

This completes the proof.

B Gradient Derivation

We provide detailed derivations of the gradient computation in the KDGAN framework. Similar to
the definition of the concrete distribution qc(y|x) for the classifier in Equation 9, we first define a
concrete distribution q%t (y|x) for the teacher as follows,

q%t (y|x) = softmax(
log p%t (y|x) + g

τ
), g ∼ Gumbel(0, 1),

where τ ∈ (0,+∞) is a temperature parameter and Gumbel(0, 1) is the Gumbel distribution [31].
The classifier and the teacher generate continuous samples from the concrete distributions qc(y|x)
and q%t (y|x), respectively, and then discretize the continuous samples into pseudo labels. The
discriminator aims to maximize the probability of correctly identifying the true labels as positive and
the pseudo labels as negative. The discriminator is trained to maximize the value function U(c, t, d)
of the minimax game by ascending along its gradients

∇dU(c, t, d)

= ∇d
(
Ey∼pu [log p

%
d(x,y)] + αEy∼pc [log(1− p

%
d(x,y))] + (1− α)Ey∼p%t [log(1− p

%
d(x,y))]

)
≈ 1

k

∑k

i=1

(
∇d log p%d(x,yi) + α∇d log(1− p%d(x, z

c
i)) + (1− α)∇d log(1− p%d(x, z

t
i))
)
.

Here, k is the number of samples used to estimate the gradients. The true label yi is sampled from the
true data distribution pu(y|x). zci = onehot(argmaxyci) and zti = onehot(argmaxyti) are pseudo
labels where yci ∼ qc(y|x) and yti ∼ q

%
t (y|x) are continuous samples.

The classifier aims to generate the pseudo labels that resemble the true labels and predict the soft
labels produced by the teacher. The classifier is trained to minimize the value function U(c, t, d) of
the minimax game by descending along its gradients

∇cU(c, t, d) = ∇c
(
αEy∼pc [log(1− p

%
d(x,y))] + βLcDS(pc(y|x), p

%
t (y|x))

)
= α∇c

∑
y
pc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= α
∑

y
∇cpc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= α
∑

y
pc(y|x)∇c log pc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= αEy∼pc [∇c log pc(y|x) log(1− p
%
d(x,y))] + β∇cLcDS(pc(y|x), p

%
t (y|x))

≈ α

k

∑k

i=1
∇c log qc(yci |x) log(1− p

%
d(x, z

c
i)) + β∇cLcDS(pc(y|x), p

%
t (y|x)),

where zci = onehot(argmaxyci) is a pseudo label and yci ∼ qc(y|x) is a continuous sample. At the
training of the classifier, we use a control variate [49], which is defined as

bc = Ey∼pc(y|x)[log(1− p
%
d(x,y))] ≈

∑k

i=1
log(1− p%d(x, z

c
i)),

where zci = onehot(argmaxyci) is obtained by discretizing a continuous sample yci ∼ qc(y|x).
∇cLcDS is the gradients of the distillation loss LcDS w.r.t. the classifier, which can be easily computed

14

by the back-propagation algorithm. For example, if we use the L2 loss on logits [7] to define the
distillation loss LcDS as

LcDS(pc(y|x), p
%
t (y|x)) =

1

2
|| log pc(y|x))− log p%t (y|x)||22,

the gradients∇cLcDS are computed by

∇cLcDS(pc(y|x), p
%
t (y|x)) = || log pc(y|x))− log p%t (y|x)||2∇c log pc(y|x).

Similarly, the gradients to update the teacher are derived as follows,

∇tU(c, t, d) = ∇t
(
(1− α)Ey∼p%t [log(1− p

%
d(x,y))] + γLtDS(p

%
t (y|x), pc(y|x))

)
= (1− α)

∑
y
∇tp%t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)
∑

y
∇tp%t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)
∑

y
p%t (y|x)∇t log p

%
t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)Ey∼p%t [∇t log p
%
t (y|x) log(1− p

%
d(x,y))] + γ∇tLtDS(p

%
t (y|x), pc(y|x))

≈ 1− α
k

∑k

i=1
∇t log q%t (yti |x) log(1− p

%
d(x, z

t
i)) + γ∇tLtDS(p

%
t (y|x), pc(y|x)),

where zti = onehot(argmaxyti) is a pseudo label and yti ∼ q
%
t (y|x) is a continuous sample. At the

training of the teacher, we also use a control variate [49], which is defined as

bt = Ey∼p%t (y|x)[log(1− p
%
d(x,y))] ≈

∑k

i=1
log(1− p%d(x, z

t
i)),

where zti = onehot(argmaxyti) is obtained by discretizing a continuous sample yti ∼ q%t (y|x).
∇tLtDS is the gradients of the distillation loss LtDS w.r.t. the teacher. For example, the gradients
∇tLtDS are given by

∇tLtDS(p
%
t (y|x), pc(y|x)) = || log p

%
t (y|x)− log pc(y|x)||2∇t log p%t (y|x),

when the distillation loss LtDS is defined as the L2 loss on logits [7],

LtDS(p
%
t (y|x), pc(y|x)) =

1

2
|| log p%t (y|x)− log pc(y|x))||22.

C Network Architectures

We describe network architectures which we use to conduct experiments in deep model compression
and image tag recommendation tasks. First, we describe the network architectures in deep model
compression task on the MNIST dataset. We implement the scoring function h(x,y) as an MLP [27].
The architecture of the MLP is given by

1. An input layer of a 28×28 grayscale image.
2. A stack of 2 fully connected layers with 800 neurons.
3. A softmax layer with 10 classes.

We implement the scoring function s(x,y) as a LeNet [27]. The architecture of the LeNet is given by

1. An input layer of a 28×28 grayscale image.
2. A convolutional layer with 32 kernels of size 5×5 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A convolutional layer with 64 kernels of size5×5 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A fully connected layer with 1024 neurons.
7. A softmax layer with 10 classes.

15

Next, we describe the network architectures in deep model compression task on the CIFAR-10 dataset.
We implement h(x,y) as a LeNet [27]. The architecture of the LeNet is given by

1. An input layer of a 32×32 colored image.
2. A convolutional layer with 64 kernels of size 5×5 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A convolutional layer with 128 kernels of size 5×5 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A fully connected layer with 1024 neurons.
7. A softmax layer with 10 classes.

We implement s(x,y) as a 101-layer ResNet [22]. The architecture of the ResNet is given by

1. An input layer of a 32×32 colored image.
2. A convolutional layer with 16 kernels with size 3×3 and stride 1.
3. Three stacked blocks of 3 convolutional layers which use 64 kernels of size 1×1, 64 kernels

of size 3×3, and 256 kernels of size 1×1, respectively.
4. Four stacked blocks of 3 convolutional layers which use 128 kernels of size 1×1, 128 kernels

of size 3×3, and 512 kernels of size 1×1, respectively.
5. Twenty three stacked blocks of 3 convolutional layers which use 256 kernels of size 1×1,

256 kernels of size 3×3, and 1024 kernels of size 1×1, respectively.
6. Three stacked blocks of 3 convolutional layers which use 512 kernels of size 1×1, 512

kernels of size 3×3, and 2048 kernels of size 1×1, respectively.
7. A global pooling layer.
8. A softmax layer with 10 classes.

Finally, we describe the network architectures in image tag recommendation task on the YFCC100M
dataset. We use the same network architectures when experimenting with the two datasets of images
labeled with the 200 most popular tags and 200 randomly sampled tags, respectively. We implement
a VGGNet [40] to extract image features. The architecture of the VGGNet is written as

1. An input layer of a 224×224 colored image.
2. A stack of 2 convolutional layers with 64 kernels of size 3×3 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A stack of 2 convolutional layers with 128 kernels of size 3×3 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A stack of 2 convolutional layers with 256 kernels of size 3×3 and stride 1.
7. A max pooling layer with size 2×2 and stride 2.
8. A stack of 2 convolutional layers with 512 kernels of size 3×3 and stride 1.
9. A max pooling layer with size 2×2 and stride 2.

10. A stack of 2 convolutional layers with 512 kernels of size 3×3 and stride 1.
11. A max pooling layer with size 2×2 and stride 2.
12. A fully connected layer with 4096 neurons.
13. A fully connected layer with 4096 neurons.
14. A fully connected layer with 100 neurons.

We implement a LSTM [24] to learn text features. The architecture of the LSTM is written as
ft = sigmoid(Wf · [ht−1,xt] + bf),
it = sigmoid(Wi · [ht−1,xt] + bi),
ot = sigmoid(Wo · [ht−1,xt] + bo),
st =ft � st−1 + it � tanh(Ws · [ht−1,xt] + bs),
ht =ot � tanh(st),

16

where [h,x] is the vector concatenation and � is the element-wise product. We set the hidden size
of the LSTM to 100 in the experiments. Let vx ∈ R100 be an image feature vector extracted by the
VGGNet and vz ∈ R100 be a text feature vector learned by the LSTM. We implement the scoring
function h(x,y) as an MLP [3]. The architecture of the MLP is written as

1. An input layer of a feature vector with size 100 (i.e. the image features vx).
2. A stack of 2 fully connected layers with 800 neurons.
3. A softmax layer with 200 classes.

We implement the scoring function s(x,y) as an MLP [3]. The architecture of the MLP is given by

1. An input layer of a feature vector with size 100 (i.e. the element-wise product of vx and vz).
2. A stack of 2 fully connected layers with 1200 neurons.
3. A softmax layer with 200 classes.

D Additional Experiments

−4 −3 −2 −1 0 1 2
log10 γ

0.7

0.8

0.9

Ac
cu

ra
cy

n= 100
γ= 0.0
n= 100
γ= 0.0

(a) Using 100 training images.

−4 −3 −2 −1 0 1 2
log10 γ

.980

.985

.990

.995

Ac
cu

ra
cy

n= 10000
γ> 0.0
n= 10000
γ= 0.0

(b) Using 10,000 training images.

Figure 6: The accuracy of the teacher against the hyperparameter γ in KDGAN on MNIST. Note that
γ controls how much the classifier distills its knowledge into the teacher.

0 40 80 120 160 200
Training Epochs

1E-4

1E-3

1E-2

Va
ria

nc
e

Gradien of he Adversarial Loss (∇c
n
A)

Gradien of he Dis illa ion Loss (∇c
c
D)

(a) KDGAN without the Gumbel-Max trick.

0 40 80 120 160 200
Training Epochs

1E-4

1E-3

Va
ria

nc
e

Gradien of he Adversarial Loss (∇c
n
A)

Gradien of he Dis illa ion Loss (∇c
c
D)

(b) KDGAN with Gumbel-Max trick.

Figure 7: Variances of the gradient of the adversarial loss (∇cLnAD) or the distillation loss (∇cLcDS)
w.r.t. the classifier. The results are obtained by training KDGAN with 100 training images on MNIST.

We study the classifier’s ratio of compression (in terms of the number of parameters) and loss of
accuracy w.r.t. the teacher. The results using 5K to 50K training images on MNIST are presented in
Tables 3 and 4. We can see that the loss of accuracy generally decreases as the parameter number of
the classifier or the number of training examples increases. We also observe that MIMIC (1.22M
parameters) achieves an accuracy of 97.93%-99.05% while KDGAN with a much smaller size (0.19M
parameters) already achieves a better accuracy (98.72%-99.27%) than MIMIC.

Table 3: Model size and accuracy of the classifier and the
teacher (shown in parenthesis) in KDGAN on MNIST.

#Param. (M) n = 5K n = 10K n = 50K

0.09 (3.12) 97.96 (99.25) 98.74 (99.42) 99.03 (99.65)
0.19 (3.12) 98.72 (99.26) 98.92 (99.46) 99.27 (99.70)
1.22 (3.12) 99.01 (99.28) 99.25 (99.48) 99.54 (99.72)
2.28 (3.12) 99.04 (99.27) 99.40 (99.53) 99.77 (99.78)

Table 4: Average accuracy over 10 runs
with varying training size (n) on MNIST.

Method n = 5K n = 10K n = 50K

CODIS 98.53 98.89 99.31
DISTN 98.04 98.79 99.26
MIMIC 97.93 98.65 99.05
KDGAN 99.01 99.25 99.54

17

