
A Proof of Theorem 3.1

Proof. In order to prove that the new dictionary is still optimal, we only need to show that new
dictionary is still primal and dual feasible: x⇤

B⇤ + �⇤x̄B � 0 and z⇤N⇤ + �⇤z̄N⇤ � 0.

Case I. When calculating �⇤ given by (3.10), if the constraint corresponds to an index i 2 B, then
z⇤N⇤ + �⇤z̄N � 0 is guaranteed by the way of choosing entering variable. It remains to show the
primal solution is not changed: x⇤

B + �⇤x̄B = x⇤
B⇤ + �⇤x̄B⇤ .

We observe that AB⇤ is obtained by changing one column of AB to another column vector from AN ,
and we assume the difference of these two vectors are u. Without loss of generality, we assume that
the k-th column of AB is replaced, now we have AB⇤

= AB + ue>
k

. Sherman-Morrison formula says
that
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. Now consider the following term:

AB[x
⇤
B � x⇤

B⇤ + �⇤
(x̄B � x̄B⇤

)]

=AB(A
�1

B �A�1

B⇤ )b+ �⇤AB(A
�1

B �A�1

B⇤ )
¯b

=b�ABA
�1

B⇤ b+ �⇤
(

¯b�ABA
�1

B⇤
¯b)

=(✓ue>
k

A�1

B )b+ �⇤
(✓ue>

k

A�1

B )

¯b

=✓(ue>
k

A�1

B b+ �⇤ue>
k

A�1

B
¯b).

(A.2)

Recall in this case, we have

�⇤
= max

i2B,x̄Bi>0
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. (A.3)

Substitute the definition of �⇤ from (A.3) into (A.2), we notice that the expression in (A.2) is 0. Since
AB is invertible, we have x⇤

B + �⇤x̄B = x⇤
B⇤ + �⇤x̄B⇤ , and thus the new dictionary is still optimal at

�⇤.

Case II. When calculating �⇤ given by (3.10), if, on the other hand, the constraint corresponds to an
index j 2 N , then x⇤

B⇤ + �⇤x̄B � 0 is guaranteed by the way we choose leaving variable. It remains
to show that it is still dual feasible.

Again, we observe that AB⇤ is obtained by changing one column of AB (say, a
i

) to another column
vector from AN (say, a

j

), and we denote u = a
j

� a
i

as the difference of these two vectors. Without
loss of generality, we assume the replacement occurs at the k-th column of AB. Sherman-Morrison
formula gives
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where p = A�1

B u, and p
l

denotes the l-th entry of p. Observe that in (A.4), only the k-th column is
different from the identity matrix.

Dual feasible requires that z⇤N = (A�1

B AN )

>cB�cN � 0. Since (A�1

B AB)
>cB�cB = 0, we slightly

change the dual feasible condition to: (A�1

B A)

>cB � c � 0. In the parametric linear programming
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where ↵ is a constant. According to (A.4), we have
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where c
i

and c
j

are the entries in c, with indices corresponding to a
i

and a
j

, and c̄
i

and c̄
j

are the
entries in c̄ and defined similarly .

Recall in this case

�⇤
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Substitute the definition of �⇤ from (A.7) into (A.6), we observe that ↵ = 0 and thus the dual feasible
is guaranteed in the new dictionary. This proves Theorem 3.1.

B Proof of Theorem 3.5

For notational simplicity, we omit the superscript �0 in bµ Before we proceed with the statistical
properties of the Dantzig selector, we first introduce the following lemmas.
Lemma B.1 (Bühlmann and Van De Geer (2011)). Suppose that Assumptions 3.2 and 3.4 hold.
Define b

� =

b✓ � ✓⇤. We have
kb�Sk1  kb�Sk1. (B.1)

Moreover, we have

min

k�Sk1k�Sk1

�

Tr2L(✓)�
k�k2

2

� ⇢�(s
⇤
+ 2es)
4

(B.2)

The proof of Lemma B.1 is provided in Bühlmann and Van De Geer (2011), and therefore is omitted.
Note that (B.1) in Lemma B.1 implies that b✓ lies in a restricted cone-shape set, and (B.2) implies that
(B.1) combined with Assumption 3.4 implies the restricted eigenvalue condition. The next lemma
presents the statistical rates of convergence of the Dantzig selector.
Lemma B.2 (Candes and Tao (2007)). Suppose that Assumptions 3.2 and 3.4 hold. We have

k�k
2
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C
1

p
s⇤�

⇢�(s⇤ + 2es) and k�k
1

=
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2

s⇤�

⇢�(s⇤ + 2es) (B.3)

The proof of Lemma B.2 is provided in Candes and Tao (2007), and therefore is omitted. Based on
Lemmas B.1 and B.2, we can further characterize the statistical properties of rL(b✓) in the following
lemma.
Lemma B.3. Suppose that Assumptions 3.2 and 3.4 hold. We have

����

⇢
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4

, j 2 S
�����  es (B.4)
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Proof. By Assumption 3.2, we have � � 8krL(✓⇤)k1, which further implies���j
�� |r
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 ��
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We then consider an arbitrary set S 0 such that
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.

Let s0 = |S 0|. Then there exists v such that
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By simple manipulation, we have
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Since s0 = |S0| attains the maximum value such that s0  es for arbitrary defined subset S 0, we obtain
s0  es. Then by simple manipulation, we have
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�� |r

j

L(b✓)�r
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L(✓⇤)| � 5�/8, j 2 S
 ��  13s⇤ < es. (B.6)

Thus, (B.5) and (B.6) imply
���j

�� |r
j

L(b✓)| � 3�/4, j 2 S
 ��  es.

By the complementary slackness, we have bµ
j

(r
j

L(b✓) � �) = 0 and b�
j

(�r
j

L(b✓) � �) = 0. By
(B.3), we know ���j | bµ
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j

6= 0, j 2 S
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Thus, we show that the optimal dual variables are sparse. The cardinality is at most 2s⇤ + es.

To control the sparsity of the primal variables, we directly use the following lemma.
Lemma B.4 (Gai et al. (2013)). Suppose that Assumptions 3.2 and 3.4 hold. Given the design matrix
satisfying

kX>
S XS(X

>
S XS)

�1k1  1� ⇣,

where ⇣ > 0 is a generic constant, we have b✓
j

= 0 for any j 2 S .

The proof of Lemma (B.4) is provided in Gai et al. (2013). Lemma B.4 guarnatees that b✓ does not
select any irrelevant coordinates. Thus, we complete the proof.
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