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Abstract

Reasoning about entities and their relationships from multimodal data is a key goal
of Artificial General Intelligence. The visual question answering (VQA) problem
is an excellent way to test such reasoning capabilities of an AI model and its
multimodal representation learning. However, the current VQA models are over-
simplified deep neural networks, comprised of a long short-term memory (LSTM)
unit for question comprehension and a convolutional neural network (CNN) for
learning single image representation. We argue that the single visual representation
contains a limited and general information about the image contents and thus limits
the model reasoning capabilities. In this work we introduce a modular neural net-
work model that learns a multimodal and multifaceted representation of the image
and the question. The proposed model learns to use the multimodal representation
to reason about the image entities and achieves a new state-of-the-art performance
on both VQA benchmark datasets, VQA v1.0 and v2.0, by a wide margin.

1 Introduction

One of the hallmarks of human intelligence is the ability to reason about entities and their relationships
using data from different modalities [40]. Humans can easily reason about the entities in a complex
scene by building multifaceted mental representations of the scene contents. Thus, any plausible
attempt for Artificial General Intelligence must also be able to reason about entities and their
relationships.

Deep learning models have demonstrated excellent performance on many computer vision tasks such
as image classification, object recognition, and scene classification [37, 23]. However, the models
are limited to a single task over single data modality and thus are still far from complete scene
understanding and reasoning.

The visual question answering (VQA), a task to provide answers to natural language questions about
the contents of an image, has been proposed to fill this gap [3, 22]. Solving the VQA task requires
understanding of the image contents, the question words, and their relationships. The human-posed
questions are arbitrary and thus besides being a challenging machine comprehension problem, their
answering also involves many computer vision tasks such as scene classification, object detection
and classification, and face analysis. Thus, VQA represents a problem comprised of multiple sub-
problems over multimodal data and as such can serve as a proxy test for the general reasoning
capabilities of an AI model [30].

However, the current state-of-the-art VQA approaches employ oversimplified deep neural network
models, comprised of a long short-term memory (LSTM) unit [9] for question comprehension and
a convolutional neural network (CNN) [24] for learning a single representation of the image. The
single visual representation encodes a limited and general information about the image contents and
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thus hampers the model’s reasoning about the image entities and their relationships. The analysis of
the model’s behavior is also made difficult because of the single visual representation, as one does
not have evidence of the visual information used by the model to produce the answer. The problem is
partially alleviated by incorporating a visual attention module, as most VQA models do [6, 18, 45],
but still, the VQA models remain black box in most cases. There have also been approaches that
employ modular networks for VQA [2], however they achieved limited success. Most VQA models
join the image and text representations via element-wise multiplication [18, 45], exception is the
model proposed by Fukui et al. [6], which learns the joint representation via compact bilinear pooling.
Goyal et al. [7] recently showed that the current state-of-the-art VQA methods actually learn dataset
biases instead of reasoning about the image objects or learning multifaceted image representations.

In this work we introduce ReasonNet, a model that learns to reason about entities in an image by
learning a multifaceted representation of the image contents. ReasonNet employs a novel multimodal
representation learning and fusion module that enables the model to develop a complete image and
question understanding. ReasonNet then learns to utilize the multiple image representations, each
encoding different visual aspects of the image, by explicitly incorporating a neural reasoning module.
In contrast to current VQA models, the ReasonNet model is fully interpretable and provides evidence
of its reasoning capabilities. The proposed model outperforms the state-of-the-art by a significant
margin on the two largest benchmark VQA datasets, VQA v1.0 [3] and VQA v2.0 [7]. In summary,
the contributions of our work are as follows:

• We develop a novel multimodal representation learning and fusion method, crucial for
obtaining the complete image understanding necessary for multimodal reasoning.

• We introduce a new VQA reasoning model that learns multifaceted image representations to
reason about the image entities.

• We perform an extensive evaluation and achieve new state-of-the-art performance on the
two VQA benchmark datasets.

2 Related work

Multimodal reasoning models Recently, several works introduced modular neural networks for
reasoning evaluated on natural language question answering and visual question answering [2, 1, 11].
The modular networks use conventional natural language parser [21] to obtain a network layout for
composing the network architecture [11]. Later work also incorporated a dynamic network layout
prediction by learning to rank the parser proposed modules [1]. The neural modules are then jointly
trained to execute the task on which they are applied.

In contrast to our model, the existing modular networks learn to compose a network architecture using
a hand-designed or parser proposed layout structure. These models were shown [2] to be unable to
capture the complex nature of the natural language and perform poorly on the complex VQA v1.0 [3].

Concurrently to this work, Hu et al. [10] and Johnson et al. [16] proposed a similar modular network
model that learns the network layout structure and thus do not require a parser. However, the models
have been applied with success only to the synthetic dataset CLEVR [15] because for training the
layout prediction module they require the ground-truth programs that generated the questions.

Visual question answering The visual question answering (VQA) task has received great inter-
est [5, 45, 50, 38] since the release of the first large-scale VQA v1.0 dataset by Antol et al. [3].
Typically, a VQA model is comprised of two modules for learning the question and the image repre-
sentations, and a third module for fusing the representations into a single multimodal representation.
The multimodal representation is then fed to multiple fully-connected layers and a softmax layer at
the end outputs the probabilities of each answer (e.g. see [12, 6, 44]).

The question representation is learned by mapping each question word to a vector via a lookup
table matrix, which is often initialized with word2vec [31] or skip-thought [20] vectors. The word
vectors are then sequentially fed to a Long Short-Term Memory (LSTM) unit [9], and the final hidden
LSTM state is considered as the question representation. The image representation is obtained from a
pretrained convolutional neural network (CNN) [24], such as ResNet [8] or VGG [39], and the output
from the penultimate layer is regarded as the image representation. Some, increase the information
available in the image representation by using feature maps from a convolutional layer [45, 29, 6].
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3 ReasonNet
We develop a novel modular deep neural network model that learns to reason about entities and their
relationships in a complex scene using multifaceted scene representations. The model, named as Rea-
sonNet, takes as inputs an image I and a natural language text L. Then, ReasonNet passes the image
and the text through its different modules that encode multiple image aspects into multiple vector
representations. At the same time, ReasonNet uses a language encoder module to encode the text into
a vector representation. Finally, ReasonNet’s reasoning unit fuses the different representations into a
single reasoning vector. In the following we give details of the network modules and its reasoning
unit, while in Section 4 we ensemble and describe a ReasonNet applied to the VQA task (Figure 1).

3.1 Multimodal representation learning

ReasonNet incorporates two types of representation learning modules: visual classification modules
and visual attention modules. A visual classification module outputs a vector that contains the class
probabilities of the specific image aspect assigned to that module. While a visual attention module
outputs a vector that contains visual features focused on the module’s specific image aspect.

We denote the classification modules as φ and the visual attention modules as ϕ. We use bold lower
case letters to represent vectors and bold upper case letters to represent tensors. Subscript indices
denote countable variables while superscript indices label the variables. For example, P φ

k denotes the
k-th matrix P of the module φ. In the following we describe each module type.

Visual classification modules Each visual classification module maps a different aspect of the
image contents to a module specific class representation space. Consequently, ReasonNet needs to
transfer the output of each module to a common representation space. For example, if one module
classifies the image scene as “train station”, while another module classifies a detected object as
“train”, ReasonNet needs to be aware that the outputs are semantically related. For this reason,
ReasonNet transfers each classification module’s output to a common representation space using a
lookup table matrix.

Formally, a classification module φ outputs a matrix P φ of n one-hot vectors with lookup table
indices of the n highest probability class labels. The matrix P φ is then mapped to a vector cφ in a
common representation space with:

cφ = vec(P φW LT), (1)

whereW LT is the lookup table matrix with learned parameters.

Visual attention modules ReasonNet passes the image I through a residual neural network [8] to
obtain a visual feature tensor V ∈ RF×W×H representing the global image contents. Then, each
visual attention module ϕ focuses the visual feature tensor to the specific image aspect assigned to
the said module using an attention probability distribution αϕ ∈ RW×H .

The module-specific visual representation vector vϕ ∈ RF is then obtained with:

vϕ =

W∑
i=1

H∑
j=1

αϕi,jV i,j . (2)

Encoder units A problem with this approach is that the common representation vectors cφ from
the classification modules, being distributed representations of the modules’ class labels, are high-
dimensional vectors. On the other hand, the visual feature vectors vϕ of the attention modules are
also high-dimensional vectors, but sparse and with different dimensionality and scale.

As a solution, ReasonNet appends to each classification and to each attention modules an encoder
unit Enc that encodes a module’s output vector x (equal to cφ if classification module and to vϕ if
attention module) to a condensed vector r in a common low-dimensional representation space. The
encoder units are implemented as two fully-connected layers followed by a non-linear activation
function, and max pooling over the magnitude while preserving the sign:

r = Enc(x)

Enc(x) := sgn(f(x)) ·max(|f(x)|),
f(x) := σ

(
WE

2

(
σ(WE

1 x+ bE1 )
)

+ bE2
)
,

(3)
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where WE
k and bEk are the parameters and biases of the k-th layer in an encoder E, and σ(·) :=

tanh(·). The max pooling is performed over the row dimension as f(x) outputs a matrix of row-
stacked encoded vectors from one mini-batch.

Text encoding ReasonNet treats the words in L as class labels and correspondingly uses the lookup
table from Eq. (1) and an encoder unit to map the text to a vector rl in the same low-dimensional
representation space of the other modules.

3.2 Multimodal reasoning

The reasoning capabilities of the ReasonNet model come from its ability to learn the interaction
between each module’s representation rk and the question representation rl. The ReasonNet model
parameterizes the rk×rl interaction with a bilinear model [42]. Bilinear models have excellent repre-
sentational expressiveness by allowing the vector representations to adapt each other multiplicatively.
The bilinear model is defined as:

sk = r>kW
s
kr
l + bsk, (4)

where k = 1, . . . ,K and K is the number of representation learning modules, provides a rich vector
representation sk of the k-th module’s output × language interaction.

Note that while other multimodal representation learning works, e.g. [6], have criticized the use of
bilinear models for representation fusion because of their high dimensionality as the tensorW s

k is
cubic in the dimensions of rk, rl, and sk. However, ReasonNet mitigates this issue by employing
encoder units to reduce the dimension of the representation vectors and thus also reduce the dimension
of the bilinear model. We evaluate different fusion methods with ablation studies in Section 5.3.

ReasonNet builds a complete image and language representation by concatenating each interaction
vector sk into a vector g =

fK
k=1 sk, where

f
denotes concatenation of vectors. The vector concate-

nation is crucial for disentangling the contributions of each module in the model’s task. By partially
ignoring some of the inputs of the vector g, ReasonNet can learn to “softly” utilize the different
modules only when their outputs help in predicting the correct answer for the given question. In
contrast to the recent works on module networks, e.g. [10, 16], ReasonNet can choose to partially use
a module if it is helpful for the task instead of completely removing a module as other module network
models do. For example, for the visual question answering (VQA) task, the soft module usage is
particularly useful when answering a question which implicitly requires a module, e.g. answering the
question “Is it raining?” implicitly requires a scene classification module.

The concatenation of the modules’ representations also enables the interpretability of the reasoning
behavior of our model. Specifically, by observing which elements of the vector g are most active we
can infer which modules ReasonNet used in the reasoning process and thus explain the reasons for its
behavior. We visualize the reasoning process on the VQA task in Section 5.4.

Finally, the multimodal representation vector g can be used as an input to an answer classification
network, when applied to the VQA task, or as an input to an LSTM unit when applied to the
image captioning task. In the next section, we use the challenging VQA task as a proxy test for
ReasonNet reasoning capabilities.

4 ReasonNet for VQA
The visual question answering problem is an excellent way to test the reasoning capabilities of
ReasonNet and its use of multifaceted image representations. For example, answering the question
“Does the woman look happy?” requires a face detection, gender and emotion classification, while
answering the question “How many mice are on the desk?” requires object detection and classification.
Thus, for the VQA task, ReasonNet incorporates the following set of modules: 1. question-specific
visual attention module, 2. object-specific visual attention module, 3. face-specific visual attention
module, 4. object classification module, 5. scene classification module, 6. face analysis classification
module. In the following we give a formal definition of the VQA problem and details of the model’s
modules when applied on the VQA task. The network architecture is visualized in Figure 1.

Namely, the VQA problem can be solved by modeling the likelihood probability distribution pvqa
which for each answer a in the answer set Ω outputs the probability of being the correct answer, given
a question Q about an image I:

â = arg max
a∈Ω

pvqa(a|Q, I;θ), (5)
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Figure 1: Network architecture diagram of the ReasonNet model applied on the VQA task. Round
rectangles represent attention modules, squared rectangles represent classification modules, small
trapezoids represent encoder units (Eq. (3)), thin rectangles represent the learned multimodal rep-
resentation vectors, ⊗ represents the bilinear interaction model (Eq. (4)), and the big trapezoid is a
multi-layer perceptron network that classifies the reasoning vector g to an answer a (Eq. (7))

where θ are the model parameters, â is the predicted answer, and Ω is the set of possible answers.

4.1 ReasonNet VQA modules

First, ReasonNet obtains the question representation vector rl and a global visual feature tensor V as
described in Section 3.1. ReasonNet then learns a question-specific image representation by using
the question representation vector rl to learn an attention probability distribution αv ∈ RW×H over
the global visual feature tensor V ∈ RF×W×H :

αv = softmax
[
W α

(
σ
(
(W vrl + bv) · 1

)
◦ σ(W V V + bV )

)
+ bα

]
,

where σ(·) := tanh(·), W α,W v,W V and the corresponding biases are learned parameters, 1 ∈
1W×H is used to tile the question vector representation to match the V tensor dimensionality, and ◦
denotes element-wise matrix multiplication. The question-specific visual feature vector vv is then
obtained with Eq. (2) and the representation vector rv with Eq. (3).

Naturally, many of the VQA questions are about image objects so ReasonNet incorporates a fully
convolutional network (FCN) [28] for object detection. Given an image, the FCN will output a
set of object bounding boxes and their corresponding confidence scores. Each bounding box is
represented as a four-element vector d> = [x, y, w, h], where (x, y) is the coordinate of the top-left
box corner and w, h is the size of the box. Using a confidence score threshold ReasonNet obtains
a set B containing high confidence bounding boxes. ReasonNet then uses the set B to compute an
attention probability distribution αo that focuses the visual feature tensor V on the image objects.

To ground the image pixels to visual feature maps, all images are resized to the same pre-fixed
dimension before feeding them to the object detection module. Thus each feature vector v ∈ RF from
a corresponding element in the tensor slice V slice ∈ RW×H from the feature tensor V ∈ RF×W×H
maps to a fixed sized image region.

Formally, for each dk ∈ B, ReasonNet calculates a single object attention γk. The |B| object-specific
attentions are then used to calculate the overall object attention distribution αo:

αo = softmax(α̂o),

α̂oi,j = max
k=1,...,|B|

(γki,j),

γki,j =

1
dkx ≤ i ≤ (dkx + dkw),
dky ≤ j ≤ (dky + dkh),

0.1 otherwise.

(6)
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As before, the object-specific visual feature vector vo is then obtained with Eq. (2) and the represen-
tation vector ro with Eq. (3).

ReasonNet further uses the object bounding boxes to obtain a vector of object class labels. Namely,
for each bounding box in B, ReasonNet crops out the image part corresponding to the box coordinates
and then uses a residual network to classify the cropped-out image part and obtain a class label. The
n class labels of the boxes with highest class probability are represented as n one-hot vectors of
lookup table indices. The matrix P c, obtained by stacking the n vectors, is then mapped to a dense
low-dimensional vector rc with Eq. (1) and Eq. (3).

Next, ReasonNet uses a scene classification network as many of the questions explicitly or implicitly
necessitate the knowledge of the image setting. The scene classification network is implemented as a
residual network trained on the scene classification task. As before, the top n predicted class labels
are represented as a matrix of n one-hot vectors P s from which the module’s representation vector
rs is obtained (Eq. (1) and Eq. (3)).

Since the VQA datasets [7, 3] contain human-posed questions, many of the questions are about
people. Thus, ReasonNet also incorporates a face detector module, and a face analysis classification
module.

The face detector module is a fully convolutional network that outputs a set of face bounding boxes
and confidence scores. As with the object detector, ReasonNet uses a threshold to filter out bounding
boxes with low confidence scores and obtain a set of face detections F . Then, from F , using Eq. (6),
ReasonNet obtains an attention probability distribution γf that focuses the visual feature tensor V
on people’s faces. The face-specific visual feature vector vf is then obtained with Eq. (2) and the
representation vector rf with Eq. (3).

The face bounding boxes from F are also used to crop out the image regions that contain a face and
using a convolutional neural network to obtain three class labels for each detected face representing
the age group, the gender, and the emotion. As with the other classification modules, ReasonNet rep-
resents the three class labels as a matrix of one-hot vectors P a and uses Equations (1) and (3) to
obtain the face analysis representation vector ra.

ReasonNet obtains a complete multimodal understanding by learning the interaction of the learned
representationsH = {rv, ro, rc, rs, rf , ra} with the question representation rq:

g =
n

rh∈H
(r>hW

s
hr

q + bsh),

whereW s
h is a learned bilinear tensor for a representation rh, and

f
denotes concatenation of vectors.

Finally, ReasonNet forwards the vector g, containing the question representation and multifaceted
image representations, to a two-layer perceptron network which outputs the probabilities pvqa(Eq. (5)):

pvqa(a|Q, I;θ) = softmax
[
σ
(
W g

2σ(W g
1g + bg1) + bg2

)]
, (7)

where θ represents all the model parameters.

5 Experiments

5.1 Datasets

We evaluate our model on the two benchmark VQA datasets, VQA v1.0 [3] and VQA v2.0 [7]. The
VQA v1.0 dataset is the first large-scale VQA dataset. The dataset contains three human-posed
questions and answers for each one of the 204,721 images found in the MS-COCO [27] dataset.
We also evaluate our model on the second version of this dataset, the VQA v2.0. The new version
includes about twice as many question-answer pairs and addresses the dataset bias issues [7] of the
VQA v1.0 dataset. We report results according to the evaluation metric provided by the authors of
the VQA datasets, where an answer is counted as correct if at least three annotators gave that answer:

Acc(a) = min(

∑10
j=1 1(a = aj)

3
, 1).

For fair evaluation, we use the publicly available VQA evaluation servers to compute the overall and
per question type results.
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Table 1: Results of the ablation study on the VQA v2.0 validation.
Method All Y/N Num Other Q-type changed
VQA 55.13 69.07 34.29 48.01
VQA+Sc 56.80 70.62 35.14 49.99 +2.74% Which

VQA+Sc+oDec 58.46 71.05 36.16 52.86 +5.73% What color is the

VQA+Sc+oDec+oCls 59.82 72.88 37.38 54.47 +3.68% How

VQA+Sc+oDec+oCls+fDec 60.35 74.21 37.46 53.79 +12.63% Is the man

VQA+Sc+oDec+oCls+fDec+fAna 60.60 73.78 36.98 54.81 +0.88% Is he

ReasonNet-HadamardProduct 58.37 71.05 35.99 52.72
ReasonNet-MCB [6] 58.78 71.04 36.96 53.35
ReasonNet 60.60 73.78 36.98 54.81

5.2 Implementation details

Given a question Q about an image I , our model works as follows. Following [18, 6] the images
are scaled and center-cropped to a dimensionality of 3× 448× 448, then are fed through a ResNet-
152 [8] pretrained on ImageNet [36]. We utilize the output of the last convolutional layer as the image
representation V ∈ R2048×14×14.

The question words are converted to lowercase and all punctuation characters are removed. We
further remove some uninformative words such as “a, “an”, “the”, etc. We then trim the questions to
contain at most ten question words by removing the words after the first ten. The lookup table matrix
uses 300-dimensional vectors, initialized with word2vec [31] vectors.

The module parameters used to produce the module’s outputs are pretrained on each specific task and
are kept fixed when applying ReasonNet to the VQA problem. In the following we give details of
each module.

The object detection module is implemented and pretrained as in [32, 33]. The object classification
and scene classification modules are implemented as ResNet-152, the only difference is the object
classification module is pretrained on MS-COCO while the scene classification module is pretrained
on Places365 [48, 49]. The object classification module outputs 80 different class labels [27], while
the scene classification module outputs 365 class labels [48].

We implement and pretrain the face detection module following Zhang et al. [46, 47], while the age
and gender classification is performed as [34, 35] and the emotion recognition following [25, 26]. The
output of the age classification network is an integer from zero to hundred, so we group the integers
into four named groups, 0− 12 as “child”, 13− 30 as “young”, 31− 65 as “adult” and +65 as “old”.
This enables as to map the integer outputs to a class labels. Similarly, the output from the gender
classification module is 0 for “woman” and 1 for “man”. Finally, the emotion recognition module
classifies a detected face to the following seven emotions “Angry”, “Disgust”, “Fear”, “Happy”,
“Neutral”, “Sad”, and “Surprise”.

The encoder units encodes the module outputs to 500-dimensional vectors, with a hidden layer of
1,500 dimensions. Each bilinear interaction model outputs a 500-dimensional interaction vector, i.e.
500 × 500 → 500. The classification network classifies the reasoning vector g using one hidden
layer of 2,500 dimensions to one of 4,096 most common answers in the training set.

We jointly optimize the parameters of the encoder units, the bilinear models, and the answer classi-
fication network using Adam [19] with a learning rate of 0.0007, without learning rate decay. We
apply a gradient clipping threshold of 5 and use dropout[41] (with p(keep) = 0.5) layers before and
batch normalization[13] after each fully-conected layer as a regularization.

5.3 Ablation study

To assess the contribution of each ReasonNet module we perform an ablation study where we train a
model that only uses one module and then subsequently add the rest of the proposed VQA modules.
A VQA model with only question-specific attention module is denoted as “VQA”, the addition of the
scene classification module is denoted as “Sc”, the object detection module as “oDec”, the object
classification module as “oCls”, the face detection module as “fDec”, and the face analysis as “fAna”.
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To evaluate the bilinear model as representation fusion mechanism, we compare ReasonNet to models
where we only swap the bilinear interaction learning (Eq. (4)) with (1) Hadamard product (denoted
as ReasonNet-HadamardProduct) and with (2) multimodal compact bilinear pooling [6] (denoted
as ReasonNet-MCB). The bilinear interaction model maps the two vectors to an interaction vector,
by learning a projection matrix W that projects the vectorized outer product of the two vectors
to an interaction vector. When using Hadamard product the interaction vector is just an element-
wise multiplication of the two vectors. On the other hand, the MCB uses Count Sketch projection
function [4] to project the two vectors to a lower dimension and then applies convolution of the two
count sketch vectors to produce an interaction vector. As opposed to a bilinear model, the MCB does
not learn a projection matrix. We train the models on the VQA v2.0 train set and evaluate them on
the validation set. The results are shown in Table 1.

From Table 1 we can observe that each module addition improves the overall score. The results
show that the object detection module is responsible for the highest increase in accuracy, specifically
for question of type “Other”. The addition of the object classification module further improves the
accuracy on the “Other” question types, but the addition of the face detection module reduces the
accuracy of “Other” question types and increases the accuracy on the “Yes/No” questions. Possible
reasons for this is that the two attention modules (object detection and face detection) bring too much
noise in the image representation. The increase in accuracy for the “Yes/No” questions is likely
because most “Yes/No” questions are about people. Finally, the addition of the face analysis module
brings the highest accuracy by returning the accuracy of the “Other” question types, possibly due to
the face class labels help in understanding the face attention.

The results in Table 1 clearly show the representational expressiveness of the bilinear models as
representation fusion. The bilinear model improves the accuracy for all question types, while there is
a small difference between the Hadamard product and compact bilinear pooling, as discussed in [18].

Figure 2: Qualitative results: we visualize the concatenation vector g from Eq. (4.1) to investigate
the module utilization given an image and two questions about the same image. The question-image
pairs are from the VQA v2.0 test set.

5.4 Qualitative analysis and failure cases

To investigate the contribution of each of the network modules, we visualize the concatenation vector
g from Eq. (4.1) in Figure 2. We show two images from the VQA v2.0 test set and the corresponding
g vector values for two questions. Higher values are displayed with lighter shade of gray.

From Figure 2 we can observe that for the question “Does the man look happy?” the network strongly
use the representation from the face analysis module and partially use the question-only representation
and the question-specific attention representation. We can observe the same trend in the next two
questions. It is interesting to observe that for complex questions such as “What color is the building
the bikes are in front of?” most of the network modules are used which means the network does
actually need multifaceted image representation to answer the questions.

The first example in Figure 2 also serves as a failure case. Namely, for the question “Does the man
look happy?” the network correctly learns to use the face analysis module when the word “happy” is
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Table 2: Results on the VQA v1.0 and v2.0 test-standard datasets for single models and without
data augmentation. NMN is the only other modular neural. Results are taken from the official VQA
evaluation servers.

VQA v1.0 test VQA v2.0 test
Method All Y/N Num Other All Y/N Num Other
VQA-LangOnly 48.9 78.1 34.9 27.0 44.26 67.01 31.55 27.37
D-LSTM-nI [14] 58.2 80.6 36.5 43.7 54.22 73.46 35.18 41.83
NMN [2] 58.7
DMN+ [43] 60.4 80.4 36.8 48.3
MRN [17] 61.8 82.4 38.2 49.4
HieCoAtt [29] 62.1 79.9 38.2 51.9
MCB [6] 1 64.7 82.5 37.6 55.6 62.27 78.82 38.28 53.36
MLB [18] 65.1 84.0 38.0 54.8
ReasonNet2 67.9 84.0 38.7 60.4 64.61 78.86 41.98 57.39

present in the question. However, the face analysis module incorrectly classifies the face as “Angry”
misleading the network to give a wrong answer. Such error propagation from individual network
modules is the main limitation of the proposed model. Future work can possibly overcome this
limitation by backpropagating the error through the network modules. On the other hand, there is a
constant improvement by the research community for each individual computer vision sub-task, that
the limitation might be alleviated by simply incorporating the latest state-of-the-art network module.

5.5 Comparison with the state-of-the-art

Compared with the previous state-of-the-art on the VQA v1.0 dataset, the ReasonNet model achieves
2.8% higher accuracy (Table 2). The improvement in accuracy predominately comes from the
ability of the ReasonNet model to answer complex questions as evident from the 5.6% increase in
accuracy (denoted as “Other” in Table 2). This validates the ability of the ReasonNet to learn complex
question-image relationships and to perform reasoning over the learned multimodal representations.

We observe the same improvement in accuracy of 2.34% on the more challenging VQA v2.0 dataset.
As on the VQA v1.0, the main improvement comes in answering the questions of type “Other” where
there is a 4.03% difference. The improvement in the “Other” questions likely comes from learning
complex interactions of all modules outputs. There is also an improvement of 3.7% in the counting
questions denoted as “Num”, which serves as evidence of the contribution of the object detection and
object classification modules.

The new state-of-the-art on these datasets indicates the superiority of ReasonNet and the need
for reasoning when answering complicated questions whose answering requires reasoning and
understanding the relationship of multiple image objects.

6 Conclusion

We have presented a novel model for multimodal representation learning and reasoning. Our proposed
reasoning model learns to reason over a learned multifaceted image representation conditioned on a
text data. We validated the proposed reasoning neural network on the challenging VQA task and the
model achieved a new state-of-the-art performance by a wide margin. The proposed reasoning model
is general and probably applicable to other tasks involving multimodal representations, such as image
captioning. We leave this promising direction for future work.
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