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Abstract

We consider the problem of learning high-dimensional multi-response linear mod-
els with structured parameters. By exploiting the noise correlations among different
responses, we propose an alternating estimation (AltEst) procedure to estimate
the model parameters based on the generalized Dantzig selector (GDS). Under
suitable sample size and resampling assumptions, we show that the error of the
estimates generated by AltEst, with high probability, converges linearly to certain
minimum achievable level, which can be tersely expressed by a few geometric
measures, such as Gaussian width of sets related to the parameter structure. To the
best of our knowledge, this is the first non-asymptotic statistical guarantee for such
AltEst-type algorithm applied to estimation with general structures.

1 Introduction

Multi-response (a.k.a. multivariate) linear models [2, 8, 20, 21] have found numerous applications in
real-world problems, e.g. expression quantitative trait loci (eQTL) mapping in computational biology
[28], land surface temperature prediction in climate informatics [17], neural semantic basis discovery
in cognitive science [30], etc. Unlike simple linear model where each response is a scalar, one obtains
a response vector at each observation in multi-response model, given as a (noisy) linear combinations
of predictors, and the parameter (i.e., coefficient vector) to learn can be either response-specific
(i.e., allowed to be different for every response), or shared by all responses. The multi-response
model has been well studied under the context of the multi-task learning [10], where each response is
coined as a task. In recent years, the multi-task learning literature have largely focused on exploring
the parameter structure across tasks via convex formulations [15, 3, 26]. Another emphasis area in
multi-response modeling is centered around the exploitation of the noise correlation among different
responses [35, 36, 29, 40, 42], instead of assuming that the noise is independent for each response.
To be specific, we consider the following multi-response linear models with m real-valued outputs,

yi = Xiθ
∗ + ηi, ηi ∼ N (0,Σ∗) , (1)

where yi ∈ Rm is the response vector, Xi ∈ Rm×p consists of m p-dimensional feature vectors,
and ηi ∈ Rm is a noise vector sampled from a multivariate zero-mean Gaussian distribution with
covariance Σ∗. For simplicity, we assume Diag(Σ∗) = Im×m throughout the paper. The m
responses share the same underlying parameter θ∗ ∈ Rp, which corresponds to the so-called pooled
model [19]. In fact, this seemingly restrictive setting is general enough to encompass the model
with response-specific parameters, which can be realized by block-diagonalizing rows of Xi and
stacking all coefficient vectors into a “long” vector. Under the assumption of correlated noise, the
true noise covariance structure Σ∗ is usually unknown. Therefore it is typically required to estimate
the parameter θ∗ along with the covariance Σ∗. In practice, we observe n data points, denoted by
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D = {(Xi,yi)}ni=1, and the maximum likelihood estimator (MLE) is simply as follows,(
θ̂MLE, Σ̂MLE

)
= argmin

θ∈Rp, Σ�0

1

2
log |Σ|+ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
(2)

Although being convex w.r.t. either θ or Σ when the other is fixed, the optimization problem
associated with the MLE is jointly non-convex for θ and Σ. A popular approach to dealing with such
problem is alternating minimization (AltMin), i.e., alternately solving for θ (and Σ) while keeping
Σ (and θ) fixed. The AltMin algorithm for (2) iteratively performs two simple steps, solving least
squares for θ and computing empirical noise covariance for Σ. Recent work [24] has established
the non-asymptotic error bound of this approach for (2) with a brief extension to sparse parameter
setting using iterative hard thresholding method [25]. But they did not allow more general structure
of the parameter. Previous works [35, 29, 33] also considered the regularized MLE approaches for
multi-response models with sparse parameters, which are solved by AltMin-type algorithms as well.
Unfortunately, none of those works provide finite-sample statistical guarantees for their algorithms.
AltMin technique has also been applied to many other problems, such as matrix completion [23],
sparse coding [1], and mixed linear regression [41], with provable performance guarantees. Despite
the success of AltMin, most existing works are dedicated to recovering unstructured sparse or
low-rank parameters, with little attention paid to general structures, e.g., overlapping sparsity [22],
hierarchical sparsity [27], k-support sparsity [4], etc.

In this paper, we study the multi-response linear model in high-dimensional setting, i.e., sample size n
is smaller than the problem dimension p, and the coefficient vector θ∗ is assumed to possess a general
low-complexity structure, which can be essentially captured by certain norm ‖ · ‖ [5]. Structured
estimation using norm regularization/minimization has been extensively studied for simple linear
models over the past decade, and recent advances manage to characterize the estimation error for
convex approaches including Lasso-type (regularized) [38, 31, 6] and Dantzig-type (constrained)
estimator [7, 12, 14], via a few simple geometric measures, e.g., Gaussian width [18, 11] and
restricted norm compatibility [31, 12]. Here we propose an alternating estimation (AltEst) procedure
for finding the true parameters, which essentially alternates between estimating θ through the
generalized Dantzig selector (GDS) [12] using norm ‖ · ‖ and computing the approximate empirical
noise covariance for Σ. Our analysis puts no restriction on what the norm can be, thus the AltEst
framework is applicable to general structures. In contrast to AltMin, our AltEst procedure cannot
be casted as a minimization of some joint objective function for θ and Σ, thus is conceptually more
general than AltMin. For the proposed AltEst, we provide the statistical guarantees for the iterate
θ̂t with the resampling assumption (see Section 2), which may justify the applicability of AltEst
technique to other problems without joint objectives for two set of parameters. Specifically, we
show that with overwhelming probability, the estimation error ‖θ̂t − θ∗‖2 for generally structured
θ∗ converges linearly to a minimum achievable error given sub-Gaussian design under moderate
sample size. With a straightforward intuition, this minimum achievable error can be tersely expressed
by the aforementioned geometric measures which simply depend on the structure of θ∗. Moreover,
our analysis implies the error bound for single response high-dimensional models as a by-product
[12]. Note that the analysis in [24] focuses on the expected prediction error E[Σ

−1/2
∗ X(θ̂t − θ∗)]

for unstructured θ∗, which is related but different from our ‖θ̂t − θ∗‖2 for generally structured θ∗.
Compared with the error bound derived for unstructured θ∗ in [24], our result also yields better
dependency on sample size by removing the log n factor, which seems unnatural to appear.

The rest of the paper is organized as follows. We elaborate our AltEst algorithm in Section 2, along
with the resampling assumption. In Section 3, we present the statistical guarantees for AltEst. We
provide experimental results in Section 4 to support our theoretical development. Finally we conclude
in Section 5. Due to space limitations, all proofs are deferred to the supplementary material.

2 Alternating Estimation for High-Dimensional Multi-Response Models

Given the high-dimensional setting for (1), it is natural to consider the regularized MLE for (1) by
adding the norm ‖ · ‖ to (2), which captures the structural information of θ∗ in (1),(

θ̂, Σ̂
)

= argmin
θ∈Rp, Σ�0

1

2
log |Σ|+ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
+ γn‖θ‖ , (3)
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where γn is a tuning parameter. Using AltMin the update of (3) can be given as

θ̂t = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥Σ̂− 1
2

t−1(yi −Xiθ)
∥∥∥2

2
+ γn‖θ‖ (4)

Σ̂t =
1

n

n∑
i=1

(
yi −Xiθ̂t

)(
yi −Xiθ̂t

)T
(5)

The update of θ̂t is basically solving a regularized least squares problem, and the new Σ̂t is obtained
by computing the approximated empirical covariance of the residues evaluated at θ̂t. In this work,
we consider an alternative to (4), the generalized Dantzig selector (GDS) [12], which is given by

θ̂t = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ̂−1

t−1(Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (6)

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Compared with (4), GDS has nicer geometrical properties,
which is favored in the statistical analysis. More importantly, since iteratively solving (6) followed by
covariance estimation (5) no longer minimizes a specific objective function jointly, the updates go
beyond the scope of AltMin, leading to our broader alternating estimation (AltEst) framework, i.e.,
alternately estimating one parameter by suitable approaches while keeping the other fixed. For the
ease of exposition, we focus on the m ≤ n scenario, so that Σ̂t can be easily computed in closed
form as shown in (5). When m > n and Σ−1

∗ is sparse, it is beneficial to directly estimate Σ−1
∗

using more advanced estimators [16, 9]. Especially the CLIME estimator [9] enjoys certain desirable
properties, which fits into our AltEst framework but not AltMin, and our AltEst analysis does not
rely on the particular estimator we use to estimate noise covariance or its inverse. The algorithmic
details are given in Algorithm 1, for which it is worth noting that every iteration t uses independent
new samples, D2t−1 and D2t in Step 3 and 4, respectively. This assumption is known as resampling,
which facilitates the theoretical analysis by removing the statistical dependency between iterates.
Several existing works benefit from such assumption when analyzing their AltMin-type algorithms
[23, 32, 41]. Conceptually resampling can be implemented by partitioning the whole dataset into T
subsets, though it is unusual to do so in practice. Loosely speaking, AltEst (AltMin) with resampling
is an approximation of the practical AltEst (AltMin) with a single dataset D used by all iterations.
For AltMin, attempts have been made to directly analyze its practical version without resampling,
by studying the properties of the joint objective [37], which come at the price of invoking highly
sophisticated mathematical tools. This technique, however, might fail to work for AltEst since the
procedure is not even associated with a joint objective. In the next section, we will leverage such
resampling assumption to show that the error of θ̂t generated by Algorithm 1 will converge to a
small value with high probability. We again emphasize that the AltEst framework may work for other
suitable estimators for (θ∗,Σ∗) although (5) and (6) are considered in our analysis.

Algorithm 1 Alternating Estimation with Resampling
Input: Number of iterations T , Datasets D1 = {(Xi,yi)}ni=1, . . . , D2T = {(Xi,yi)}2Tni=(2T−1)n+1

1: Initialize Σ̂0 = Im×m
2: for t:= 1 to T do
3: Solve the GDS (6) for θ̂t using dataset D2t−1

4: Compute Σ̂t according to (5) using dataset D2t

5: end for
6: return θ̂T

3 Statistical Guarantees for Alternating Estimation

In this section, we establish the statistical guarantees for our AltEst algorithm. The road map for the
analysis is to first derive the error bounds separately for both (5) and (6), and then combine them
through AltEst procedure to show the error bound of θ̂t. Throughout the analysis, the design X is
assumed to centered, i.e., E[X] = 0m×p. λmax(·) and λmin(·) are used to denote the largest and
smallest eigenvalue of a real symmetric matrix. Before presenting the results, we provide some basic
but important concepts. First of all, we give the definition of sub-Gaussian matrix X.
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Definition 1 (Sub-Gaussian Matrix) X ∈ Rm×p is sub-Gaussian if the ψ2-norm below is finite,

|||X|||ψ2
= sup

v∈Sp−1, u∈Sm−1

∣∣∣∣∣∣∣∣∣vTΓ
− 1

2
u XTu

∣∣∣∣∣∣∣∣∣
ψ2

≤ κ < +∞ , (7)

where Γu = E[XTuuTX]. Further we assume there exist constants µmin and µmax such that

0 < µmin ≤ λmin(Γu) ≤ λmax(Γu) ≤ µmax < +∞ , ∀ u ∈ Sm−1 (8)

The definition (7) is also used in earlier work [24], which assumes the left end of (8) implicitly.
Lemma 1 gives an example of sub-Gaussian X, showing that condition (7) and (8) are reasonable.

Lemma 1 Assume that X ∈ Rm×p has dependent anisotropic rows such that X = Ξ
1
2 X̃Λ

1
2 , where

Ξ ∈ Rm×m encodes the dependency between rows, X̃ ∈ Rm×p has independent isotropic rows, and
Λ ∈ Rp×p introduces the anisotropy. In this setting, if each row of X̃ satisfies |||x̃i|||ψ2

≤ κ̃, then
condition (7) and (8) hold with κ = Cκ̃, µmin = λmin(Ξ)λmin(Λ), and µmax = λmax(Ξ)λmax(Λ).

The recovery guarantee of GDS relies on an important notion called restricted eigenvalue (RE). In
multi-response setting, it is defined jointly for designs Xi and a noise covariance Σ as follows.

Definition 2 (Restricted Eigenvalue Condition) The designs X1,X2, . . . ,Xn and the covariance
Σ together satisfy the restricted eigenvalue condition for set A ⊆ Sp−1 with parameter α > 0, if

inf
v∈A

vT

(
1

n

n∑
i=1

XT
i Σ−1Xi

)
v ≥ α . (9)

Apart from RE condition, the analysis of GDS is carried out on the premise that tuning parameter γn
is suitably selected, which we define as “admissible”.

Definition 3 (Admissible Tuning Parameter) The γn for GDS (6) is said to be admissible if γn is
chosen such that θ∗ belongs to the constraint set, i.e.,∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ

∗ − yi)

∥∥∥∥∥
∗

=

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤ γn (10)

For structured estimation, one also needs to characterize the structural complexity of θ∗, and an
appropriate choice is the Gaussian width [18]. For any set A ⊆ Rp, its Gaussian width is given
by w(A) = E [supu∈A 〈u,g〉], where g ∼ N (0, Ip×p) is a standard Gaussian random vector. In
the analysis, the set A of our interests typically relies on the structure of θ∗. Previously Gaussian
width has been applied to statistical analyses for various problems [11, 6, 39], and recent works
[34, 13] show that Gaussian width is computable for many structures. For the rest of the paper, we
use C,C0, C1 and so on to denote universal constants, which are different from context to context.

3.1 Estimation of Coefficient Vector

In this subsection, we focus on estimating θ∗, i.e., Step 3 of Algorithm 1, using GDS of the form,

θ̂ = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (11)

where Σ is an arbitrary but fixed input noise covariance matrix. The following lemma shows a
deterministic error bound for θ̂ under the RE condition and admissible γn defined in (9) and (10).

Lemma 2 Suppose the RE condition (9) is satisfied by X1, . . . ,Xn and Σ with α > 0 for the set
A (θ∗) = cone {v | ‖θ∗ + v‖ ≤ ‖θ∗‖ } ∩ Sp−1. If γn is admissible, θ̂ in (11) satisfies∥∥∥θ̂ − θ∗

∥∥∥
2
≤ 2Ψ(θ∗) · γn

α
, (12)

in which Ψ(θ∗) is the restricted norm compatibility defined as Ψ(θ∗) = supv∈A(θ∗)
‖v‖
‖v‖2 .
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From Lemma 2, we can find that the L2-norm error is mainly determined by three quantities–Ψ(θ∗),
γn and α. The restricted norm compatibility Ψ(θ∗) purely hinges on the geometrical structure of
θ∗ and ‖ · ‖, thus involving no randomness. On the contrary, γn and α need to satisfy their own
conditions, which are bound to deal with random Xi and ηi. The setA(θ∗) involved in RE condition
and restricted norm compatibility has relatively simple structure, which will favor the derivation of
error bound for varieties of norms [13]. If RE condition fails to hold, i.e. α = 0, the error bound is
meaningless. Though the error is proportional to the user-specified γn, assigning arbitrarily small
value to γn may not be admissible. Hence, in order to further derive the recovery guarantees for GDS,
we need to verify RE condition and find the smallest admissible value of γn.

Restricted Eigenvalue Condition: Firstly the following lemma characterizes the relation between
the expectation and empirical mean of XTΣ−1X.

Lemma 3 Given sub-Gaussian X ∈ Rm×p with its i.i.d. copies X1, . . . ,Xn, and covariance
Σ ∈ Rm×m with eigenvectors u1, . . . ,um, let Γ = E[XTΣ−1X] and Γ̂ = 1

n

∑n
i=1 XT

i Σ−1Xi.

Define the set AΓj for A ⊆ Sp−1 and each Γj = E[XTuju
T
j X] as AΓj = {v ∈ Sp−1 | Γ−

1
2

j v ∈
cone(A)}. If n ≥ C1κ

4 · maxj
{
w2(AΓj )

}
, with probability at least 1 −m exp(−C2n/κ

4), we
have

vT Γ̂v ≥ 1

2
vTΓv, ∀ v ∈ A . (13)

Instead of w(AΓj ), ideally we want the condition above on n to be characterized by w(A), which
can be easier to compute in general. The next lemma accomplishes this goal.

Lemma 4 Let κ0 be the ψ2-norm of standard Gaussian random vector and Γu = E[XTuuTX],
where u ∈ Sm−1 is fixed. For AΓu defined in Lemma 3, we have

w(AΓu) ≤ Cκ0

√
µmax/µmin · (w(A) + 3) , (14)

Lemma 4 implies that the Gaussian width w(AΓj ) appearing in Lemma 3 is of the same order as
w(A). Putting Lemma 3 and 4 together, we can obtain the RE condition for the analysis of GDS.

Corollary 1 Under the notations of Lemma 3 and 4, if n ≥ C1κ
2
0κ

4 · µmax

µmin
· (w(A) + 3)2, then the

following inequality holds for all v ∈ A ⊆ Sp−1 with probability at least 1−m exp(−C2n/κ
4),

vT Γ̂v ≥ µmin

2
· Tr(Σ−1) (15)

Admissible Tuning Parameter: Finding the admissible γn amounts to estimating the value of
‖ 1
n

∑n
i=1 XT

i Σ−1ηi‖∗ in (10), which involves random Xi and ηi. The next lemma establishes a
high-probability bound for this quantity, which can be viewed as the smallest “safe” choice of γn.

Lemma 5 Assume that Xi is sub-Gaussian and ηi ∼ N (0,Σ∗). The following inequality holds

with probability at least 1− exp
(
−nτ

2

2

)
− C2 exp

(
−C

2
1w

2(B)
4ρ2

)
∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤
Cκ
√
µmax√
n

·
√

Tr (Σ−1Σ∗Σ−1) · w(B) , (16)

where B denotes the unit ball of norm ‖ · ‖, ρ = supv∈B ‖v‖2, and τ = ‖Σ−1Σ
1
2
∗ ‖F /‖Σ−1Σ

1
2
∗ ‖2.

Estimation Error of GDS: Building on Corollary 1, Lemma 2 and 5, the theorem below characterizes
the estimation of GDS for the multi-response linear model.

Theorem 1 Under the setting of Lemma 5, if n ≥ C1κ
2
0κ

4 · µmax

µmin
· (w(A (θ∗)) + 3)2, and γn is set

to C2κ
√

µmax Tr(Σ−1Σ∗Σ−1)
n · w(B), the estimation error of θ̂ given by (11) satisfies

‖θ̂ − θ∗‖2 ≤ Cκ
√
µmax

µ2
min

·
√

Tr (Σ−1Σ∗Σ−1)

Tr (Σ−1)
· Ψ(θ∗) · w(B)√

n
, (17)
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with probability at least 1−m exp
(
−C3n

κ4

)
− exp

(
−nτ

2

2

)
− C4 exp

(
−C

2
5w

2(B)
4ρ2

)
.

Remark: We can see from the theorem above that the noise covariance Σ input to GDS plays a
role in the error bound through the multiplicative factor ξ(Σ) =

√
Tr (Σ−1Σ∗Σ−1)/Tr

(
Σ−1

)
. By

taking the derivative of ξ2(Σ) w.r.t. Σ−1 and setting it to 0, we have

∂ξ2(Σ)

∂Σ−1
=

2 Tr2
(
Σ−1

)
Σ∗Σ

−1 − 2 Tr
(
Σ−1

)
Tr
(
Σ−1Σ∗Σ

−1
)
· Im×m

Tr4 (Σ−1)
= 0

Then we can verify that Σ = Σ∗ is the solution to the equation above, and thus is the minimizer of

ξ(Σ) with ξ(Σ∗) = 1/
√

Tr(Σ−1
∗ ). This calculation confirms that multi-response regression could

benefit from taking into account the noise covariance, and the best performance is achieved when Σ∗
is known. If we perform ordinary GDS by setting Σ = Im×m, then ξ(Σ) = 1/

√
m. Therefore using

Σ∗ will reduce the error by a factor of
√
m/Tr(Σ−1

∗ ), compared with ordinary GDS.

One simple structure of θ∗ to consider for Theorem 1 is the sparsity encoded by L1 norm. Given s-
sparse θ∗, it follows from previous results [31, 11] that Ψ(θ∗) = O(

√
s), w(A(θ∗)) = O(

√
s log p)

and w(B) = O(
√

log p). Therefore if n ≥ O(s log p), then with high probability we have

‖θ̂ − θ∗‖2 ≤ O

(
ξ(Σ) ·

√
s log p

n

)
(18)

Implications for Simple Linear Models: Our general result in multi-response scenario implies
some existing results for simple linear models. If we set n = 1 and Σ = Σ∗ = Im×m, i.e., only one
data point (X,y) is observed and the noise is independent for each response, the GDS is reduced to

θ̂sg = argmin
θ∈Rp

‖θ‖ s.t.
∥∥XT (Xθ − y)

∥∥
∗ ≤ γ , (19)

which exactly matches that in [12]. To bound its estimation error, we need X to be more structured
beyond the sub-Gaussianity. Essentially we consider the model of X in Lemma 1, where rows of X̃
are additionally assumed to be identical. For such X, a specialized RE condition is as follows.

Lemma 6 Assume X is defined as in Lemma 1 such that X = Ξ
1
2 X̃Λ

1
2 , and rows of X̃ are

i.i.d. with |||x̃j ||| ≤ κ̃. If mn ≥ C1κ
2
0κ̃

4 · λmax(Ξ)λmax(Λ)
λmin(Ξ)λmin(Λ) · (w(A) + 3)

2, with probability at least
1− exp(−C2mn/κ̃

4), the following inequality is satisfied by all v ∈ A ⊆ Sp−1,

vT Γ̂v ≥ m

2
· λmin

(
Ξ

1
2 Σ−1Ξ

1
2

)
· λmin (Λ) . (20)

Remark: Lemma 6 characterizes the RE condition for a class of specifically structured design X. If
we specialize the general RE condition in Corollary 1 for this setting, X = Ξ

1
2 X̃Λ

1
2 , it becomes

n ≥ C1κ
2
0κ̃

4λmax(Ξ)λmax(Λ)

λmin(Ξ)λmin(Λ)
(w(A) + 3)2

with probability 1−
m exp(−C2n/κ̃

4)

==========⇒ vT Γ̂v ≥ λmin(Ξ)λmin(Λ)

2
Tr(Σ−1)

Comparing the general result above with Lemma 6, there are two striking differences. Firstly, Lemma
6 requires the same sample size of mn rather than n, which improves the general one. Secondly, (20)
holds with much higher probability 1− exp(−C2mn/κ̃

4) instead of 1−m exp(−C2n/κ̃
4).

Given this specialized RE condition, we have the recovery guarantees of GDS for simple linear
models, which encompass the settings discussed in [6, 12] as special cases.

Corollary 2 Suppose y = Xθ∗ + η ∈ Rm, where X is described as in Lemma 6, and η ∼ N (0, I).

With probability at least 1− exp
(
−m2

)
− C2 exp

(
−C

2
1w

2(B)
4ρ2

)
− exp

(
−C3m/κ̃

4
)
, θ̂sg satisfies

∥∥∥θ̂sg − θ∗
∥∥∥

2
≤ Cκ̃ ·

√
λmax(Ξ)λmax(Λ)

λ2
min(Ξ)λ2

min(Λ)
· Ψ(θ∗) · w(B)√

m
, (21)
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3.2 Estimation of Noise Covariance

In this subsection, we consider the estimation of noise covariance Σ∗ given an arbitrary parameter
vector θ. When m is small, we estimate Σ∗ by simply using the sample covariance

Σ̂ =
1

n

n∑
i=1

(yi −Xiθ) (yi −Xiθ)
T
. (22)

Theorem 2 reveals the relation between Σ̂ and Σ∗, which is sufficient for our AltEst analysis.

Theorem 2 If n ≥ C4m · max

{
4
(
κ0 + κ

√
µmax

λmin(Σ∗) ‖θ
∗ − θ‖2

)4

, κ4
(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2
}

and

Xi is sub-Gaussian, with probability at least 1− 2 exp(−C1m), Σ̂ given by (22) satisfies

λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
≤ 1 + C2κ2

0

√
m/n+

2µmax

λmin (Σ∗)
‖θ∗ − θ‖22 (23)

λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
≥ 1− C2κ2

0

√
m/n (24)

Remark: If Σ̂ = Σ∗, then λmax(Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗ ) = λmin(Σ

− 1
2
∗ Σ̂Σ

− 1
2
∗ ) = 1. Hence Σ̂ is nearly equal

to Σ∗ when the upper and lower bounds (23) (24) are close to 1. We would like to point out that there
is nothing specific to the particular form of estimator (22), which makes AltEst work. Similar results
can be obtained for other methods that estimate the inverse covariance matrix Σ−1

∗ instead of Σ∗.
For instance, when m < n and Σ−1

∗ is sparse, we can replace (22) with GLasso [16] or CLIME [9],
and AltEst only requires the counterparts of (23) and (24) in order to work.

3.3 Error Bound for Alternating Estimation

Section 3.1 shows that the noise covariance in GDS affects the error bound by the factor ξ(Σ). In
order to bound the error of θ̂T given by AltEst, we need to further quantify how θ affects ξ(Σ̂).

Lemma 7 If Σ̂ is given as (22) and the condition in Theorem 2 holds, then the inequality below
holds with probability at least 1− 2 exp(−C1m),

ξ
(
Σ̂
)
≤ ξ (Σ∗) ·

(
1 + 2Cκ0

(m
n

) 1
4

+ 2

√
µmax

λmin (Σ∗)
‖θ∗ − θ‖2

)
(25)

Based on Lemma 7, the following theorem provides the error bound for θ̂T given by Algorithm 1.

Theorem 3 Let eorc = C1κ
√

µmax

µ2
min

ξ(Σ∗)·Ψ(θ∗)w(B)√
n

and emin = eorc ·
1+2Cκ0(mn )

1
4

1−2eorc

√
µmax

λmin(Σ∗)

. If n ≥ C4m·

max

{
4
(
κ0 + C1

C2

√
λmin(Σ∗)
λ2
max(Σ∗)

Ψ(θ∗)w(B)
m

)4

, κ4
(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2

,

(
2C1κµmax

C2µmin
· ξ(Σ∗)Ψ(θ∗)w(B)√

m·λmin(Σ∗)

)2
}

and also satisfies the condition in Theorem 1, with high probability, the iterate θ̂T returned by
Algorithm 1 satisfies∥∥∥θ̂T − θ∗

∥∥∥
2
≤ emin +

(
2eorc

√
µmax

λmin (Σ∗)

)T−1

·
(∥∥∥θ̂1 − θ∗

∥∥∥
2
− emin

)
(26)

Remark: The three lower bounds for n inside curly braces correspond to three intuitive requirements.
The first one guarantees that the covariance estimation is accurate enough, and the other two respec-
tively ensure that the initial error of θ̂1 and eorc are reasonably small , such that the subsequent errors
can contract linearly. eorc is the estimation error incurred by the following oracle estimator,

θ̂orc = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1
∗ (Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (27)

which is impossible to implement in practice. On the other hand, emin is the minimum achievable error,
which has an extra multiplicative factor compared with eorc. The numerator of the factor compensates
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for the error of estimated noise covariance provided that θ = θ∗ is plugged in (22), which merely
depends on sample size. Since having θ = θ∗ is also unrealistic for (22), the denominator further
accounts for the ballpark difference between θ and θ∗. As we remark after Theorem 1, if we perform

ordinary GDS with Σ set to Im×m in (11), its error bound eodn satisfies eodn = eorc

√
Tr(Σ−1

∗ )/m.

Note that this factor
√

Tr(Σ−1
∗ )/m is independent of n, whereas emin will approach eorc with

increasing n as the factor between them converges to one.

4 Experiments

In this section, we present some experimental results to support our theoretical analysis. Specif-
ically we focus on the sparse structure of θ∗ captured by L1 norm. Throughout the experi-
ment, we fix problem dimension p = 500, sparsity level of θ∗ s = 20, and number of iter-
ations for AltEst T = 5. Entries of design X is generated by i.i.d. standard Gaussians, and
θ∗ = [1, . . . , 1︸ ︷︷ ︸

10

,−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
480

]T . Σ∗ is given as a block diagonal matrix with blocks

Σ′ =
[

1 a
a 1

]
replicated along diagonal, and number of responses m is assumed to be even.

All plots are obtained by averaging 100 trials. In the first set of experiments, we set a = 0.8, m = 10

and investigate the error of θ̂t as n varies from 40 to 90. We run AltEst (with and without resampling),
the oracle GDS, and the ordinary GDS with Σ = I. The results are given in Figure 1.

For the second experiment, we fix the product mn ≈ 500, and let m = 2, 4, . . . , 10. For our choice
of Σ∗, the error incurred by oracle GDS eorc is the same for every m. We compare AltEst with both
oracle and ordinary GDS, and the result is shown in Figure 2(a) and 2(b).

In the third experiment, we test AltEst under different covariance matrices Σ∗ by varying a from
0.5 to 0.9. m is set to 10 and sample size n is 90. We also compare AltEst against both oracle and
ordinary GDS, and the errors are reported in Figure 2(c) and 2(d).
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(a) Error for AltEst
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(b) Error for Resampled AltEst
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(c) Comparison of Estimators
Figure 1: (a) When n = 40, AltEst is not quite stable due to the large initial error and poor quality of estimated
covariance. Then the errors start to decrease for n ≥ 50. (b) Resampld AltEst does benefit from fresh samples,
and its error is slightly smaller than AltEst as well as more stable when n is small. (c) Oracle GDS outperforms
the others, but the performance of AltEst is also competitive. Ordinary GDS is unable to utilize the noise
correlation, thus resulting in relatively large error. By comparing the two implementations of AltEst, we can see
that resampled AltEst yields smaller error especially when data is inadequate, but their errors are very close if n
is suitably large.
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(d) Comparison (for a)
Figure 2: (a) Larger error comes with bigger m, which confirms that emin is increasing along with m when mn
is fixed. (b) The plots for oracle and ordinary GDS imply that eorc and eodn remain unchanged, which matches
the error bounds in Theorem 1. Though emin increases, AltEst still outperform the ordinary GDS by a margin.
(c) The error goes down when the true noise covariance becomes closer to singular, which is expected in view of
Theorem 3. (d) eorc also decreases as a gets larger, and the gap between emin and eodn widens. The definition of
emin in Theorem 3 indicates that the ratio between emin and eorc is almost a constant because both n and m are
fixed. Here we observe that all the ratios at different a are between 1.05 and 1.1, which supports the theoretical
results. Also, Theorem 1 suggests that eodn does not change as Σ∗ varies, which is verified here.
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5 Conclusions

In this paper, we propose an alternating estimation (AltEst) procedure for solving the multi-response
linear models in high dimension. Our framework is based on the generalized Dantzig selector (GDS)
and allows for general structures of the parameter vector, whose recovery guarantees are simply
determined by a few geometric measures. Also, by leveraging the noise correlation among responses,
AltEst can achieve significantly smaller estimation error than ignoring the noise structure. With
moderate sample size and the resampling assumption, we show that the estimation error will converge
linearly to a minimal achievable error, which is comparable to the one incurred by the oracle estimator.
In the experiment, we demonstrate the numerical superiority of AltEst over the vanilla GDS, and it is
also suggested that the resampled version of AltEst give little benefit in practice and we should better
use all data in every iteration.
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