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1 Experiments

In this section, we validate our methods using Covertype dataset1 and logistic regression. This
dataset contains 581012 samples with 54 features. We use 200000 samples for training. We compare
our DP-SVRG algorithm with the DP-GD method in [7] for logistic regression with L2-norm
regularization.

F r(w,D) =
1

n

n∑
i=1

log(1 + exp(1 + yiw
Txi)) +

λ

2
||w||2,

where λ is set to be 10−2.

We also compare our DP-SVRG++ algorithm with the DP-GD method in [7] for logistic regression,

F r(w,D) =
1

n

n∑
i=1

log(1 + exp(1 + yiw
Txi))

We evaluate the optimality gap E[F r(wprivate, D)] − F r(w∗, D) and the running time for ε =
{0.2, 0.5, 1} and δ = 0.001.

From the figure, it is clear that our method outperform the previous results in both cases.

2 Details and proofs

2.1 Using Advance Composition Theorem to Guarantee (ε, δ)-differential private

As we can see that there are constrains on ε in Theorem 4.1 and Theorem 4.3. The constrains come
from Theorem 3.1 (see the proof below). For general ε, we can just amplify a factor of O(ln(T/δ))
on the σ. However, in this case, we will amplify a factor of O(log(Tm/δ)) (neglecting other terms)
in (5) and (7) in Theorem 4.2 and 4.4; the guarantee of DP is by advanced composition theorem and
privacy amplification via sampling [3]. Below we will show this. Consider the i-th query:

Mi = ∇f(xst−1, zist )−∇f(x̃, zist ) +
1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2Ip),

where ist is the uniform sampling. There are T -compositions of these queries. By advanced
composition theorem, we know that in order to guarantee the (ε, δ)-differential private, we need
(c ε√

T log(1/δ)
, T/2δ)-differential private in each Mi for some constant c. Now consider Mi on the

1https://archive.ics.uci.edu/ml/datasets/covertype
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Figure 1: Comparison of DP-SVRG and DP-GD for Logistic regression with different ε and L2-
regularization. We set T = 15,m = 5000 and use SVRG-BB for step size update in DP-SVRG,
T = 1500 in DP-GD.

Figure 2: Comparison of DP-SVRG++ and DP-GD for Logistic regression with different ε. We set
T = 15,m = 10, η = 0.01 in DP-SVRG++ and T = 1000, η = 0.1 in DP-GD.

whole dataset (i.e., with no random sample).

M̃i =

n∑
i=1

∇f(xst−1, zi)−
n∑
i=1

∇f(x̃, zi) +
1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2Ip).

From the above, we can see that the L2-sensitive of M̃i is ∆ ≤ 2G + G
n ≤ 3G. Thus if σ2 ≥

c1
G2 log(1/δ′)

ε′2 for some c1, M̃i will be (ε′, δ′))-differential private. This implies that the query Mi

will be (2 1
nε
′, δ′)-differential private, which comes from the following lemma (see Theorem 2.1 and

Lemma 2.2 in [3]).

Lemma 2.1. If an algorithmA is ε′-differentially private, then for any n-element datasetD, executing
A on uniformly random γn entries ensures 2γε′-differential private.
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Let 2 1
nε
′ = c ε√

T log(1/δ)
and δ′ = T/2δ, that is ε′ = c′ nε√

T log(1/δ)
and

σ2 ≥ c2
GT log(T/δ) log(1/δ)

ε2n2
.

We can guarantee that T composition of Mi queries is (ε, δ)-differential private.

2.2 Proof of Theorem 4.1 and 4.3

Proof. W.l.o.g, we assume G = 1, i.e., ||∇f || ≤ 1 (otherwise we can rescale f ).The Proof of
Theorem 4.1 and Theorem 4.3 are the same instead of the iteration number (or number of queries).
Let the difference data of D,D′ be the n-th data. Now, consider the i-th query:

Mi = ∇f(xst−1, zist )−∇f(x̃, zist ) +
1

n

n∑
i=1

∇f(x̃, zi) + ust , u
s
t ∼ N (0, σ2Ip),

where ist ∈ [n] is a uniform sample. This query can be thought as the composition of two queries:

Mi,1 = ∇f(xst−1, zist )−∇f(x̃, zist ) +N (0, σ2
1Ip) (1)

and

Mi,2 = ∇F (x̃, D) +N (0, σ2
2Ip) =

1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2
2Ip) (2)

for some σ1, σ2. By Theorem 2.1 in [1] we have αMi
(λ) ≤ αMi,1

(λ) + αMi,2
(λ). Now we bound

αMi,1(λ) and αMi,2(λ).

For αMi,1
, we can use Lemma 3 in [1] directly, where q = 1

n , f(·) = ∇f(xst−1, ·)−∇f(x̃, ·). For
some constant c1 and any integer λ ≤ σ2

1 ln(n/σ1), we have

αMi,1
(λ) ≤ c1

λ2

n2σ2
1

+O(
λ3

n3σ3
1

). (3)

For αMi,2
(λ), we use the relationship between moment account and Rényi divergence. By Definition

2.1 in [4] we have:
αMi,2

(λ) = λDλ+1(P ||Q), (4)

where P = ∇F (x̃, D) +N (0, σ2
2Ip) = N (∇F (x̃, D), σ2

2) and Q = ∇F (x̃, D′) +N (0, σ2
2Ip) =

N (∇F (x̃, D′), σ2
2). By Lemma 2.5 in [4], we have for some c2:

λDλ+1(P ||Q) =
λ(λ+ 1)||∇F (x̃, D)−∇F (x̃, D′)||2

2σ2
≤ 2λ(λ+ 1)

n2σ2
2

≤ c1λ
2

n2σ2
2

. (5)

Combining (3), (4) and (5), we have

αMi(λ) ≤ c1
λ2

n2σ2
2

+ c2
λ2

n2σ2
1

+O(
λ3

n3σ3
1

). (6)

The rest is similar to the proof of Theorem 3.1.
After T iterations, we have for some c1, c2,

αM ≤
T∑
i=1

αMi
≤ c1

λ2

n2σ2
2

+ c2
λ2

n2σ2
1

. (7)

To be (ε, δ)-differential private, by Theorem 2.2 in [1], it suffices that

c1
Tλ2

n2σ2
2

+ c2
Tλ2

n2σ2
1

≤ λε

2

and
exp(

−λε
2

) ≤ δ.

In addition we need
λ ≤ σ2

1 ln(n/σ1). (8)
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It can be verified that when ε ≤ c3 Tn2 for some constant c3, we have

σ1 = c4

√
T log(1/δ)

nε
(9)

and

σ2 = c5

√
T log(1/δ)

nε
. (10)

For some constant c4, c5, all the conditions can be satisfied. Since the sum of two Gaussian distribu-

tions is still a Gaussian distribution, and Mi = Mi,1 +Mi,2, we have σ = c

√
T log(1/δ)

nε for some c.
Thus, T-fold of the queries.

Mi = ∇f(xst−1, zist )−∇f(x̃, zist ) +
1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2Ip)

will guarantee (ε, δ)-differential private when ε ≤ c3 Tn2 .
For Theorem 4.1 T = Tm while for Theorem 4.3 T = 2T+1m.

2.3 Proof of Theorem 5.3 and Theorem 6.1

Proof. The proof is similar to the above.

Mi = ∇F (x̃, D) +N (0, σ2Ip) =
1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2Ip). (11)

By (3) and (4), we have

αMi
(λ) ≤ 2λ(λ+ 1)

n2σ2
. (12)

Thus, after T -iterations, we have for some c

αM ≤
T∑
i=1

αMi
≤ c Tλ

2

n2σ2
. (13)

Taking σ = c1

√
T log(1/δ)

nε for some constant c1, we can guarantee that

c
Tλ2

n2σ2
≤ λε

2

and

exp(
−λε

2
) ≤ δ,

which means (ε, δ)-differential privacy due to Theorem 2.2 in [1].

2.4 Proof of Theorem 4.2

Proof. Let gst = 1
η (xst−1 − proxηr(x

s
t−1 − ηvst )). Then we have xst = xsk−1 − ηgst . Thus

||xst − x∗||2 = ||xst−1 − ηgst − x∗||2 = ||xst−1 − x∗||2 − 2η〈gst , xst−1 − x∗〉 + η2||gst ||2. (14)

By Lemma 3 in [6], we have the following inequality

− 〈gst , xst−1 − x∗〉+
η

2
||gst ||2 ≤ F r(x∗)− F r(xst )−

µF
2
||xst−1 − x∗||2 −

µr
2
||xst − x∗||2

− 〈vst −∇F (xst−1), xst − x∗〉. (15)

Plugging (15) into (14), we have

||xst − x∗||2 ≤ ||xst−1 − x∗||2 − 2η[F r(xst ) − F r(x∗)] − 2η〈vst − ∇F (xst−1), xst − x∗〉. (16)
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Next we bound −2η〈vst −∇F (xst−1), xst − x∗〉. Denote x̂ts = proxηr(x
s
t−1 − η∇F (xst−1)).

− 2η〈vst −∇F (xst−1), xst − x∗〉 =

− 2η〈vst −∇F (xst−1), xst − x̂st 〉 − 2η〈vst −∇F (xst−1), x̂t
s − x∗〉 (17)

≤ 2η||vst −∇F (xst−1)||||xst − x̂st || − 2η〈vst −∇F (xst−1), x̂t
s − x∗〉 (18)

≤ 2η||vst −∇F (xst−1)||||xst−1 − ηvst − (xst−1 −∇F (xst−1)|| − 2η〈vst −∇F (xst−1), x̂t
s − x∗〉

(19)

≤ 2η2||vst −∇F (xst−1)||2 − 2η〈vst −∇F (xst−1), x̂t
s − x∗〉 (20)

The first inequality is due to the following lemma,

Lemma 2.2. Let r be a closed convex function on Rp. Then for any x, y ∈ dom(R)

||proxr(x)− proxr(y)|| ≤ ||x− y||.

We can easily get Eus
t ,i

s
t
(vst −∇F (xst−1) = 0 since ust is independent with vst−1. Also by Lemma 1

in [6] and E[||a+ b||2] ≤ 2E||a||2 + 2E||b||2, we have

Eist ,us
t
||vst − ∇F (xst−1)||2 ≤ 8L[F r(xst−1) − F r(x∗) + F r(x̃) − F r(x∗)] + 2σ2p. (21)

Plugging (20) into (16) and taking the expectation with ist , u
s
t , we have

E||xst − x∗||2 ≤ ||xst−1 − x∗||2 − 2η[E(F r(xst )− F r(x∗)]+
16η2L[F r(xst−1)− F r(x∗) + F r(x̃)− F r(x∗)] + 4η2σ2p. (22)

Summing over t = 1, 2, · · · ,m and taking the expectation, we have

E[||xsm − x∗||2] + 2η(1− 8ηL)

m∑
t=1

[E(F r(xst ))− F r(x∗)] (23)

≤ ||x̃− x∗||2 + 16Lη2(m+ 1)[F r(x̃)− F r(x∗)] + 4mη2σ2p. (24)

Since F r is µ strongly convex, we have ||x̃− x∗||2 ≤ 2
µ (F r(x̃)−F r(x∗)). Dividing 2mη(1− 8Lη)

from both sides, we get

E[F r(x̃s)]−F r(x∗) ≤ (
1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
)(E[F r(x̃s−1)]−F r(x∗))+

2η

1− 8Lη
σ2p.

(25)

Thus we can choose η = Θ( 1
L ) < 1

12L and m = Θ(Lµ ) to make

A =
1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
<

1

2

and 2η
1−8Lη <

1
2L . By (25) and summing over s = 1, 2 · · · , T we can get

E[F r(x̃T )]− F r(x∗) (26)

≤ AT [F r(x0)− F r(x∗)] +
σ2p

L
(27)

= As[F r(x0)− F r(x∗)] +O(
pG2Tm ln(1/δ)

n2ε2L
) (28)

= AT [F r(x0)− F r(x∗)] +O(
pG2T ln(1/δ)

n2ε2µ
). (29)

Thus if we take T such that AT [F r(x0)− F r(x∗)] = O(pG
2 ln(1/δ)
n2ε2µ ), i.e.,

T = O

(
log(

n2ε2µ

pG2 ln(1/δ)
)

)
.

We have

E[F r(x̃T )]− F r(x∗) ≤ O(
pG2 ln(nεµ/pG) ln(1/δ)

n2ε2µ
).

where the big-O notation omitted the other ln term.
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2.5 Proof of Theorem 4.4

Proof.
Eist ,us

t
[F r(xst )− F r(x∗)] = Eist ,us

t
[F (xst )− F (x∗) + r(xst )− r(x∗)] (30)

≤ Eist ,us
t
[F (xst−1) + 〈∇F (xst−1), xst − xst−1〉+

L

2
||xst − xst−1||2 − F (x∗) + r(xst )− r(x∗)]

(31)
≤ Eist ,us

t
[〈∇F (xst−1), xst−1 − x∗〉] + 〈∇F (xst−1), xst − xst−1〉

+
L

2
||xst − xst−1||2 + r(xst )− r(x∗)] (32)

= Eist ,us
t
[〈vst , xst−1 − x∗〉] + 〈∇F (xst−1), xst − xst−1〉+

L

2
||xst − xst−1||2 + r(xst )− r(x∗)].

(33)

The last equality is due to the fact that Eist ,us
t
[vst ] = ∇F (xst−1). Since we have ([2])

〈vst , xst−1−x∗〉+r(xst )−r(x∗) ≤ 〈vst , xst−1−xst 〉+
||xst−1 − x∗||2

2η
−||x

s
t − x∗||2)

2η
−
||xst − xst−1||2

2η
.

(34)
Plugging (34) into (33), we have

LHS ≤Eist ,us
t
[〈vst −∇F (xst−1), xst−1 − xst 〉 −

1− ηL
2η

||xst − xst−1||2

+
||xst−1 − x∗||2 − ||xst − x∗||2

2η
] (35)

≤ Eist ,us
t

η

2(1− ηL)
||vst −∇F (xst−1)||2 +

||xst−1 − x∗||2 − Eist ,us
t
[||xst − x∗||2]

2η
(36)

≤ 4ηL

1− ηL
[F r(xst−1)− F r(x∗) + F r(x̃s−1)− F r(x∗)] +

η

1− ηL
pσ2

+
||xst−1 − x∗||2 − Eist ,us

t
[||xst − x∗||2]

2η
. (37)

Choosing η = 1
13L , summing over t = 1, · · · ,ms, dividing ms, and taking expectation, we have

E[
1

ms

ms∑
t=1

F r(xst )− F r(x∗)] ≤
1

3
E[

1

ms

ms−1∑
t=0

[F r(xst )− F r(x∗) + F r(x̃s−1)− F r(x∗)]+

||xs0 − x∗||2 − E[||xsms
− x∗||2]

2ηms
+

1

12L
σ2p. (38)

By the definitions of xs+1
0 and x̃s, we have

2E[F r(x̃s)− F r(x∗)] ≤ E[
F r(xs0)− F r(x∗)− (F r(xs+1

0 )− F (x∗))

ms
+

F r(x̃s−1)− F r(x∗) +
||xs0 − x∗||2 − ||xs+1

0 − x∗||2

2η/3ms
] +

1

4L
σ2p, (39)

which implies that

2(E[F r(x̃s)− F r(x∗) +
||xs+1

0 − x∗||2

4η/3ms
+
F r(xs+1

0 )− F r(x∗)
2ms

]) (40)

≤ E[F r(x̃s−1)− F r(x∗) +
||xs0 − x∗||2

4η/3ms−1
+
F r(xs0)− F r(x∗)

2ms−1
] +

1

4L
σ2p. (41)

Summing over s = 1, · · · , T , we get
E[F r(x̃T )− F r(x∗)] (42)

≤ F r(x̃0)− F r(x∗)
2T−1

+
||x̃0 − x∗||2

2T 4η/3m
+

1

4L
σ2p. (43)
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Thus, if we takem = Θ(L) to makeA = 2F r(x̃0)−F r(x∗)+ ||x̃0−x∗||2
4η/3m independent of T, n, p, σ, L,

plug σ into (43) we have

E[F r(x̃T )]− F r(x∗) ≤
A

2T
+O(

G2p2Tm ln 2/δ

n2ε2L
) =

A

2T
+O(

G2p2T ln(1/δ)

n2ε2
). (44)

Let T = O(log( nε

G
√
p
√

1/δ
)). We have

E[F r(x̃s)]− F r(x∗) ≤ O(
G
√
p ln(1/δ))

nε
).

The gradient complexity is O(2sm+ Tn) = O( nLεG
√
p + n log( nε

G
√
p )).

2.6 Proof of lemma 5.1

Proof. If v = 0, this is true. If not, we will show that ||v||2||C||2 ≤ ||v||C . This is equivalent to show that

v /∈ ||v||2||C||2 C. Take any y ∈ C. Since || ||v||2||C||2 y||2 = ||v||2
||C||2 ||y||2, we know that ||y||2 < ||C||2. Thus

|| ||v||2||C||2 y||2 < ||v||2. We have v /∈ ||v||2||C||2 C.

2.7 Proof of Theorem 5.4

Proof. We use || · || and || · ||∗ instead of || · ||C and || · ||C∗ . Also, w.l.o.g we assume that ||C||2 = 1
(for the general case, just replace L by L||C||22). Since bk+1 is independent of xk+1, we have for any
u

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉] = Ebk+1

[〈αk+1(∇F (xk+1) + bk+1), zk − u〉]
= Ebk+1

[〈αk+1(∇F (xk+1)+bk+1), zk−zk+1〉]+Ebk+1
[〈αk+1(∇F (xk+1)+bk+1), zk+1−u〉].

(45)

Since zk+1 = arg minz∈C{Bw(z, zk) + αk+1〈∇F (xk+1) + bk+1, z − zk〉}, which implies that
〈∇Bw(zk+1, zk) + αk+1(∇F (xk+1 + bk+1), u− zk+1〉 ≥ 0 for every u ∈ C. So we can get

Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk+1 − u〉] (46)

≤ Ebk+1
[〈−∇Bw(zk+1, zk), zk+1 − u〉] = Ebk+1

[Bw(u, zk)− Bw(u, zk+1)− Bw(zk+1, zk)],
(47)

where the equality is due to the triangle equality of Bregman divergence. Since w is 1-strong convex
with respect to || · ||, we have −Bw(zk+1, zk) ≤ − 1

2 ||zk+1 − zk||2. Plugging this into (44), we have

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉] (48)

≤ Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk − zk+1〉 −

1

2
||zk+1 − zk||2]+

Bw(u, zk)− Ebk+1
[Bw(u, zk+1)] (49)

≤ Ebk+1
[〈αk+1∇F (xk+1), zk − zk+1〉 −

1

4
||zk+1 − zk||2] + α2

k+1Ebk+1
[||bk+1||2∗] (50)

+ Bw(u, zk)− Ebk+1
[Bw(u, zk+1)]. (51)

The last inequality is due to Cauchy-Shwartz Inequality. Thus we have 〈αk+1bk+1, zk − zk+1〉 ≤
α2
k+1||bk+1||2∗ + 1

4 ||zk − zk+1||2. Now we want to bound Ebk+1
[〈αk+1∇F (xk+1), zk − zk+1〉 −

7



1
4 ||zk+1− zk||2]. Define v = rkzk+1 + (1− rk)yk ∈ C so that xk+1− v = rk(zk − zk+1). We have

〈αk+1∇F (xk+1), zk − zk+1〉 −
1

4
||zk+1 − zk||2 = 〈αk+1

rk
∇F (xk+1), xk+1 − v〉

− 1

4r2k
||xk+1 − v||2 (52)

= 2α2
k+1L(〈F (xk+1), xk+1 − v〉 −

L

2
||xk+1 − v||2) (53)

≤ 2α2
k+1L(−min

y∈C
{L

2
||y − xk+1||2 + 〈F (xk+1), y − xk+1〉}) (54)

= 2α2
k+1L(−{L

2
||yk+1 − xk+1||2 + 〈F (xk+1), yk+1 − xk+1〉}) (55)

≤ 2α2
k+1L(F (xk+1)− F (yk+1)). (56)

The last inequality is due to the fact that F is L||C||22-smooth (note that ||C||2 = 1) in || · || norm and
the definition of yk+1. Thus, we get the following

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉] = Ebk+1

[〈αk+1(∇F (xk+1) + bk+1), zk − u〉]
≤ 2α2

k+1L(F (xk+1)− F (yk+1)) + Bw(u, zk)− Ebk+1
[Bw(u, zk+1)] + α2

k+1Ebk+1
||bk+1||2∗.

(57)

By using the Concentration of Gaussian Width, Lemma 3.3 in [5] shows that Ebk+1
||bk+1||2∗ =

σ2O(G2
C + ||C||22), where GC is the Gaussian Width of C. From this, we have

Ebk+1
[αk+1(F (xk+1)− F (u)] ≤ Ebk+1

[〈αk+1∇F (xk+1), xk+1 − u〉]
= Ebk+1

[〈αk+1∇F (xk+1), xk+1 − zk〉] + Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

≤ αk+1(1− rk)

rk
〈∇F (xk+1), yk − xk+1〉+ Ebk+1

[〈αk+1∇F (xk+1), zk − u〉]

≤ αk+1(1− rk)

rk
(F (yk)− F (xk+1) + Ebk+1

[〈αk+1∇F (xk+1), zk − u〉]

≤ (2α2
k+1L− αk+1)(F (yk)− F (xk+1) + 2α2

k+1L(F (xk+1)− F (yk+1))

+ Bw(u, zk)− Ebk+1
[Bw(u, zk+1)] + α2

k+1Ebk+1
||bk+1||2∗.

Thus we obtain

2α2
k+1LF (yk+1)− (2α2

k+1L− αk+1)F (yk) + E(Bw(u, zk+1)− Bw(u, zk)) (58)

≤ αk+1F (u) + α2
k+1σ

2O(G2
C + ||C||22). (59)

By the definition of αk+1, we have 2α2
kL = 2α2

k+1L−αk+1 + 1
8L . Summing over k = 0 · · · , T − 1

and setting u = x∗, by the definition of αk we have
∑T
k=1 α

2
k = O(T 3). After taking the expectation

we get

2α2
TLE[F (yT )] +

1

8L
E[

T−1∑
k=1

F (yk)] + E[Bw(x∗, zT−1)]− Bw(x∗, z0) (60)

≤
T∑
k=1

αkF (x∗) +O(T 3σ2(G2
C + ||C||22)/L2). (61)

Plugging αk = k+1
4L into (59), (60) and dividing both sides by a factor of 2α2

TL, by the fact that
Bw ≥ 0 we finally get

E[F (yT )]− F [x∗] ≤
8LBw(x∗, x0)

(T + 1)2
+O(Tσ2(G2

C + ||C||22)/L). (62)

Since σ2 = O(G
2T ln(1/δ)
n2ε2 ), if choose

T 2 = O(
L
√
Bw(x∗, x0)nε

G
√

ln(1/δ)
√
G2
C + ||C||22

), (63)
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we have the bound

E[F (yT )]− F (x∗) ≤ O(

√
Bw(x∗, x0)

√
G2
C + ||C||22G

√
ln(1/δ)

nε
).

2.8 Proof of Theorem 6.2

Proof. First of all, we have

Ezk [F (xk+1)− F (xk)] ≤ Ezk [− 1

L
〈∇F (xk),∇F (xk) + zk〉+

1

2L
||∇F (xk) + zk||2] (64)

= − 1

2L
||∇F (xk)||2 +

1

2L
Ezk ||zk||2 (65)

≤ −µ
L

(F (xk)− F ∗) +
pσ2

2L
. (66)

Re-arranging the terms, we get

E[F (xk+1)]− F ∗ ≤ (1− µ

L
)(F (xk)− F ∗) +

pσ2

2L
.

Summing over k = 0, · · · , T and taking expectation, we obtain

E[F (xT )]− F ∗ ≤ (1− µ

L
)T (F (x0)− F∗) +

Tpσ2

2L
. (67)

Thus, when T = O(log( n2ε2

pG2 log(1/δ) ))

E[F (xT )]− F ∗ ≤ O(
log2(n)pG2 log(1/δ)

n2ε2
), (68)

where the big-O notation neglects other log, L, µ terms.

2.9 Proof of Theorem 6.3

Proof. The proof is similar to that of Theorem 6.2. Let F ∗ = minx∈Rp F (x,D). We have

EzkF (xk+1)− F (xk) ≤ Ezk [− 1

L
〈∇F (xk),∇F (xk) + zk〉] +

1

2L
Ezk ||∇F (xk) + zk||2 (69)

≤ − 1

2L
||∇F (xk)||2 +

pσ2

2L
. (70)

From this, we get
1

2L
||∇F (xk)||2 ≤ F (xk)− EzkF (xk+1) +

pσ2

2L
. (71)

Thus, Em,{zi}[‖∇F (xm)‖2] = 1
T

∑T−1
i=0 E{zi}[‖∇F (xi)‖2]. By (71), summing over k = 0, · · ·T −

1, we obtain

Em,{zi}[‖∇F (xm)‖2] ≤ 2L(F (x0)− E[F (xT )])

T
] + pσ2 (72)

≤ 2L(F (x0)− F∗)
T

+O(
pG2 log(1/δ)T

n2ε2
). (73)

Thus, if choose T = O(
√
Lnε√

p log(1/δ)G
), we have E[||∇F (xm)||2] ≤ O(

√
LG
√
p log(1/δ)

nε ).
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