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Abstract

A low rank matrixX has been contaminated by uniformly distributed noise, missing
values, outliers and corrupt entries. Reconstruction of X from the singular values
and singular vectors of the contaminated matrix Y is a key problem in machine
learning, computer vision and data science. In this paper, we show that common
contamination models (including arbitrary combinations of uniform noise, missing
values, outliers and corrupt entries) can be described efficiently using a single
framework. We develop an asymptotically optimal algorithm that estimates X by
manipulation of the singular values of Y , which applies to any of the contamination
models considered. Finally, we find an explicit signal-to-noise cutoff, below which
estimation of X from the singular value decomposition of Y must fail, in a well-
defined sense.

1 Introduction

Reconstruction of low-rank matrices from noisy and otherwise contaminated data is a key problem in
machine learning, computer vision and data science. Well-studied problems such as dimension reduc-
tion [3], collaborative filtering [24, 28], topic models [13], video processing [21], face recognition
[35], predicting preferences [26], analytical chemistry [29] and background-foreground separation
[4] all reduce, under popular approaches, to low-rank matrix reconstruction. A significant part of the
literature on these problems is based on the singular value decomposition (SVD) as the underlying
algorithmic component, see e.g. [7, 19, 23].

Understanding and improving the behavior of SVD in the presence of random data contamination
therefore arises as a crucially important problem in machine learning. While this is certainly a
classical problem [14, 17, 20], it remains of significant interest, owing in part to the emergence of
low-rank matrix models for matrix completion and collaborative filtering [9, 34].

Let X be an m-by-n unknown low-rank matrix of interest (m ≤ n), and assume that we only observe
the data matrix Y , which is a contaminated or noisy version of X . Let

Y =

m∑
i=1

yiuiv
′
i (1)

be the SVD of the data matrix Y . Any algorithm based on the SVD essentially aims to obtain an
estimate for the target matrixX from (1). Most practitioners simply form the Truncated SVD (TSVD)
estimate [18]

X̂r =

r∑
i=1

yiuiv
′
i (2)
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where r is an estimate of rank(X), whose choice in practice tends to be ad hoc [15].

Recently, [10, 16, 32] have shown that under white additive noise, it is useful to apply a carefully
designed shrinkage function η : R→ R to the data singular values, and proposed estimators of the
form

X̂η =

n∑
i=1

η(yi)uiv
′
i . (3)

Such estimators are extremely simple to use, as they involve only simple manipulation of the data
singular values. Interestingly, in the additive white noise case, it was shown that a unique optimal
shrinkage function η(y) exists, which asymptotically delivers the same performance as the best
possible rotation-invariant estimator based on the data Y [16]. Singular value shrinkage thus emerged
as a simple yet highly effective method for improving the SVD in the presence of white additive
noise, with the unique optimal shrinker as a natural choice for the shrinkage function. A typical form
of optimal singular value shrinker is shown in Figure 1 below, left panel.

Shrinkage of singular values, an idea that can be traced back to Stein’s groundbreaking work on
covariance estimation from the 1970’s [33], is a natural generalization of the classical TSVD. Indeed,
X̂r is equivalent to shrinkage with the hard thresholding shrinker η(y) = 1y≥λ, as (2) is equivalent
to

X̂λ =

n∑
i=1

1yi≥λuiv
′
i (4)

with a specific choice of the so-called hard threshold λ. While the choice of the rank r for truncation
point TSVD is often ad hoc and based on gut feeling methods such as the Scree Plot method [11], its
equivalent formulation, namely hard thresholding of singular values, allows formal and systematic
analysis. In fact, restricting attention to hard thresholds alone [15] has shown that under white
additive noise there exists a unique asymptotically optimal choice of hard threshold for singular
values. The optimal hard threshold is a systematic, rational choice for the number of singular values
that should be included in a truncated SVD of noisy data. [27] has proposed an algorithm that finds
η∗ in presence of additive noise and missing values, but has not derived an explicit shrinker.

1.1 Overview of main results

In this paper, we extend this analysis to common data contaminations that go well beyond additive
white noise, including an arbitrary combination of additive noise, multiplicative noise, missing-at-
random entries, uniformly distributed outliers and uniformly distributed corrupt entries.

The primary contribution of this paper is formal proof that there exists a unique asymptotically
optimal shrinker for singular values under uniformly random data contaminations, as well a unique
asymptotically optimal hard threshold. Our results are based on a novel, asymptotically precise
description of the effect of these data contaminations on the singular values and the singular vectors of
the data matrix, extending the technical contribution of [16, 27, 32] to the setting of general uniform
data contamination.

General contamination model. We introduce the model

Y = A�X +B (5)

where X is the target matrix to be recovered, and A,B are random matrices with i.i.d entries. Here,
(A�B)i,j = Ai,jBi,j is the Hadamard (entrywise) product of A and B.

Assume that Ai,j
iid∼ (µA, σ

2
A), meaning that the entries of A are i.i.d drawn from a distribution

with mean µA and variance σ2
A, and that Bi,j

iid∼ (0, σ2
B). In Section 2 we show that for various

choices of the matrix A and B, this model represents a broad range of uniformly distributed random
contaminations, including an arbitrary combination of additive noise, multiplicative noise, missing-at-
random entries, uniformly distributed outliers and uniformly distributed corrupt entries. As a simple
example, if B ≡ 0 and P (Ai,j = 1) = κ, then the Y simply has missing-at-random entries.
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To quantify what makes a “good” singular value shrinker η for use in (3), we use the standard Mean
Square Error (MSE) metric and

L(η|X) =
∣∣∣∣∣∣X̂η(Y )−X

∣∣∣∣∣∣2
F
.

Using the methods of [16], our results can easily be extended to other error metrics, such as the
nuclear norm or operator norm losses. Roughly speaking, an optimal shrinker η∗ has the property
that, asymptotically as the matrix size grows,

L(η∗|X) ≤ L(η|X)

for any other shrinker η and any low-rank target matrix X .

The design of optimal shrinkers requires a subtle understanding of the random fluctuations of the data
singular values y1, . . . , yn, which are caused by the random contamination. Such results in random
matrix theory are generally hard to prove, as there are nontrivial correlations between yi and yj ,
i 6= j. Fortunately, in most applications it is very reasonable to assume that the target matrix X is
low rank. This allows us to overcome this difficulty by following [15, 27, 32] and considering an
asymptotic model for low-rank X , inspired by Johnstone’s Spiked Covariance Model [22], in which
the correlation between yi and yj , for i 6= j vanish asymptotically.

We state our main results informally at first. The first main result of this paper is the existence of a
unique asymptotically optimal hard threshold λ∗ in (4).

Importantly, as E(Y ) = µAX , to apply hard thresholding to Y = A�X +B we must from now on
define

X̂λ =
1

µA

n∑
i=1

1yi>λuiv
′
i .

Theorem 1. (Informal.) Let X be an m-by-n low-rank matrix and assume that we observe the
contaminated data matrix Y given by the general contamination model (5). Then there exists a
unique optimal (def. 3) hard threshold λ∗ for the singular values of Y , given by

λ∗ = σB

√(
c+

1

c

)(
c+

β

c

)
where β = m/n and c =

√
1 + β +

√
1 + 14β + β2/

√
2.

Our second main result is the existence of a unique asymptotically optimal shrinkage function η∗ in
(equation (3)). We calculate this shrinker explicitly:
Theorem 2. (Informal.) Assume everything as in Theorem 1. Then there exists a unique optimal (def.
3) shrinker η∗ for the singular values of Y given by

η∗(y) =


σ2
B

yµA

√√√√(( y

σB

)2

− β − 1

)2

− 4β y ≥ σB(1 +
√
β)

0 y < σB(1 +
√
β)

We also discover that for each contamination model, there is a critical signal-to-noise cutoff, below
which X cannot be reconstructed from the singular values and vectors of Y . Specifically, let η0 be
the zero singular value shrinker, η0(y) ≡ 0, so that X̂η0(Y ) ≡ 0. Define the critical signal level for a
shrinker η by

xcritical(η) = inf
x
{x : L(η|X) < L(η0|X)}

where X = xũṽ′ is an arbitrary rank-1 matrix with singular value x. In other words, xcritical(η)
is the smallest singular value of the target matrix, for which η still outperforms the trivial zero
shrinker η0. As we show in Section 4, a target matrix X with a singular value below xcritical(η)
cannot be reliably reconstructed using η. The critical signal level for the optimal shrinker η∗ is
of special importance, since a target matrix X with a singular value below xcritical(η∗) cannot be
reliably reconstructed using any shrinker η. Restricting attention to hard thresholds only, we define
xcritical(λ), the critical level for a hard threshold, similarly. Again, singular values of X that fall
below xcritical(λ∗) cannot be reliably reconstructed using any hard threshold.

Our third main result is the explicit calculation of these critical signal levels:
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Theorem 3. (Informal.) Assume everything as in Theorem 1 and let c be as in Theorem 1. Let η∗ be
the optimal shrinker from Theorem 2 and let λ∗ be the optimal hard threshold from Theorem 1. The
critical signal levels for η∗ and λ∗ are given by:

xcritical(η∗) = (σB/µA) · β 1
4

xcritical(λ∗) = (σB/µA) · c .

Finally, one might ask what the improvement is in terms of the mean square error that is guaranteed
by using the optimal shrinker and optimal threshold. As discussed below, existing methods are either
infeasible in terms of running time on medium and large matrices, or lack a theory that can predict
the reconstruction mean square error. For lack of a better candidate, we compare the optimal shrinker
and optimal threshold to the default method, namely, TSVD.
Theorem 4. (Informal.) Consider β = 1, and denote the worst-case mean square error of TSVD, η∗
and λ∗ by MTSV D, Mη∗ and Mλ∗ , respectively, over a target matrix of low rank r. Then

MTSVD =

(
σB
µA

)2

5r

Mη∗ =

(
σB
µA

)2

2r

Mλ∗ =

(
σB
µA

)2

3r .

Indeed, the optimal shrinker offers a significant performance improvement (specifically, an improve-
ment of 3r(σB/µA)2, over the TSVD baseline.
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Figure 1: Left: Optimal shrinker for additive noise and missing-at-random contamination. Right:
Phase plane for critical signal levels, see Section 6, Simulation 2.

Our main results allow easy calculation of the optimal threshold, optimal shrinkage and signal-to-noise
cutoffs for various specific contamination models. For example:

1. Additive noise and missing-at-random. Let X be an m-by-n low-rank matrix. Assume
that some entries are completely missing and the rest suffer white additive noise. Formally,
we observe the contaminated matrix

Yi,j =

{
Xi,j + Zi,j w.p. κ
0 w.p. 1− κ ,

where Zi,j
iid∼ (0, σ2), namely, follows an unknown distribution with mean 0 and variance

σ2. Let β = m/n. Theorem 1 implies that in this case, the optimal hard threshold for the
singular values of Y is

λ∗ =
√
σ2κ (c+ 1/c) (c+ β/c)

where c =
√

1 + β +
√

1 + 14β + β2/
√
2. In other words, the optimal location (w.r.t mean

square error) to truncate the singular values of Y , in order to recover X , is given by λ∗. The
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optimal shrinker from Theorem 2 for this contamination mode may be calculated similarly,
and is shown in Figure 1, left panel. By Theorem 4, the improvement in mean square
error obtained by using the optimal shrinker, over the TSVD baseline, is 3rσ2/κ, quite a
significant improvement.

2. Additive noise and corrupt-at-random. Let X be an m-by-n low-rank matrix. Assume
that some entries are irrecoverably corrupt (replaced by random entries), and the rest suffer
white additive noise. Formally,

Yi,j =

{
Xi,j + Zi,j w.p. κ
Wi,j w.p. 1− κ .

WhereZi,j
iid∼ (0, σ2),Wi,j

iid∼ (0, τ2), and τ is typically large. Let σ̃ =
√
κσ2 + (1− κ)τ2.

The optimal shrinker, which should be applied to the singular values of Y , is given by:

η∗(y) =

σ̃2/(yκ)

√(
(y/σ̃)2 − β − 1

)2 − 4 y ≥ σ̃(1 +
√
β)

0 y < σ̃(1 +
√
β)

.

By Theorem 4, the improvement in mean square error, obtained by using the optimal
shrinker, over the TSVD baseline, is 3r(κσ2 + (1− κ)τ2)/κ2.

1.2 Related Work

The general data contamination model we propose includes as special cases several modes extensively
studied in the literature, including missing-at-random and outliers. While it is impossible to propose a
complete list of algorithms to handle such data, we offer a few pointers, organized around the notions
of robust principal component analysis (PCA) and matrix completion. To the best of our knowledge,
the precise effect of general data contamination on the SVD (or the closely related PCA) has not been
documented thus far. The approach we propose, based on careful manipulation of the data singular
values, enjoys three distinct advantages. One, its running time is not prohibitive; indeed, it involves a
small yet important modification on top of the SVD or TSVD, so that it is available whenever the
SVD is available. Two, it is well understood and its performance (say, in mean square error) can be
reliably predicted by the available theory. Three, to the best of our knowledge, none of the approaches
below have become mainstream, and most practitioners still turn to the SVD, even in the presence of
data contamination. Our approach can easily be used in practice, as it relies on the well-known and
very widely used SVD, and can be implemented as a simple modification on top of the existing SVD
implementations.

Robust Principle Component Analysis (RPCA). In RPCA, one assumes Y = X + W where
X is the low rank target matrix and W is a sparse outliers matrix. Classical approaches such as
influence functions [20], multivariate trimming [17] and random sampling techniques [14] lack a
formal theoretical framework and are not well understood. More modern approaches based on convex
optimization [9, 34] proposed reconstructing X from Y via the nuclear norm minimization

min
X
||X||∗ + λ ||Y −X||1 ,

whose runtime and memory requirements are both prohibitively large in medium and large matrices.

Matrix Completion. There are numerous heuristic approaches for data analysis in the presence of
missing values [5, 30, 31]. To the best of our knowledge, there are no formal guarantees of their
performance. When the target matrix is known to be low rank, the reconstruction problem is known
as matrix completion. [7–9] and numerous other authors have shown that a semi-definite program
may be used to stably recover the target matrix, even in the presence of additive noise. Here too, the
runtime and memory requirements are both prohibitively large in medium and large matrices, making
these algorithms infeasible in practice.

2 A Unified Model for Uniformly Distributed Contamination

Contamination modes encountered in practice are best described by a combination of primitive modes,
shown in Table 1 below. These primitive contamination modes fit into a single template:
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Definition 1. Let A and B be two random variables, and assume that all moments of A and B are
bounded. Define the contamination link function

fA,B(x) = Ax+B .

Given a matrix X , define the corresponding contaminated matrix Y with entries

Yi,j
indep.∼ fA,B(Xi,j) . (6)

Now observe that each of the primitive modes above corresponds to a different choice of random
variables A and B, as shown in Table 1. Specifically, each of the primitive modes is described by a
different assignment to A and B. We employ three different random variables in these assignments:
Z

iid∼ (0, σ2/n), a random variable describing multiplicative or additive noise; W iid∼ (0, τ2/n), a
random variable describing a large “outlier” measurement; and M iid∼ Bernoulli(κ) describing a
random choice of “defective” entries, such as a missing value, an outlier and so on.

Table 1: Primitive modes fit into the model (6). By convention, Y is m-by-n, Z iid∼ (0, σ2/n) denotes a

noise random variable, W iid∼ (0, τ2/n) denotes an outlier random variable and M iid∼ Bernoulli(κ) is a
contaminated entry random variable.

mode model A B levels
i.i.d additive noise Yi,j = Xi,j + Zi,j 1 Z σ

i.i.d multiplicative noise Yi,j = Xi,j Zi,j Z 0 σ

missing-at-random Yi,j = Mi,j Xi,j M 0 κ

outliers-at-random Yi,j = Xi,j +Mi,jWi,j 1 MW κ,τ
corruption-at-random Yi,j = Mi,jXi,j + (1−Mi,j)Wi,j M (1−M)W κ,τ

Actual datasets rarely demonstrate a single primitive contamination mode. To adequately describe
contamination observed in practice, one usually needs to combine two or more of the primitive
contamination modes into a composite mode. While there is no point in enumerating all possible
combinations, Table 2 offers a few notable composite examples, using the framework (6). Many other
examples are possible of course.

3 Signal Model

Following [32] and [15], as we move toward our formal results we are considering an asymptotic
model inspired by Johnstone’s Spiked Model [22]. Specifically, we are considering a sequence of
increasingly larger data target matrices Xn, and corresponding data matrices Yn

iid∼ fAn,Bn
(Xn). We

make the following assumptions regarding the matrix sequence {Xn}:

A1 Limiting aspect ratio: The matrix dimension mn × n sequence converges: mn/n→ β as
n→∞. To simplify the results, we assume 0 < β ≤ 1.

A2 Fixed signal column span: Let the rank r > 0 be fixed and choose a vector x ∈ Rr with
coordinates x = (x1, . . . xr) such that x1 > . . . > xr > 0. Assume that for all n

Xn = Ũn diag(x1, . . . , xr)Ṽn

is an arbitrary singular value decomposition of Xn,

Table 2: Some examples of composite contamination modes and how they fit into the model (6). Z,W ,M are
the same as in Table 1.

mode A B levels
Additive noise and missing-at-random M ZM σ,κ
Additive noise and corrupt-at-random M ZM +W (1−M) σ,κ,τ

multiplicative noise and corrupt-at-random ZM W (1−M) σ,κ,τ
Additive noise and outliers 1 Z +W (1−M) σ,κ,τ
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A3 Incoherence of the singular vectors of Xn: We make one of the following two assumptions
regarding the singular vectors of Xn:

A3.1 Xn is random with an orthogonally invariant distribution. Specifically, Ũn and Ṽn,
which follow the Haar distribution on orthogonal matrices of size mn and n, respec-
tively.

A3.2 The singular vectors of Xn are non-concentrated. Specifically, each left singular vector
ũn,i of Xn (the i-th column of Ũn) and each right singular vector ṽn,j of Xn (the j-th
column of Ṽn) satisfy1

||ũn,i||∞ ≤ C
logD(mn)
√
mn

and ||ṽn,j ||∞ ≤ C
logD(n)√

n

for any i, j and fixed constants C,D.

Definition 2. (Signal model.) Let An
iid∼ (µA, σ

2
A/n) and Bn

iid∼ (0, σ2
B/n) have bounded

moments. Let Xn follow assumptions [A1]–[A3] above. We say that the matrix sequence
Yn = fAn,Bn

(Xn) follows our signal model, where fA,B(X) is as in Definition 1. We further denote
Xn =

∑r
i=1 xiũn,iṽn,i for the singular value decomposition of Xn and Yn =

∑m
i=1 yn,iun,ivn,i

for the singular value decomposition of Yn.

4 Main Results

Having described the contamination and the signal model, we can now formulate our main results.
All proofs are deferred to the Supporting Information. Let Xn and Yn follow our signal model,
Definition 2, and write x = (x1, . . . , xr) for the non-zero singular values of Xn. For a shrinker η,
we write

L∞(η|x)
a.s.
= lim

n→∞

∣∣∣∣∣∣X̂n(Yn)−Xn

∣∣∣∣∣∣2
F
.

assuming the limit exists almost surely. The special case of hard thresholding at λ is denoted as
L∞(η|x).
Definition 3. Optimal shrinker and optimal threshold. A shrinker η∗ is called optimal if

L∞(η|x) ≤ L∞(η|x)

for any shrinker η, any r ≥ 1 and any x = (x1, . . . , xr). Similarly, a threshold λ is called optimal if
L∞(λ∗|x) ≤ L∞(λ|x) for any threshold λ, any r ≥ 1 and any x = (x1, . . . , xr).

With these definitions, our main results Theorem 2 and Theorem 1 become formal. To make Theorem
3 formal, we need the following lemma and definition.
Lemma 1. Decomposition of the asymptotic mean square error. LetXn and Yn follow our signal
model (Definition 2) and write x = (x1, . . . , xr) for the non-zero singular values of Xn, and let η be
the optimal shrinker. Then the limit L∞(η|x) a.s. exists, and L∞(η|x) a.s.=

∑r
i=1 L1(η|x), where

L1(η|x) =

x
2

(
1− (t4 − β)2

(t4 + βt2)(t4 + t2)

)
t ≥ β

1
4

x2 t < β
1
4

where t = (µA · x)/σB . Similarly, for a threshold λ we have L∞(λ|x) =
∑r
i=1 L1(λ|x) with

L1(λ|x) =


(
σB
µA

)2((
t+

1

t

)(
t+

β

t

)
−
(
t2 − 2β

t2

))
µAx ≥ x(λ)

x2 µAx < x(λ)

Where

x(y) =

(σB/
√
2µA)

√
(y/σB)

2 − β − 1 +

√(
1 + β − (y/σB)

2)2 − 4β t ≥ β
1
4

0 t < β
1
4

(7)

1The incoherence assumption is widely used in related literature [6, 12, 27], and asserts that the singular
vectors are spread out so X is not sparse and does not share singular subspaces with the noise.
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Definition 4. Let η0 be the zero singular value shrinker, η0(y) ≡ 0, so that X̂η0(Y ) ≡ 0. Let η be a
singular value shrinker. The critical signal level for η is

xcritical(η) = inf
x
{L1(η|X) < L1(η0|X)}

As we can see, the asymptotic mean square error decomposes over the singular values of the target
matrix, x1, . . . , xr. Each value xi that falls below xcritical(η) is better estimated with the zero
shrinker η0 than with η. It follows that any xi that falls below xcritical(η∗), where η∗ is the optimal
shrinker, cannot be reliably estimated by any shrinker η, and its corresponding data singular value yi
should simply be set to zero. This makes Theorem 2 formal.

5 Estimating the model parameters

In practice, using the optimal shrinker we propose requires an estimate of the model parameters. In
general, σB is easy to estimate from the data via a median-matching method [15], namely

σ̂B =
ymed√
nµβ

,

where ymed is the median singular value of Y, and µβ is the median of the Marc̆enko-Pastur distribu-
tion. However, estimation of µA and σA must be considered on a case-by-case basis. For example, in
the “Additive noise and missing at random” mode (table 2), σA ≡ 1 is known, and µA is estimated
by dividing the amount of missing values by the matrix size.

6 Simulation

Simulations were performed to verify the correctness of our main results2. For more details, see
Supporting Information.

1. Critical signal level xcritical(λ∗) under increasing noise. Figure 2, left panel, shows
the amount of data singular values yi above xcritical(λ∗), as a function of the fraction of
missing values κ. Theorem 3 correctly predicts the exact values of κ at which the “next”
data singular value falls below xcritical(λ∗).

2. Phase plane for critical signal levels xcritical(η∗) and xcritical(λ∗). Figure 1, right panel,
shows the x, κ plane, where x is the signal level and κ is the fraction of missing values. At
each point in the plane, several independent data matrices were generated. Heatmap shows
the fraction of the experiments at which the data singular value y1 was above xcritical(η∗)
and xcritical(λ∗). The overlaid graphs are theoretical predictions of the critical points.

3. Brute-force verification of the optimal shrinker shape. Figure 2, right panel, shows the
shape of the optimal shrinker (Theorem 1). We performed a brute-force search for the value
of η(y) that produces the minimal mean square error. A brute force search, performed with
a relatively small matrix size, matches the asymptotic shape of the optimal shrinker.

7 Simulation details

1. Critical signal level xcritical(λ∗) under increasing noise. Consider the composite mode
“i.i.d additive noise and missing-at-random”(sec. 2, mode 2) with noise level σ = 1, singular
values x = (2, 3, 4, 5, 6) and matrix size m = n = 1000. To test whether our main results
correctly predict the values of κ at which the signal singular values stop being estimable, we
scanned the κ axis. At each value of κ we counted the number of estimable singular values
and compared with the cutoff values of κ, at which this number should change. Figure 2
shows the number of measured estimable singular values against contamination level κ, with
overlaid cut levels predicted by our main results (vertical lines).

2The full Matlab code that generated the figures in this paper and in the Supporting Information is permanently
available at https://purl.stanford.edu/kp113fq0838.
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Figure 2: Left: empirical validation of the predicted critical signal level (Simulation 1). Right:
Empirical validation of the optimal shrinker shape (Simulation 3).

2. Phase plane for critical signal levels xcritical(η∗) and xcritical(λ∗). Figure 1, right panel,
shows the x, κ plane, where x is the signal level and κ is the fraction of missing values. At
each point in the plane, several independent experiments (data matrices) were generated.
The heatmap shows the the fraction of the experiments at which the data singular value
y1 was above xcritical(η∗) and xcritical(λ∗). Overlaid are the theoretical prediction of the
critical points. Matrix size is 600× 600, Monte carlo is 5 and β = 1.

3. Brute-force verification of the optimal shrinker shape. Figure (2,right) shows the shape
of the optimal shrinker (Theorem 1). We performed a brute-force calculation scanning for
the value of η(y) that produces the lower mean square error. Brute force search, peformed in
a 250× 250 matrix, matches the asymptotic shape of the optimal shrinker. The scan set the
noise level σ to 1, missing data level to 1− µA = 0.3, β = m/n = 1, and scanned signal
values in range [0,6].

8 Proofs

In this section we prove our main results: Theorem 1, Theorem 2, Theorem 3 and Theorem 4, as well
as Lemma 1. The proofs rely on the following fundamental lemmas.
Lemma 2. Let Yn = fAn,Bn

(Xn) be a matrix sequence following our signal model (Definition 2)

with An
iid∼ (µA, σ

2
A/n) and Bn

iid∼ (0, σ2
B/n). Write x̄i = µA · xi. Then the following holds:

1. For each 1 ≤ i ≤ r we have

lim
n→∞

yn,i
a.s.
=


σB

√(
x̄i
σB

+
σB
x̄i

)(
x̄i
σB

+
βσB
x̄i

)
x̄i > σBβ

1
4

σB(1 +
√
β) x̄i ≤ σBβ

1
4

2. Let 1 ≤ i ≤ r and 1 ≤ j ≤ mn. If x̄i > σBβ
1
4 and j ≤ r, we have

d · lim
n→∞

|〈ũi,un,j〉|2
a.s.
=


( x̄i

σ )4 − β
( x̄i

σ )4 + β( x̄i

σ )2
x̄i = x̄j

0 x̄i 6= x̄j

(8)

and

d · lim
n→∞

|〈ṽi,vn,j〉|2
a.s.
=


( x̄i

σ )4 − β
( x̄i

σ )4 + ( x̄i

σ )2
x̄i = x̄j

0 x̄i 6= x̄j

Where di = |{xj |xj = xi}|. Otherwise, both quantities converge a.s to 0 as n→∞.
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Proof of Theorem 1. By lemma 3 we have that for any singular value hard threshold estimator
λ, AMSE is given by (11). As for the bottom case in (11), clearly x2 is strictly increasing in x,
and therefor in x as well. As for the top case in (11), direct differentiation shows that it is strictly
decreasing. It follows that the two functions of x intersect at a unique point. Denote their intersection
point by xest = µAx

est:

xest = σB

√
1 + β +

√
1 + 14β + β2

2
.

From the displacement formula 18, it follows that the following hard threshold for Y’s singular values
achieves the minimum AMSE between the above two expressions:

λ∗ = σB
(√

(
xest

σB
+

σB

xest
)(
xest

σB
+
βσB

xest
)
)

.

Proof of Theorem 2. Recall that for any matrix X , ||X||2F = 〈X,X〉 where 〈·, ·〉 is the
Hilbert–Schmidt matrix inner product. The notation 〈X,X〉 refers to Hilbert–Schmidt matrix inner
product or to the standard Euclidean inner product. Denoting our shrinker by η = η(y),and let
η = η(yi)

µA
, we evaluate the mean square error:∣∣∣∣∣∣∣∣ 1

µA
X̂η(Y )−X

∣∣∣∣∣∣∣∣2
F

= 〈 1

µA
X̂η(Y )−X, 1

µA
X̂η(Y )−X〉HS =

〈 1

µA
X̂η(Y ),

1

µA
X̂η(Y )〉+ 〈Xn, Xn〉 − 2〈 1

µA
X̂η(Yn), Xn〉 =

mn∑
i=1

η(yn,i)
2 +

r∑
i=1

x2
i − 2

r∑
i,j=1

xiη(yn,i)〈aib′i,un,jv′n,j〉 =

mn∑
i=r+1

η(yn,i)
2 +

r∑
i=1

[
η(yn,i)

2 + x2
i − 2xi

r∑
j=1

η(yn,j)〈aib′i,un,jv
′
n,j〉
]
.

We now assume that ∀i, yi < σ(1 +
√
β), η(yi) = 0; this is justified inside the proof of 3. As the

first step of our analysis, we also assume that rank(X) = 1 to get when n→∞:∣∣∣∣∣∣∣∣ 1

µA
X̂η(Y )−X

∣∣∣∣∣∣∣∣2
F

a.s.
= η(yn,1)2 + x2

1 − 2x1η(yn,1)〈a1b′1,un,1v
′
n,1〉 =

η(yn,1)2 + x2
1 − 2x1η(yn,1)〈a1,un,1〉〈b′1,v′n,1〉.

Differentiating w.r.t η and comparing to zero we get: η = x1〈a1,un,1〉〈b′1,v′n,1〉. We would like to
express η as a function of y = y1 instead of x1. When n→∞, the expression 〈a1,un,1〉〈b′1,v′n,1〉
is known. x1 can be expressed as a function of y as in 7. Denote t = µA·x

σB
, then we have:

η = x1〈a1,un,1〉〈b′1,v′n,1〉 = σB ·
t4 − β√

(t4 + βt2)(t4 + t2)
=
σ2
B

y

t4 − β
t2

=
σ2
B

y
(

√
t2 − β

t2
)2

=
σ2
B

y

√
(t2 +

β

t2
)2 − 4β =

σ2
B

y

√
((t+

1

t
)(t+

β

t
)− β − 1))2 − 4β =

σ2
B

y

√
(
y

σB

2
− β − 1)2 − 4β.

Finally:

η∗ =


σ2
B

µAy

√
((
y

σB
)2 − β − 1)2 − 4β y ≥ σB(1 +

√
β)

0 y < σB(1 +
√
β)
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Now without the assumption that rank(X) = 1, we have:∣∣∣∣∣∣X̂η(Y )−X
∣∣∣∣∣∣
F

a.s.
=

r∑
i=i

η(yn,i)
2 + x2

i − 2xiη(yn,i)〈ai,un,i〉〈b′i,v′n,i〉.

Here there are r independent positive summands; the minimum of each is achieved by η∗ above
8.

Proof of Theorem 3. We first calculate xcritical(λ∗).

Let x = µAx, and λ a threshold operator s.t. λ ≥ σB(1 +
√
β). Denote by xest = µAx

est be the
unique solution to the intersection equality of (3):

x2 = σ2
B((

x

σB
+
σB
x

)(
x

σB
+
βσB
x

)− ((
x

σB
)2 − 2βσ2

B

x2 ))

The left and right hand expressions denote the zero estimator loss L1(λ0|X) and L(λ|X) for a given
λ accordingly. For x < xest = σB

µA
c, L1(λ0|X) < L(λ|X) for any λ, and the proof for xcritical(λ∗)

follows.

We now turn to xcritical(η∗). According to the fundamental displacement lemma (lemma 2 ), xi
is asymptotically undetectable– displaced to a value independent of x – if its matching limit data
singular value yi ≤ σB(1 +

√
β). The transition between detectable and undetectable is at:

xi = σBβ
1
4

Assume a shrinker η different from the zero shrinker, s.t. for yi ≤ σB(1 +
√
β), η(yi) 6= 0. The

AMSE expression for any shrinker is:∣∣∣∣∣∣∣∣ 1

µA
X̂η(Y )−X

∣∣∣∣∣∣∣∣2
F

= 〈 1

µA
X̂η(Y )−X, 1

µA
X̂η(Y )−X〉HS =

〈 1

µA
X̂η(Y ),

1

µA
X̂η(Y )〉+ 〈Xn, Xn〉 − 2〈 1

µA
X̂η(Yn), Xn〉 =

mn∑
i=1

η(yn,i)
2 +

r∑
i=1

x2
i − 2

r∑
i,j=1

xiη(yn,i)〈aib′i,un,jv′n,j〉

For η as assumed above, the expression
∑mn

i=1 η(yn,i)
2 tends to∞ with n: there are infinitely many

noise singular values that are shrunk to a positive value. The other summands are bounded, so
L(η|X) < L(η0|X) and therefore,

xcritical(η∗) =
σBβ

1
4

µA
.

Proof of Theorem 4. We start with Mλ∗ . From lemma 3 the maximal AMSE is at the intersection
point of the AMSE expressions. This point is given by:

xest = µAx
est = σB

√
1 + β +

√
1 + 14β + β2

2

Given β = 1, plug in xest and the calculation of Mλ∗ follows.

Turning to MTSV D, TSVD is actually hard thresholding at the bulk edge. According to the displace-
ment formula 1,λTSV D = σB(1 +

√
(β)), thus signal slightly larger than xworst = σBβ

1
4 /µA, will

displace into a matching y value at slightly larger size than the bulk edge, and so the top loss term in

11



(11) applies. Direct differentiation shows that it is strictly decreasing. Noting that the first term is
larger than x2,the proof follows.

Turning finally to Mη∗ , similarly to when we derived the optimal shrinker, we begin by focusing on a
single singular value. Considering the optimal shrinker for a rank one matrix:

η = x1〈a1,un,1〉〈b′1,v′n,1〉,

and let t = (µA · x)/σB , the AMSE is:∣∣∣∣∣∣X̂η(Y )− µAX
∣∣∣∣∣∣2
F

=η(yn,1)2 + x1
2 − 2x1η(yn,1)〈a1,un,1〉〈b′1,v′n,1〉

a.s.
=

x2 − η2 =

µ2x2

(
1− (t4 − β)2

(t4 + βt2)(t4 + t2)

)
Choosing t2 = z, we get

σ2z

(
1− (z2 − β)2

(z2 + βz)(z2 + z)

)
According to the assumption on x, t > β

1
4 and therefore z >

√
β and the expression is monotonically

increasing with β, in β ∈ (0, 1]. Setting β = 1, the simplified expression is

σ2

(
2− 1

z

)
→
z→∞

2σ2

This is the expression for the squared asymptotic loss for every singular value, yielding worst case
AMSE of r2σ2 in total. Since the loss is measured against X and not µAX , we multiply the
expressions by a factor of 1

µ2
A

and the proof follows.

Proof of Lemma 1. We begin with the shrinker loss.

L∞(η|x) =

∣∣∣∣∣∣∣∣ 1

µA
X̂η(Y )−X

∣∣∣∣∣∣∣∣2
F

= 〈 1

µA
X̂η(Y )−X, 1

µA
X̂η(Y )−X〉HS

= 〈 1

µA
X̂η(Y ),

1

µA
X̂η(Y )〉+ 〈Xn, Xn〉 − 2〈 1

µA
X̂η(Yn), Xn〉

=

mn∑
i=1

η(yn,i)
2 +

r∑
i=1

x2
i − 2

r∑
i,j=1

xiη(yn,i)〈aib′i,un,jv′n,j〉

=

mn∑
i=r+1

η(yn,i)
2 +

r∑
i=1

[
η(yn,i)

2 + x2
i − 2xi

r∑
j=1

η(yn,j)〈aib′i,un,jv
′
n,j〉
]
.

Assuming that ∀yi < σB(1 +
√
B), η(yi) = 0,when n→∞:

a.s.
=

r∑
i=i

η(yn,i)
2 + x2

i − 2xiη(yn,i)〈ai,un,i〉〈b′i,v′n,i〉

The AMSE decomposition for a hard threshold λ is a result of lemma 3.

Lemma 3. AMSE of hard threshold λ. Fix the signal matrix’s rank r and let x ∈ Rr the fixed
rank singular values vector of the signal X . Let {Xn(x)}∞n=1 , {An}∞n=1 and {Bn}∞n=1, Let β
be the sequence asymptotic ratio Xn ∈ Rmn×n(R) where limn→∞mn/n = β. Let Yn matrix
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sequence s.t. Y = A
⊙
X + B as in the basic framework (2) with matching β, σB , µA. Let Y ’s

SVD decomposition be:

Y =

m∑
i=1

yiuiv
′
i (9)

Assume we estimate X by the hard threshold estimator with parameter k, i.e. by setting to zero Y ’s
singular values that are smaller than k:

X̂λ(Y ) =

m∑
i=1

ηH(yi;λ)uiv
′
i, , where ηH(y;λ) =

{
0 y < λ,
y otherwise

and let λ be a selected hard threshold s.t. λ ≥ σB(1 +
√
β).

Define the Asymptotic MSE:

AMSE(X̂λ(Y )) = lim
n→∞

∣∣∣∣∣∣∣∣ 1

µA
X̂λ(Yn)−Xn

∣∣∣∣∣∣∣∣2
F

and . Then

AMSE(X̂λ,x) =

r∑
i=1

M(X̂λ, xi) (10)

and

M(X̂λ, x) =


(
σB
µA

)2((
t+

1

t

)(
t+

β

t

)
−
(

(t2 − 2β

t2

))
x ≥ x(λ)

x2 x < x(λ)

(11)

where t = µAx/σB .

x(y) =

(σB/
√
2µA)

√
(y/σB)

2 − β − 1 +

√(
1 + β − (y/σB)

2)2 − 4β y ≥ σB
√

1 + β +
√
β(1 + µ2

A)

0 else

(12)

Proof of lemma 3 We’ll denote the SVD of a signal matrix X, which is an element of {Xn}, by:

X =
r∑
i=1

xiaib
′
i

∣∣∣∣∣∣X̂λ(Y )− µAX
∣∣∣∣∣∣2
F

= 〈X̂λ(Y )− µAX, X̂λ(Y )− µAX〉HS =

〈X̂λ(Y ), X̂λ(Y )〉+ 〈µAXn, µAXn〉 − 2〈X̂λ(Yn), µAXn〉 =
mn∑
i=1

ηH(yn,i;λ)2 +

r∑
i=1

xi
2 − 2

r∑
i,j=1

xiηH(yn,j ;λ)〈aib′i,un,jv′n,j〉 =

mn∑
i=r+1

µH(yn,i;λ)2 +

r∑
i=1

[
(µH(yn,i;λ)2 + xi

2)− 2xi

r∑
j=1

µH(yn,j ;λ)〈aib′i,un,jv
′
n,j〉
]
.

According to the displacement formula 1

1. yn,r+1
a.s.
= σB(1 +

√
β) < λ, the leftmost term above converges almost surely to zero.
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2. When 0 ≤ xi ≤ σBβ
1
4 , all that remains is

∑r
i=1 xi

2 which proves the second case of
lemma 3.

Assuming now xi ≥ σBβ
1
4 , we calculate the limit of every expression in:

r∑
i=1

[
(µH(yn,i;λ)2 + xi

2)− 2xi

r∑
j=1

µH(yn,j ;λ)〈aib′i,un,jv
′
n,j〉
]
.

1. According to the displacement formula:

lim
n→∞

ηH(yn,i;λ)2 a.s.
=

σ2
B(

xi
σB

+
σB
xi

)(
xi
σB

+
βσB
xi

) for yni
> λ ;

0 otherwise

2. According to the rotation formula:

lim
n→∞

〈aib′i,un,jv
′
n,j〉 = lim

n→∞
〈aj,un,j〉〈bi,vn,j〉

a.s.
=


( xi

σB
)4 − β

di

√
(( xi

σB
)4 + β( xi

σB
)2)(( xi

σB
)4 + ( xi

σB
)2)

for xi = xj ;

0 otherwise

where di = |{xj |xj = xi}|.
3.

lim
n→∞

µH(yn,j ;λ)〈aib′i,un,jv
′
n,j〉

a.s.
=


σB(( xi

σB
)4 − β)

( xi

σB
)3

for yni
> λ;

0 otherwise

4. For the last and rightmost element of the AMSE,assuming ∀i, di = 1:

−2xiµH(yn,j ;λ)〈ai,vn,j〉〈bi,un,j〉
a.s.
= −σ2

B

(
2x2

i

σ2
B

− 2β
σ2

x2
i

)
Adding all expressions yields for xi ≥ σBβ

1
4 and xi > x(λ):

M(X̂λ, x) = σ2
B((

xi
σB

+
σB
xi

)(
xi
σB

+
βσB
xi

)− ((
xi
σB

)2 − 2βσ2
B

xi
2 ))

. Which concludes the calculation by showing the first expression in the lemma. Since the loss is
measured against X and not µAX , we multiply the expressions by a factor of 1

µ2
A

and the proof
follows.

It remains to prove Lemma 2. The proof follows a strategy proposed by [27]. It is convenient to break
the proof into a sequence of lemmas, which are of independent interest.
Definition 5. Let Z be an m-by-n matrix. For u1,u2 ∈ Rm and v1,v2 ∈ Rn, define

H(w|u1,u2, Z) := u′1(w2In − ZZ ′)−1u2 (13)

Q(w|v1,v2, Z) := v′1(w2In − Z ′Z)−1v2 . (14)

Definition 6. LetZ = {Zn}∞n=0 be a sequence of matrices s.t. Zn ismn-by-n and limn→∞mn/n =
β. Let U = {Un}∞n=0 be any sequence of mn-by-mn orthonormal matrices with columns Un =
(un,1, . . . ,un,mn

). Similarly let V = {Vn}∞n=0 be any sequence of n-by-n orthonormal matrices
with columns Vn = (vn,1, . . . ,vn,n). Define

Hi,j(w | U ,Z) := lim
n→∞

H(w|un,i,un,j , Zn) (15)

Qi,j(w | V,Z) := lim
n→∞

H(w|vn,i,vn,j , Zn) (16)

assuming these limits exist almost surely.
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The following result is due to Bloemendal et al [2]:
Lemma 4. Let Z = {Zn}∞n=0 a sequence of matrices s.t. Zn is mn-by-n and limn→∞mn/n =

β ≤ 1. Further assume that (Zn)i,j
iid∼ F , where F is some distribution with bounded moments, mean

0 and variance σ2/n. Let U and V be arbitrary sequences of orthonormal matrices as in Definition 6,
which are either nonrandom or independent of {Zn}. Then for all 1 ≤ i ≤ mn and 1 ≤ j ≤ n,

Hi,j(w | U ,Z)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j

Qi,j(w | V,Z)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j

where µZ(t) is the density of the Marc̆enko-Pastur distribution [25] given by

µZ(t) =
4σ4β − (t2 − σ2 − σ2β)2

2πσ2βt
1β−,β+(t) , (17)

where β± = σ2(1±
√
β)2 .

The next lemma shows that the matrix with entries Ai,jXi,j , with Ai,j
iid∼ (µA, σ

2
A), and Xn from

our signal model, is well approximated by the matrix with entries E[A]Xi,j .
Lemma 5. Let A be a random variable with mean µA and variance σ2

A. Let {Xn} be a matrix
sequence satisfying assumptions A1–A3 (Section 2 in the main text). Let δn,1 be the largest singular
value of the matrix ∆n with entries

(∆n)i,j = Ai,jXi,j − µAXi,j .

Then δn,1
a.s.→ 0 as n→∞.

Proof. See [27] equations no. 35–38.

The next lemma shows that adding a “small perturbation” to Zn does not change the value of H and
Q from Definition 6.
Lemma 6. Let Z = {Zn}∞n=0 a sequence of matrices s.t. Zn is mn-by-n and limn→∞mn/n =
β ≤ 1, and let U and V be arbitrary sequences of orthonormal matrices as in Definition 6, which are
either nonrandom or independent of {Zn}. Assume that for some 1 ≤ i ≤ mn and 1 ≤ j ≤ n,

Hi,j(w | U ,Z)
a.s.
= f(w)δi,j and

Qi,j(w | V,Z)
a.s.
= f(w)δi,j .

Let {∆n}∞n=0 be a sequece of matrices of the same sizes and assume that δn,1
a.s.→ 0 as n → ∞,

where δn,1 is the largest singular value of ∆n (n = 1, 2, . . .). Denote by Z̄ the sequence of matrices
{Zn + ∆n}. Then also

Hi,j(w | U , Z̄)
a.s.
= f(w)δi,j and

Qi,j(w | V, Z̄)
a.s.
= f(w)δi,j .

Proof. See [27] equations no. 33 and 34.

The next lemma in this chain of arguments is due to [1]:
Lemma 7. Let Z = {Zn}∞n=0 a sequence of matrices s.t. Zn is mn-by-n and limn→∞mn/n =
β ≤ 1. Assume that Xn is a sequence of matrices satistfying assumptions [A1]–[A3] from Section
2. Define Yn = Xn + Zn and let Xn =

∑r
i=1 xiũiṽ

′
i and Yn =

∑mn

i=1 yn,iun,iv
′
n,i denote their

singular value decompositions, respectively. Assume that for any U and V , which are arbitrary
sequences of orthonormal matrices as in Definition 6, either nonrandom or independent of {Zn}, we
have for all 1 ≤ i ≤ mn and 1 ≤ j ≤ n,

Hi,j(w | U ,Z)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j

Qi,j(w | V,Z)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j ,

where µZ(t) is given by (17). Then
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1. For each 1 ≤ i ≤ r we have

lim
n→∞

yni

a.s.
=

σ(

√
(
xi
σ

+
σ

xi
)(
xi
σ

+
βσ

xi
)) for xi > σβ

1
4

σ(1 +
√
β) for xi ≤ σβ

1
4 .

(18)

2. Let 1 ≤ i ≤ r and 1 ≤ j ≤ mn. If xi > σBβ
1
4 and j ≤ r, we have

d · lim
n→∞

|〈u0
ni
, unj
〉|2 a.s.

=


(xi

σ )4 − β
(xi

σ )4 + β(xi

σ )2
xi = xj

0 xi 6= xj

(19)

and

d · lim
n→∞

|〈v0
ni
, vnj 〉|2

a.s.
=


(xi

σ )4 − β
(xi

σ )4 + (xi

σ )2
xi = xj

0 xi 6= xj

(20)

Otherwise, both quantities converge a.s to 0 as n→∞.

We can finally connect the dots and prove Lemma 2.

Proof of Lemma 2. . Per the lemma statement, let Yn = fAn,Bn
(Xn) be a matrix sequence

following our signal model (Definition 2) with An
iid∼ (µA, σ

2
A/n) and Bn

iid∼ (0, σ2
B/n). Let An

be an mn-by-n matrix with entries (An)i,j
iid∼ An and let Bn be an mn-by-n matrix with entries

(Bn)i,j
iid∼ Bn. We can write (Yn)i,j = (An)i,j(Xn)i,j + (Bn)i,j . Letting ∆n be the mn-by-n

matrix with entries (∆n)i,j = (An)i,j(Xn)i,j − µA(Xn)i,j we have

Yn = µAXn + Bn + ∆n .

By Lemma 5, the top singular value δn,1 of ∆n satisfies δn,1
a.s.→ 0 as n→∞.

Now, choose arbitrary sequences of orthonormal matrices U and V as in Definition 6, either nonran-
dom or independent of {Bn}. Let B denote the matrix sequence {Bn} and let B̄ denote the matrix
sequence {Bn + ∆n}. Invoking Lemma 6 we obtain

Hi,j(w | U ,B)
a.s.
= Hi,j(w | U , B̄)

Qi,j(w | V,B)
a.s.
= Qi,j(w | V, B̄) .

for all 1 ≤ i ≤ mn and 1 ≤ j ≤ n. However, by Lemma 4, for all 1 ≤ i ≤ mn and 1 ≤ j ≤ n we
have

Hi,j(w | U ,B)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j

Qi,j(w | V,B)
a.s.
=

∫
dµZ(t)

w2 − t2
δi,j ,

where µZ(t) is given by (17) with σ ≡ σB . It follows that the sequence Yn = µAXn + (Bn + ∆n)
satisfies all the assumptions of Lemma 7, for arbitrary U and V . We therefore conlude that, for Yn,
equations (18), (19) and (20) hold, replacing σ with σB and xi with x̄i (1 ≤ i ≤ r). The lemma
follows.

9 Contamination modes

We describe here contamination modes that did not enter the main text.
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Basic contamination modes

1. Additive noise. The simplest form of contamination is noise added to each entry. Assume
Yi,j = Xi,j +Zi,j . The matching parameters for the model A

⊙
X +B are µA = 1, σA =

0, σB = σZ .
2. Missing-at-random. Assume data with entries that are missing-at-random, where missing

entries are replaced by zeros with probability (w.p.) 1− κ. Assume

Yi,j =

{
Xi,j w.p. κ
0 w.p. 1− κ ,

.

The matching parameters for the model A
⊙
X +B are µA = κ, σA = 0, σB = 0.

3. Outliers-at-random. When some entries of Y contain inordinate level of noise, the corre-
sponding entries are said to be outliers:
Assuming that this noise is additive, we can write

Yi,j =

{
Xi,j w.p. κ
Xi,j +Wi,j w.p. 1− κ .

With Wi,j
iid∼ (0, τ2). The matching parameters for the model A

⊙
X + B are µA =

1, σA = 0, σB =
√

(1− κ)τ2.
4. Multiplicative Noise. Each signal entry is multiplied by a random noise distribution

sample. Yi,j = Zi,j · Xi,j . The matching parameters for the model A
⊙
X + B are

µA = µZ , σA = σZ , σB = 0.
5. Corrupt-at-random. In some measurement processes some entries are completely de-

stroyed and replaced by randomly generated noise. To distinguish this form of contamination
from simple outliers, where the original entry is not replaced, we refer to this as corruption.
Assume

Yi,j =

{
Xi,j w.p. κ
Wi,j w.p. 1− κ .

,with Wi,j
iid∼ (0, τ2). The matching parameters for the model A

⊙
X + B are µA =

κ, σA = 0, σB =
√

(1− κ)τ2.

Composite contamination modes

1. Additive noise and missing-at-random. Assume that additive noise has been added and
then some entries were deleted and replaced with zeros. Then

Yi,j =

{
Xi,j + Zi,j w.p. κ
0 w.p. 1− κ .

The equivalent A,B selection is: µA = κ, σA = 0, σB =
√
κσ2

Z .
2. Additive noise and outliers-at-random.

Yi,j =

{
Xi,j + Zi,j w.p. κ
Xi,j +Wi,j w.p. 1− κ .

Where Wi,j
iid∼ (0, τ2), and τ is large compared to σZ . The equivalent A,B selection is:

µA = 1, σA = 0, σB =
√
κσ2 + (1− κ)τ2.

3. Multiplicative noise and corrupt-at-random.

Yi,j =

{
Zi,jXi,j w.p. κ
Wi,j w.p. 1− κ .

The equivalent A,B selection is: µA = κ · µA, σA = 0, σB =
√

(1− κ)τ2.
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10 Conclusions

Singular value shrinkage emerges as an effective method to reconstruct low-rank matrices from
contaminated data that is both practical and well understood. Through simple, carefully designed
manipulation of the data singular values, we obtain an appealing improvement in the reconstruction
mean square error. While beyond our present scope, following [16], it is highly likely that the
optimal shrinker we have developed offers the same mean square error, asymptotically, as the best
rotation-invariant estimator based on the data, making it asymptotically the best SVD-based estimator
for the target matrix.
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