Appendix

A Proof of Well-Definedness of Mutual Information

To prove the well-definedness of I(X;Y'), we need to show that Pxy is absolutely continuous
with respect to Px Py. That is equivalent to show that for any measurable set A C X x ) such
that Px Py (A) = 0, we have Pxy (A) = 0. We will prove the contrapositive statement: for any
measurable set A C X' x ) such that Pxy (A) > 0, we have Px Py (A) > 0. Consider a simple case
that A is a rectangle set, i.e. A can be written as A = A* x AY, where A*, AY are measurable sets in
X and Y respectively. Then

PXpy(A) = Px(AI)Py(Ay) = PXY(Az X y)ny(X X Ay)
> Pxy(A)Pxy(A) = (Pxy(4))*> >0 (10)

Since X and ) are Euclidean spaces, for any measurable set A C X x ), we can decompose
A as a countable union of disjoint rectangle sets. Let A = |J;2, A;, where A4; = A? x AY.
Since Pxy(A) > 0, there exists A; such that Pxy (4;) > 0, so PxPy(A;) > 0. Therefore,
Px Py (A) > 0.

Given that Pxy is absolutely continuous with respect to Px Py, by Radon-Nikodym theorem, there
exists a function f such that for any measurable set A, f A fdPx Py = Pxy(A). This f is the

Radon-Nikodym derivative d‘g; ng in (I).

B Proof of Theorem /1]

To prove the asymptotic unbiasedness of the estimator, we need to write the Radon-Nikodym

derivative in an explicit form. The following lemma gives the explicit form of d‘g; Py -

Lemma B.1. Under Assumption 3 and 4 in Theorem d“;ixgy = f(z,y) = lim, o %.

Now notice that In(X;Y) = L SN ¢, where all ¢ are identically distributed. Therefore,
E[f ~(X;Y)] = E[&;]. Therefore, the bias can be written as:

BTN (V) - 1067)| = |Exy Bla X Y] - [1og /(X Y)Pxy |

IN

/‘E[§1|X7Y]—logf(Xay)‘dPXY- (11)

Now we will give upper bounds for ‘]E [6]1X,Y] —log f(X,Y) ’ for every (z,y) € X x Y. We
will divide the space into three parts as X' x Y = Q| Q2 | 23 where

L4 Ql = {(I,y) : f(xay) :0}7
o Oy ={(z,y): f(z,y) > 0, Pxy(z,y,0) > 0};
o O3 ={(z,y): f(z,y) >0, Pxy(z,y,0) =0} .

We will show that limpy_, o fQ ‘E[§1|(X, Y) = (z,y)] — log f(x,y) ‘dPXy = 0 for each
i € {1, 2,3} separately.

(x,y) € 1: In this case, we will show that 21 has zero probability with respect to Pxy .

PXY(Ql):/ dPxy = f(X,Y)dPXPy:/ 0dPxPy =0 (12)
Ql Ql Q1

Therefore, ,, )E 611X, Y] — log f(X,Y) ‘dPXY —0.
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(x,y) € Qq: In this case, f(z,y) is just Pxy (z,y,0)/Px (z,0)Py(y,0). We will first show that the
probability that the k-nearest neighbor distance pj ; > 0 is small. Then with high probability, we

will use the the number of samples on (z,y) as k;, and we will show that the mean of estimate &; is
closed to log f(x,y).

First, the probability of p; 1 > 0 is upper bounded by:
P(pra>0[(X,Y) = (z,y))
k—1

N-—-1

= Z < m )PXY(mvyaO)m(l_PXY(x’y’O))N1m

m=0

k—1
S ZNm(l_PXY($7y7O))N_k

m=0
< kN*(1 - Pxy(z,y,0)V "
g kae—(N—k)PXY(wvyao) . (13)

Conditioning on the event that p;, 1 = 0, we have &; = w(l;j) +log N —log(ngz,1+1) —log(ny,1+1),
where the distribution of k1, n, 1 and n, ; are given by the following lemma.

Lemma B.2. Given (X,Y) = (x,y) and pp.1 = 0, then ki — k is distributed as Bino(N — k —
1, Pxy(z,y,0)); ng1 — k is distributed as Bino(N — k — 1, Px(z,0)); ny1 — k is distributed as
Bino(N —k—1, Py (y,0)). Given (X,Y) = (z,y) and px,1 = r > 0, then ny 1 — k is distributed as

Bino(N —k—1, £ ﬁi}l;f@yﬁ)“) ); ny.1—k is distributed as Bino(N —k—1, Py gyig;fé"’y(i’)y”) ).

Then we write ’E &(X,Y) = (2,9), pr,1 = 0] — log f(x,y) ’ as
E[6](X,Y) = (2.9), pr1 = 0] — log f(z,) |
= |E [w(ffl) +log N —log(ng 1 +1) —log(ny:1 + 1)|(X,Y) = (z,9), pr1 =0

PXY(xay70) ‘
Px (z,0) Py (y,0)

Elog(ng 1+ 1)|(X,Y) = (z,9), px.1 = 0] — log NPx (x,0) ’

— log

IN

+| B llog(ny1 + DICXY) = (2,9), pra = 0] — log NPy (3,0) |

+| E [6(k)I(X,Y) = (,9), pr1 = 0] ~ log NPxy (,4,0) | (14)

By Lemma [B.2] we know that n, ; — k is distributed as Bino(N — k — 1, Px (x,0)). The following
lemma establishes the mean of log(n, ; + 1).

Lemma B.3. If X is distributed as Bino(N, p), then |E[log(X + k)] —log(Np+k)| < C/(Np+k)
for some constant C.

Therefore, the first term of (T4) is bounded by:
| Eflog(ne1 + 1)|(X,Y) = (,9), pra = 0] ~ log NPx (s, 0) |

IN

| B flog(ne,1 + DI(X,Y) = (2.9), pr1 = 0] — log((N —k — 1) Px (2,0) + k+1) |

+‘ log((N — k — 1)Px(z,0) + k + 1) — log N Px (z, 0) ‘
c (N—k—l)PX(sc,O)—i—k—i—l‘

IN

1
(N —k—1)Px(@,0) + k41 |8 N Py (z,0)

(k+ 101~ Px(2,0))
pr(x,()) NPX(SC,O)

c (k+1)1 = Px(,0) _ k+C+1
N Px (z,0) N Px(z,0) = NPx(z,0)

IN

+log(1 +

. 5)

IN
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where we use the fact that log(1+ x) < z forall > 0. Similarly, the second term of (T4) is bounded
by: (k+ C +1)/(NPy(y,0)). For the third term, notice that |¢(z) — log(x)| < 1/ for every

integer x > 1, therefore, |1)(k1) — log(lgl)| < 1//%1 < 1/k. So the third term of (I4) is bounded
by: (k+ C +1)/(NPxy(z,y,0)) + 1/k. By Combining three terms together and noticing that
Px(x,0) > Pxy(z,y,0) and Py (y,0) > Pxy(z,y,0), we obtain

E[G](XY) = @), pra = 0]~ log (@) |

k+C+1 Ek+C+1 k+C+1 1 3k+3C+3 1
+ IS T L 2 (16)
NPX('I?O) pr(y,O) NPXY(xay7O) k NPXY(:Ea?%O) k

Combine with the case that p; ;, > 0, we obtain that:
|E[6I(X,Y) = (@,9)] ~ log f(.9) |
< |BGIXY) = (@), pea > 0]~ log f(,9) | < B (pra > 0)
+|Ela(X.Y) = (@.9), pra = 0]~ log £(2,9) | X P (pra = 0)
3k+3C+3 1

< (2log N 1 kNke—(N—k)Pxy(zy,0) 4 ©°% 9 T9 , =
< (2log N + | log f(z,y) JkN"e T NP0 Tk

where the first term comes from triangle inequality and the fact that |£;]| < 2log N. Integrating over

Q,, we have:
»/QQ

/ (2log N + | log f(z,y) |)kN*e™ N=RPxy(@.5.0) g py.,
Qo

3k+3C+3 1 1
dP -
* N [)2 PXY(xay7O) X k

a7)

E[£1|(X7Y) = (Qf,y)] - logf(xvy) dPxy

IN

IN

(2logN + [ | 10g f(z.9) [dPscy JhN*e~ OV nfecos P (o)
2

3k+3C+3 1

+ N ) o (18)
where p denotes counting measure. By Assumption 1, k& goes to infinity as /N goes to infini-
ty, so 1/k vanishes as IV increases. By Assumption 1 and 2, k/N goes to 0 and 2 has finite
counting measure, so the second term also vanishes. Since )5 has finite counting measure, so
inf(; yycq, Pxy(z,y,0) = € > 0. By Assumption 5, fQQ | log f(z,y) |dPxy < +oc. Therefore,
for sufficiently large NV, the first term also vanishes. Therefore,

tim_ | ‘IE[§1|(X,Y) = (z,)] —1ogf(a:,y)‘dPXy ~0. (19)

N—o0

(z,y) € Q3: In this case, Pxy (z,y, ) is a monotonic function of r such that Pxy (x,y,0) = 0 and
lim, o Pxvy(z,y,7) = 1. Hence, we can view log ( Pxy (z,y,r)/Px(z,r)Py(y,r)) as a func-
tion of Pxy (x,y,r), and it converges to log f(x,y) as Pxy (z,y,r) — 0, for almost every (z, y).
Since Pxy (Q23) <1 < 400 and fQ3 |log f(x,y)|dPxy < 4o0. Then by Egoroff’s Theorem, for
any ¢ > 0, there exists a subset £ C 23 with Pxy (F) < € and fE |log f(z,y)|dPxy < €, such
that log ( Pxy (z,y,7)/Px(x,r)Py (y,r) ) converges as Pxy (x,y,r) — 0, uniformly on Q3 \ E.
For (z,y) € E, notice that |£;]| < 2log N, so we have:

| |B100Y) = ()] = o £ | aPxy
< /(210gN+\logf(a:,y)|)dPXy<(2logN+1)e. 20)
E

By choosing € appropriately, we will have limy_ o [, ‘ E&|(X,Y) = (z,y)] —
log f(,y) ’ dPxy = 0.
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Now for any (z,y) € Q3 \ E, since Pxy(z,y,0) = 0, we know that
P(pr1=0](X,Y)=(x,y)) =0, so k; = k with probability 1. Conditioning on py; = r > 0,
the difference ’ E&|(X,Y) = (z,y)] — log f(x,y) ’ can be decomposed into four parts as follows

E[6(XY) = (@,9)] — log f(a.y) |

— ‘/OOO(E[£1|(X,Y):(x,y)yl)k,l:T]—logf(x7y))dekl()‘

Pxy(z,y,7)

< —1 ) ) dF ‘ 21
< | (tor T o fla) ) B () an
[ (6~ 108N ~10g Py () B, ()] @2)

r=0
4] [ (B gl + DI Y ) = (05,0)] = log(N Px(.)) ) dF (1) (23

r=0

+ / (E flog(ny,1 + DI(X,Y, pr,1) = (2,y,7)] = log(N Py (y,7)) ) dF}, , (r)

r=0

here F,, , (r) is the CDF of the k-nearest neighbor distance py, 1, given (X,Y) = (z,y). By results

of order statistics, its derivative with respect to Pxy (z, y,r) is given by:

dF,, , N —1)! _ e
dPx;(z(y)r) - (kl()!(N)kl)!PXY(x’y’r)k (1= Py (@)™ 29)

Now we consider the four terms separately. For (1)), since log ( Pxy (x,y,r)/Px(z,r)Py (y,r))
converges as Pxy (x,y,r) — 0, uniformly on Q3 \ E. So for every (z,y) € Q3 \ E, there
exists an 7 such that Pxy (z,y,rn) = 4klog N/N and |log ( Pxy (z,y,7)/Px(x,r)Py (y,r) ) —
log f(z,y)| < dn for every r < ry. Here ry may depend on (x,y), but é 5 does not depend on
(2,y) and limy_, o 6§ = 0. Therefore, (Z1) is upper bounded by:

[ (o ) ) ) )

Pxy (z,y,r) ‘
< 1 1 ) |dF,
LS o e Ll
Pxy (z,y,r)
+ ‘ lo —log f(z ’d )
/T R e L e R
< ONP(pra < |[(X,Y) = (z,y))

PXY(I';%T)
Px(fﬂ,'f’)Py(y,’r)

Firstly, the probability P(pr1 <rn|(X,Y) = (z,y)) is smaller than 1. Secondly, since
Px(z,y,r) > 4klog N/N > 1/N forr > ry, so we have |log Pxy (z,y,7)| < log N. The same
bounds apply for | log Px (z,7)| and |log Py (y, )| as well. By triangle inequality, the supremum is
upper bounded by 3log N + |log f(x, y)|. Finally, the probability P ( px,1 > rn | (X,Y) = (z,9))
is upper bounded by

+ (s o ~tog @) | ) Ppus > v | (X,7) = (2.9)) 20

r>rN

P(pr1 >y [(X,Y) = (2,9))
k—1

N -1

= Z ( m )PXY(x,yer)m(l - PXY(x,yer))Nilim

m=0

k—1
< D N™(1- Pxy(z,y,ry)V

m=0

4klog N

_ ENR(1— k og dklog NV
< k_Nk —2klog N __ k 27
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for sufficiently large N such that N — k > N/2. Therefore, (Z1)) is upper bounded by

[ (o g 2B o (o) ) )

k(3log N + [log (2, y)l)
Nk

< Idn+

(28)
For (22)), we simply plug in F),, , (r) and integrate over Pxy (x,y,) and obtain

[ ) = 108 N~ ok P (a,.) B (0
(N —1)!
k- DN —k—1)
X / (log Pxy (x,y,7))Pxy (z,y,r)*"* (1 — Pxy(x,y,7) )N_k_1 dPxy (x,y,r)
r=0
_ 1o (N -=1)! ! oo )EF—1(1 — )N —k-1
= Uk ~los N — e /tzo(l e t)tEL(1 — )N —F-1gy
= (k) —log N — (¢(k) —(N)) = (N) —log N . (29)

where we use the fact that 1 (k) — ¢(N) = Wl);w ftlzo(log t)tF=1(1 — )N —=*=1dt. Notice

that (V) < log N and limn_,o(¢)(N) —log N) = 0.

= ¢(k) —logN —

For (23), recall that in Lemma we have shown that conditioning on (X,Y) = (z,y) and ps 1 =
r >0, ng 1 — k is distributed as Bino(N — k — 1, (Px(z,7) — Pxy (z,y,7))/(1 = Pxy(x,y,7))).
The expectation E [log(n, 1 + 1)|(X,Y) = (x,y), px,1 = r] is given by Lemma Therefore, we
can rewrite the term (23)) as:

‘ /:(IE[log(nxJ + D|(X,Y) = (z,9), prn = r] —log N —log Px(x,r))dF,, (r) ‘

< ‘ / (]E[log(nm,l + 1)|(X7Y) = (x,y),Pk,l = ’r]
r=0
Px(x,r) — Pxy(z,y,7)
— 1 N—-k—-1 1 F, ‘
Og(( g ) 1— Pxvy(z,y,7) TR )d pkl()
_ NP (a:r) P (w’yT)
NPX(z,r) Pt
< / ‘E [log(nz,l + 1)|(Xa Y) = (xay)vka = T]
r=0

Px(z,r) — Pxy(z,y,7)
1-—- PXY(xayar)

~log ((Nk: 1) +k+1> ’dem(r) (30)

N(P - P k+1)(1-P
+‘Er[log< (Px (%,7) = Pxy(2,y,7)) + (k + 1)( X(Iﬂ’)))] ’ 31)
NPX(:U7T)(1 - PXY($7y7T))
where E,. denotes expectation over F,, . . By Lemma@ the term (30) is upper bounded by
| |Blogtnn + DY) = @00 prs =)
r=0
PX(va) B PXY(xvyar)
“log [ (N—k—1 k41 ’dF
ox (¢ )P B 1) [aF ()
* c
</ AF,, ()
=0 (N — k = P fotesn 4 gy
< C C
< ——dF, = . 2
< [ R0 - 5 @
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For (3T), by the fact that log(z/y) < (z — y)/y for all 2,y > 0 and Cauchy-Schwarz inequality, we
have the following:

N(Px(z,r) — Pxy(z,y,7)) + (k+ 1)(1 — Px(x,r))
2. 1os NPx (@, 1)1 — Py (@.5.7) )]
[ N(Px(x,r) — Pxy(z,y,7)) + (k+1)(1 — Px(z,7)) 1}
| NPx(z,7)(1 — Pxy(x,y,7))
[ (k+1— NPxy(z,y,7))(1 — Px(z,7)) }

i NPx(z,r)(1 — Pxy(z,y,7))
"

<k +1- NPXY(x,y,r))2 .
NPxy (z,y,r) "

Notice that Px (x,r) > Pxy (x,y,r) for all r, so the second expectation is always no larger than 1.

For the first expectation, we plug in F, | (r) and integrate over Pxy (z,y,7), lett = Pxy (x,y,7)

and observe,

IN
=
g

IN

ny(x,y,r)(l - Px(l','f')) 2
(et oty ] 9

E,

(k+ 1 pry(lli,y,’l")>2
NP)(Y(-T,y,T)

o k:+1—NPXy(x,y,r)>2
dF,.
/r 0 ( N.ny(x’y,r) Pi,xy (T)

WV —1): Dk 1-NB?, L
(k= DN — k= 1)! /to Nept (L =pN Tt
N k+1)2 1, s

(k- 1()'(N )k ) ( NQ) ‘/t_otk 3(1—t)N k dt

(N —1)! 2k+1) (1 s k-1
s ey el A
(
)

N — ! L
TR >1<;1)/ th=3(1 — )N =k-1gt
(N —1)! (k+1)% (k=3)(N —k—1)!

(k-D(N-k-1)! N2 (N —3)!
(N —1)! 20k +1) (k—2)(N -k —1)!
T kh-DI(N-—k—1) N2 (N —2)!
(N-1)(N-2)(k+1)> 2(N-1)(k+1)

- Nk D=2 NG 1) +1. (34)

For sufficiently large N and £, it is upper bounded by C;(1/N + 1/k) for some constant C; > 0.
Therefore,

+

+1

E [log < N(Px(z,r) — Pxy(z,y,7)) + (k+1)(1 — Px(z,7)) ) ] - 1 1) )

NPx(2,7)(1 = Pxy (2,9,7)) Gy +3)

k
Similarly, by using the fact that log(x/y) > (« — y)/x and Cauchy-Schwarz inequality again, we
conclude that there are some constant C; > 0 such that

N(Px(z,r) — Pxy(z,y,7)) + (k+ 1)(1 = Px(z,7)) 1 1
> —+).
e s NPx(e,1)(1~ Py (5,9,7) Cly TR o
Therefore, by combining (32)), (33) and (36), we obtain

‘ /Oc:) (E [log(ng1 + 1)|(X,Y) = (2,9), pr1 =] — log N — log Px (2, 7)) dF,, ()

O ok . 37)
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where C’ = max{C1, C>}. Since (24) and (23) are symmetric, the same upper bound (37) also
applies to (24). Combine (28), 29) and (37), we have

E[G1(XY) = @.9)] —log f(a.y) |

k(3log N + |1 2C 1.1
< ed (3log wkogf(%y)\)+10gN_¢(N)+m+2 Clly+73) 69

for every (z,y) € Q3 \ E. By integration over 3 \ E, we have

/Q . E[61(X.Y) = (@.9)] ~ log f(z.) | dPxy

< / (5N+k(310gN+]J,1€ng<x’y)|)+longw(N)
Qg\E
2C [, 1 1
+k—+1+2 C(N+E))dPXY
k(3log N + log f(x,y)|dP
< Gyt (3log fXxy\ g f(x,y)| XY)—i—logN—z/J(N)

20 11
e 2O Gt (39)

By Assumption 1, k increases as N — oco. By Assumption 5, fXxy |log f(z,y)|dPxy < +o0.
Therefore, this quantity vanishes as N — co. Combining with the case that (x,y) € F, we have

Jm | [EI6(X,Y) = (2,9)] — log f(2,y) | dPxy = 0 (40)

B.1 Proof of Lemma [B.1]

We will need to prove that for any measurable set A C X x ), we have fA fdPx Py = Pxy (A). For

any € > 0, by Egoroff’s Theorem, there exists B C X’ x ) such that Pxy (B®) < ¢, Px Py (B%) < ¢
and Pxy (x,y,r)/Px(x,r)Py (y,r) converges to f(x,y) uniformly on B. Now we have:

Pyy(A) - /A APy Py |

= ‘PXy(AmB)+ny(AﬂBC)7/ fdPXpyf/ fdPXpy|

ANB ANB¢
< ‘ny(AmB)f fdPXpy‘+ny(AﬂBC)+/ fdPXpy
ANB ANBC
< |Pxy(ANB) - fdPx Py| + Pxy (B®) + CPx Py (B°)
ANB
< |Pxy(ANB) - fdPxPy|+e(1+C), 41)
ANB

where C' is the upper bound for f(z,y) in Assumption 3. Now we need to deal with the first term
of (#I)). By Assumption 4, X x Y can be decomposed into countable disjoint sets { F; }52; such that
f(x,y) is uniformly continuous on each E;, so by define A; = AN BN E;, we have

|PXY(AOB)—/ fdPxPy| < Z|PXY(Ai)—/ fdPx Py|. (42)
ANB i=1 A;

Since f(x,y) is uniformly continuous on E;, so there exists §; > 0 such that for every (z1,y1) €
A; C E; and (z2,y2) € A; C FE; such that |1 — z2|| < &1 and |ly1 — y=|| < &1, we have
|[f(z1,31) — f(z2,y2)| < e. Additionally, since Pxy (z,y,7)/Px(z,7)Py(y,r) converges to
f(z,y) uniformly on B, there exists d2 > 0 such that for every (z,y) € A; C Band r < d2, we
have |PxY (z,y,7)/Px(x,r)Py(y,7) — f(z,y)| < e. Take 6 = min{dy,d2}. Since A; is a subset
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of Euclidean space, we can decompose A; as A; = Uﬁ1Aij’ where A;; is a square set centered at
(x4, yi;) with radius r;; < ¢. Then consider the following simple function ¢(x, y),

Pxy(Aij) Pxy (%ij,Yij,Tij) . o
oz, y) = Px(ij)PYJ(Ai) - Px(ﬂi;njjpyj(yi;’rij) o i y) € Aij 43)
0, otherwise
Then we have
B > Pxy (Aij) B > B
¢(z,y)dPx Py = ) WCUDXPY =) Pxy(4y) = Pxy(4:)@44)
A; =1 Ay Px A Py Ay =

and
Pxy (i, Vi 7i5) . ) -
|¢(l’,y) - f(x7y)‘ S |PX($U7T7,])PY(:U”,TU) - f(xlj’yijﬂ + ‘f(xlj’ylj) f(l',y)|

< e+e=2 (45)

for every (z,y) € A;;. Therefore, we have

Pov(a)— [ fapcry] = | [ odrcny— [ gapcry]
< / |¢ — f|dPx Py < 2ePxPy(A;). (46)
Plug this to {@2), we have: 1
|Pxy(ANB) - /A JdPxPy| < i 2Py Py (A;) = QGPXPy(G A) <2 @)
n i=1 i=1

Plug this to @), we have |Pxy (A) — [, fdPxPy| < (3 4+ C)e. Notice that this statement holds

for any ¢ > 0. By choosing € | 0, we conclude that Pxy (4) = fA fdPx Py. Hence, f is the
Radon-Nikolym derivative.

B.2 Proof of Lemma|[B.2]

Given that (X1,Y7) = (z,y) and py1 = 7, we sort the samples {(X;,Y;)}¥, by their distance to
(z,y) defined as d; = max{||X; — z|, ||Y; — y||}- To avoid the case that two samples have identical
distance, we introduce a set of random variables { Z;}¥, i.i.d. samples from Unif[0, 1] and define a
comparison operator < as:

i<j <= di<d; or {di=d; and Z;<Z;} . (48)

Since for any ¢ # j, the probability that Z; = Z; is zero, so we can have either 7 < j or ¢ > j with
probability 1. Now let {2,3,..., N} = SU {j} UT be a partition of the indices with |S| = k — 1
and |T| = N — k — 1. Define an event Ag ; 1 associated to the partition as:

Asjr={s=<jVseS andt~jVteT}. (49)
Since (X;,Y;) — (x,y) are i.i.d. random variables each of the events Ag ; 7 has identical probability.
The number of all partitions is % and thus P (Ag ;1) = % So the cdf

of ky is given by:

P (7;1 < k+m|Pk¢,1 =r(X1,71) = (:v,y))

S,7,T

(N —k—=1l(k—1)! .
- (N — 1)' S'X:TP (kl <k+ m|AS»j7T7pk,1 =T, (X17Y1) = (x,y))
3T

Now condition on event Ag ; 7 and py 1 = 7, namely (X j» Y;) is the k-nearest neighbor with distance
r, S is the set of samples with distance smaller than (or equal to) r and 7" is the set of samples with
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distance greater than (or equal to) r. Recall that k; is the number of samples with d; < r. For any
index s € SU{j}, d; < r are satisfied. Therefore, k1 < k + m means that there are no more than
m samples in T with distance smaller than r. Let U; = I{d; < r ] d; > r}. Therefore,

P (];1 S k +m|AS,j,Tapk,1 =T, (Xl,Yl) = (xvy))

IP( S Hd <r}<m|d, <rVs €S, d;=rd zr,VteT)

leT
= P(Zﬂ{dl<r}<m\dl>r,v1€T>=P<2U1<m>, (51)
leT leT

where U, follows bernoulli distribution with P{U; = 1} = Pr{d; < r|d; > r}. We can drop the
conditioning of (X, Y;)’s for s ¢ T since (X, Y;) and (X¢, Y;) are independent. Therefore, given
that d; > r for all | € T, the variables I{d; < r} are i.i.d. and have the same distribution as U;. We
conclude:

P (1%1 <k+m|pp1=r1,(X1,Y1) = (wyy))
(N —k—1)!(k —1)!

Z P (];1 <k+ m|AS,j,Tapi,xy =7, (X1, Y1) = (Q?,ZJ))

O <
(N —k—1)lk—1)! -
- (N—l)! S%;TP<ZEZTUl<m>—P<l€ZTUZ<m> (52)

Thus we have shown that k; — k has the same distribution as 11 Ui, which is a Binomial random
variable with parameter |T'| = N —k — 1 and P{d; < r|d; > r} = P{d; = 0} = Pxy(z,y,0).
For n;,1 and n, 1, we can follow the same proof and conclude that n, ; — k and n, ; — k are also
Binomial random variables with || = N — k — 1. But the probabilities are different.

o If r = 0, then for n, ;, the probability is P{||X; —z|| < 0|d; > 0} = P{||X; —z| =0} =
Px (x,0) and the probability for n, ; is Py (y,0).

o 1f 7 > 0, then for 1., the probability is P{||X; — o] < r|d; > r} = Px{n=Por (e,

Py (z,m)—Pxv (z,y,7)
1-Pxvy (z,y,r)

Similarly, the probability for n, ; is

B.3 Proof of Lemma[B.J3|

By Jensen’s inequality, we know that E[log X| < log E[X] = log(Np + k). So it suffices to give an
upper bound for log(Np + k) — E[log X]. We consider two different cases.

(i) Np > k. In this case, for any x, by applying Taylor’s theorem around zy = Np + k, there exists
¢ between x and x( such that

xr—Np—k (z—Np—k)?

1 = log(NV,
og(z) = log(Np + k) + Np & 22 (53)
By noticing that ¢ > min{z, zo} = min{z, Np + k}, we have
r—Np—k (z— Np—k)?
—1 log(Np + k =
(t—Np—k)? (—Np—k)?*, _(z—Np—k)?® (z—Np—k)®
< < . (54
max{ 222 " 2(Np+k)? b 222 2(Np + k)? (>4)
Now let X — k be a Bino(V, p) random variable. By taking expectation on both sides, we have:
E[X]—-Np—k
—Ellog X] + log(N —_
[log X] +log(Np + k) + ==&~
X — Np—k)? E[(X — Np—k)?
_ g[(X=Np—k) [(X = Np—k)?] 55
2X2 2(Np + k)2
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Since E[X] = Np+k,E [ (X — Np— k)| = Var [X] = Np(1 —p), and
(X —Np-k)? U=Np?* (N ) N
e| | b (e

X2
(j — Np)? N\ —j
2 +2)(j +1) ( )p a=p"

(j — Np)? N+2\ i —j
2<N+2><N+1>p2<j+2>p+ a-p"

1
Ey ~Bino Y — Np)?

_ (N+2)p(1 —p) +4p? (N +2)p 1
- 2(N+2)(N+1)p = 2(N +2)(N +1)p = 2Np (56)

for k > 2 and N > 4. Plug these in (33), we have

I
Mz

0

<.
I

M=

0

<.
Il

I
M=

<.
I
=)

1, Np(l-p)
E[logX]+log(Np+k)_2N +2(Np+k’)2
[ SR

Np+k 2(Np+k) 2(Np+k)’

where 1/(2Np) < 1/(Np + k) comes from the fact that Np > k.

(57)

(ii) Np < k. In this case, for any x, by applying Taylor’s theorem around z¢y = Np + k, there exists
¢ between x and z( such that

r—Np—k (xr— Np—k)?

1 =log(Np+k — 58
og(z) = log(Np + k) + Np+F 52 (58)
By noticing that { > min{x, 2o} > k > (Np + k)/2, we have:
r—Np—k _2(x— Np—k)?
—1 log(Np + k < 59
og(x) + log(Np + k) + Npth S (Npr R (59)
Similarly, by taking expectation on both sides, we have
E[X]-Np—k _E[2(X —Np—k)?]
— Ellog X| + log(Np + k < 60
[log X] + log(Np + k) + Nprk S Np + 1) (60)
By plugging in E[X| = Np+kandE [ (X — Np — k)?] = Var [X] = Np(1 — p), we obtain
2Np(1 — N k 2
— Ellog X] + log(Np + k) < YpL=p)  2Np+ k) 61)

(Np+k)? = (Np+k)> Np+k'

Combining the two cases, we obtain the desired statement.

C Proof of Theorem

We use the Efron-Stein inequality to bound the variance of the estimator. For simplicity, let ™) (2)
be the estimate based on original samples {Z1, Zs, ..., Zx}, where Z; = (X;,Y;). For the usage of
Efron-Stein inequality, we consider another set of i.i.d. samples {Z], Z, ..., Z/ } drawn from Pxy.

Let IA(N)(Z(j)) be the estimate based on {Z1,..., 71,7}, Zjt1,...,Zn}. Then Efron-Stein
inequality states that

a.r[f(N)(Z)} < ;i_v: {(ﬂN f(N>(Z<J'>))2]. (62)
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Now we will give an upper bound for the difference |IN)(Z) — TV)(Z(@)] for given index j.

First of all, let f(N)(Z\j) be the estimate based on {Z1,...,Z;_1, Zj41,...,Zn}, then by triangle
inequality, we have:

sup | TV (2) — T (Z2)) \

2y 2N 2

< sup (‘f(N)(Z) —T™(z) ‘ + ‘T<N>(z\j) _ T (7)) D
Zv,e I, 2

< sup (f(M(Z) —T™(z,) ( + sup ]ﬂm(z\j) — Mz
Z1ye 2 2y 212 D1 e I

= 2 sup ‘f(N)(Z)—ﬂN)(Z\j)‘ (63)

Z1ve N
where the last equality comes from the fact that {Z,,...,Z;_1, Z} Zjt1,-..,Zn} has the same

joint distribution as {Z1, ..., Zn }. Now recall that

N N
ANy L -1 7 _ . _ .
™(z) =+ ;&(2) = ; (zb(kl) +1log N — log(ng.; + 1) — log(ny.; + 1)) (64
Therefore, we have

N
; 2
su TN ()~ TV (70| < 2 4 (2) — (20 65)
Zl,~u7ZpN7Z]l‘ 2 ( )‘_NZ P ; §i(2) — & \-7)

Now we need to upper-bound the difference | £;(Z) — &;(Z\ ;) | created by eliminating sample Z; for
different ¢ ’s. There are three cases of 7’s as follows,

e Case L. i = j. Since the upper bounds [{;(Z)| < 2log N and |£;(Z\;)| < 2log(N — 1)
always holds, so | £;(Z) — &;(Z\;) | < 4log N. The number of i’s in this case is only 1. So
ZCaseI ‘ 52(2) - gl(Z\J) | S 410gN

o CaselIL p; ,,, = 0. In this case, recall that ki = ‘ {i/ #i:2Z;, =27y}
X, = Xi} {i' #i:Yi=Yu}
- Casell.l. Z; = Z;. By eliminating Z;, l;i, Ng i, Ny,; Will all decrease by 1. Therefore,
1€:(Z) = &i(Z\;) |
= | (zz;(z;l) +log N —log(ng,; + 1) —log(n,,: + 1))
— (ki = 1) +log(N — 1) — log(ns.) ~ log(ny.) ) |

(k) — ¥(k; — 1)| + | log N — log(N — 1)
+ [log(ng,; + 1) —log(ng )| + [log(ny; + 1) — log(n, ;)|
1 1 1 1 4 4

—t—+ + <= == . 66
kifl N -1 Ng.i Ty i klfl kj*l ( )

,Tlx,iz’{i/#ii

and n, ; = . There are 4 sub-cases in this case.

IN

The number of i’s in this case is the number if i’s such that Z; = Z;, which is just k;.
Therefore, D ooy | 6i(Z) = &i(2\;) | < 4k;/(k; —1) <8, fork; > k > 2.
- Case IL2. X; = X; butY; # Y. By eliminating Z;, k; and n, ; won’t change but
ng,; will decrease by 1. Therefore,
16i(Z) =&(Z;)| < [log N —log(N — 1)| +[log(ny,; +1) — log(ns,;)|
1 1 2 2

< — < = 67
- N -1 + Ny i - Ng.i Ng,j ( )

The number of ¢’s in this case is the number if i’s such that X; = X; but ¥; # Y},
which is less than n, ;. Therefore, Y .15 16i(Z) = &i(2\;) | < 2np /0y < 2.
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- CaselL3. Y; = Y; but X; # X;. By eliminating Z, l~ci and n, ; won’t change but n, ;
will decrease by 1. Similarly as Case I1.2, we have » ... 1151 &i(Z) — &i(2y;) | < 2.

- Casell4. X; # X; and Y; # Y. In this case, none of ki, Mg, OF My ; Will change.
So [£i(Z) — &i(Z\;) | = log N —log(N — 1) < 1/(N — 1). The number of i’s in this
case is simply less than N — 1. Therefore, Y ... 114 16i(Z) — &i(2\;) | < 1.

Combining the four sub-cases, we conclude that ) ., .1 |&:(Z) — &(Z\;) | < 13.
e Case IIL p; ., > 0. In this case, recall that k; always equals to k, n,,; = ‘ {i/ #1i:

1X; — Xur|| < pw}’ and 1, ; = ‘{i’ £ |[Y; — Yol < piny) ’ Similar to Case I,
there are 4 sub-cases.

— Case IIL.1. Z; is in the k-nearest neighbors of Z;. In this case, we don’t know

how n, ; and n, ; will change by eliminating Z;, so we just use the loosest bound

|&i(Z2)—&i(Z\;) | < 4log N. However, the number of 4’s in this case is upper bounded
by the following lemma.

Lemma C.. Let Z,7Z1,Z5,...,ZNn be vectors of RY and Z; be the set
{Zl, ey Zi—l; Z, Zi—i—l, ey ZN} Then
N
Z I{Z is in the k-nearest neighbors of Z; in Z;} < k~q , (68)
i=1
(distance ties are broken by comparing indices). Here 74 is the minimum number of
cones with angle smaller than /6 needed to cover RY. Moreover; if we allow k to be
different for difference i, we have
Y1
Z k—H{Z is in the k;-nearest neighbors of Z; in Z;} < yg(log N +1).  (69)
i=1 '
By the first inequality in Lemma|C.T] the number of i’s in this case is upper bounded
by kva. Therefore, 3 e |€i(Z) — &i(2\;) | < 4k7Ya, 44, log N.
- Case IIL.2. Z; is not in the k-nearest neighbors of Z;, but || X; — X;|| < p; 5y, i,

X is in the n, ;-nearest neighbors of X;. In this case, n,. ; will decrease by 1 and n,, ;
remains the same. So

16:(Z) — &i(Z\5) |

IN

|log N —log(N — 1)| + |log(ng,; + 1) — log(ny i)

< 1 n 1 < 2
- N -1 nmﬂ;_nmﬂv

(70)
We don’t have an upper bound for the number of ¢’s in this case, but from the sec-
ond inequality in Lemma @ we have the following upper bound, where X; ; =

{X1>~"7Xi71>XjaXi+17"'aXN}:
> 16(2) - &(2y)]

Case I11.2
N
2 .. . .
< Z I{X; is in the n, ;-nearest neighbors of X; in &; ;}
=1 o
< 29q,(log N +1) < 274, 4a,(log N +1) . (71)

- Case IIL3. Z; is not in the k-nearest neighbors of Z;, but ||Y; — Y;|| < p; 4y, 1.€., Y
is in the n, ;-nearest neighbors of Y;. In this case, n, ; will decrease by 1 and n, ;
remains the same. Follow the same analysis in Case II1.2, we have > ... 12 | &i(Z) —
&i(Z2\;)] < 274,44, (log N 4 1) as well.

- Case III.4. Z; is not in the k-nearest neighbors of Z;, and || X; — X;|| > pi 2y,
IY; — Y|l > pi zy. In this case, neither n, ; nor n,, ; will change. Similar to Case IL4,

Dcaema | &Gi(Z) —&i(Z2y;) | < 1.

Combining the four sub-cases, we conclude that ) .1 1&(Z) — &(Zy;)| < (4k +
4)Yd,+d, 08 N + 4yd, +a, + 1.
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Combining the three cases, we have:

N

D

i=1

&i(2) = &i(2y;) ‘ < Adlog N + 13+ (4k + 4)7a, 44, log N + 474, +a, + 1

< 307d,+a,klog N (72)
fork > 1,log N > landall {Z;,...,Zy}. Plug it into (63), we obtain,

‘ 60 klog N
sup ’f(N)(Z) AT ‘ < 2detd, W08 (73)
21, 2N, 2 N
Plug it into Efron-Stein inequality (62)), we obtain:
1 S 1 ?
N) < I N)(7y — TN)( 7()
Var [1 (Z)} < Q;E[(I (2) - TNz )) }
1 LN 2
< 52 s (T™z)-T™z9))
D1 210 Zn 2
1L 6074, g, klog N, 180073 4, (klog N)?
< 5 ~ )2 = X (74)

<
Il
-

Since 1800’y§m+dy is a constant independent of N, and (kylog N)2/N — 0 as N — oo by
Assumption 6, we have lim_, o, Var [T(N)(Z)} =0.

C.1 Proof of LemmalC.1]

For the first part of the lemma, we refer to Lemma 20.6 in [5]].
The second part of the lemma is a consequence of the first part. We reorder the indices i’s by k; and
rewrite the summation as follows,

N
1
Z E]I{Z is in the k;-nearest neighbors of Z; in Z;}

7

El e
&MZ

I{k; = k}I{Z is in the k-nearest neighbors of Z; in Z;}

i=1

M= T L

N
1
= z Z I{k; = k and Z is in the k-nearest neighbors of Z; in Z;} (75)
k=1 i=1
Notice that we take the summation over k = 1 to N since
each k; can not be more than N. Denote S}, = Zf\;l I{k; =

k and Z is in the k-nearest neighbors of Z; in {Z1,...,2Z;-1,Z,Z;41,...,Zn}} for simplici-
ty. Then we need to prove that Efgvzl(Sk /k) < q4log N. By the first part of this lemma, we
obtain,
k N
S, = Z Z I{k; = ¢ and Z is in the {-nearest neighbors of Z; in Z;}
(=1 i=1
N k
= Z Z I{k; = ¢ and Z is in the ¢-nearest neighbors of Z; in Z;}
i=1 (=1
N
Z I{k; < k and Z is in the k-nearest neighbors of Z; in Z;}
i=1

kya - (76)

~
M-
)

IN

IN
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Therefore, we obtain

N g N-1 < k | X
35 S ) hss
= ¢ | + Se
k=1 k k=1 k<k+1) =1 Nl:l
N1 N
kyq Ny Vd
< —_— + — = E — log N +1 77
= — k(k+1) N s k <’7d( 0og + )7 ( )

which completes the proof.
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