
Appendix

A Proof of Well-Definedness of Mutual Information

To prove the well-definedness of I(X;Y ), we need to show that PXY is absolutely continuous
with respect to PXPY . That is equivalent to show that for any measurable set A ⊆ X × Y such
that PXPY (A) = 0, we have PXY (A) = 0. We will prove the contrapositive statement: for any
measurable set A ⊆ X ×Y such that PXY (A) > 0, we have PXPY (A) > 0. Consider a simple case
that A is a rectangle set, i.e. A can be written as A = Ax ×Ay , where Ax, Ay are measurable sets in
X and Y respectively. Then

PXPY (A) = PX(Ax)PY (Ay) = PXY (Ax × Y)PXY (X ×Ay)

≥ PXY (A)PXY (A) = (PXY (A))2 > 0 (10)

Since X and Y are Euclidean spaces, for any measurable set A ⊆ X × Y , we can decompose
A as a countable union of disjoint rectangle sets. Let A =

⋃∞
i=1Ai, where Ai = Axi × Ayi .

Since PXY (A) > 0, there exists Ai such that PXY (Ai) > 0, so PXPY (Ai) > 0. Therefore,
PXPY (A) > 0.

Given that PXY is absolutely continuous with respect to PXPY , by Radon-Nikodym theorem, there
exists a function f such that for any measurable set A,

∫
A
fdPXPY = PXY (A). This f is the

Radon-Nikodym derivative dPXY

dPXPY
in (1).

B Proof of Theorem 1

To prove the asymptotic unbiasedness of the estimator, we need to write the Radon-Nikodym
derivative in an explicit form. The following lemma gives the explicit form of dPXY

dPXPY
.

Lemma B.1. Under Assumption 3 and 4 in Theorem 1, dPXY

dPXPY
= f(x, y) = limr→0

PXY (x,y,r)
PX(x,r)PY (y,r) .

Now notice that ÎN (X;Y ) = 1
N

∑N
i=1 ξi, where all ξi are identically distributed. Therefore,

E[ÎN (X;Y )] = E[ξ1]. Therefore, the bias can be written as:∣∣∣E[ÎN (X;Y )]− I(X;Y )
∣∣∣ =

∣∣∣EXY [E [ξ1|X,Y ]]−
∫

log f(X,Y )PXY

∣∣∣
≤

∫ ∣∣∣E [ξ1|X,Y ]− log f(X,Y )
∣∣∣ dPXY . (11)

Now we will give upper bounds for
∣∣∣E [ ξ1|X,Y ] − log f(X,Y )

∣∣∣ for every (x, y) ∈ X × Y . We
will divide the space into three parts as X × Y = Ω1

⋃
Ω2

⋃
Ω3 where

• Ω1 = {(x, y) : f(x, y) = 0} ;

• Ω2 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) > 0} ;

• Ω3 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) = 0} .

We will show that limN→∞
∫

Ωi

∣∣∣E [ξ1|(X,Y ) = (x, y)] − log f(x, y)
∣∣∣ dPXY = 0 for each

i ∈ {1, 2, 3} separately.

(x, y) ∈ Ω1: In this case, we will show that Ω1 has zero probability with respect to PXY .

PXY (Ω1) =

∫
Ω1

dPXY =

∫
Ω1

f(X,Y )dPXPY =

∫
Ω1

0 dPXPY = 0 (12)

Therefore,
∫

Ω1

∣∣∣E [ξ1|X,Y ]− log f(X,Y )
∣∣∣ dPXY = 0.
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(x, y) ∈ Ω2: In this case, f(x, y) is just PXY (x, y, 0)/PX(x, 0)PY (y, 0). We will first show that the
probability that the k-nearest neighbor distance ρk,1 > 0 is small. Then with high probability, we
will use the the number of samples on (x, y) as k̃i, and we will show that the mean of estimate ξ1 is
closed to log f(x, y).

First, the probability of ρk,1 > 0 is upper bounded by:
P ( ρk,1 > 0 | (X,Y ) = (x, y) )

=

k−1∑
m=0

(
N − 1

m

)
PXY (x, y, 0)m(1− PXY (x, y, 0))N−1−m

≤
k−1∑
m=0

Nm(1− PXY (x, y, 0))N−k

≤ kNk(1− PXY (x, y, 0))N−k

≤ kNke−(N−k)PXY (x,y,0) . (13)

Conditioning on the event that ρk,1 = 0, we have ξ1 = ψ(k̃1)+logN−log(nx,1 +1)−log(ny,1 +1),
where the distribution of k̃1, nx,1 and ny,1 are given by the following lemma.

Lemma B.2. Given (X,Y ) = (x, y) and ρk,1 = 0, then k̃1 − k is distributed as Bino(N − k −
1, PXY (x, y, 0)); nx,1 − k is distributed as Bino(N − k − 1, PX(x, 0)); ny,1 − k is distributed as
Bino(N−k−1, PY (y, 0)). Given (X,Y ) = (x, y) and ρk,1 = r > 0, then nx,1−k is distributed as
Bino(N−k−1, PX(x,r)−PXY (x,y,r)

1−PXY (x,y,r) ); ny,1−k is distributed as Bino(N−k−1, PY (y,r)−PXY (x,y,r)
1−PXY (x,y,r) ).

Then we write
∣∣∣E [ξ1|(X,Y ) = (x, y), ρk,1 = 0]− log f(x, y)

∣∣∣ as∣∣∣E [ξ1|(X,Y ) = (x, y), ρk,1 = 0]− log f(x, y)
∣∣∣

=
∣∣∣E [ψ(k̃1) + logN − log(nx,1 + 1)− log(ny,1 + 1)|(X,Y ) = (x, y), ρk,1 = 0

]
− log

PXY (x, y, 0)

PX(x, 0)PY (y, 0)

∣∣∣
≤

∣∣∣E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = 0]− logNPX(x, 0)
∣∣∣

+
∣∣∣E [log(ny,1 + 1)|(X,Y ) = (x, y), ρk,1 = 0]− logNPY (y, 0)

∣∣∣
+
∣∣∣E [ψ(k̃1)|(X,Y ) = (x, y), ρk,1 = 0

]
− logNPXY (x, y, 0)

∣∣∣ (14)

By Lemma B.2, we know that nx,i − k is distributed as Bino(N − k − 1, PX(x, 0)). The following
lemma establishes the mean of log(nx,i + 1).
Lemma B.3. If X is distributed as Bino(N, p), then |E[log(X+k)]− log(Np+k)| ≤ C/(Np+k)
for some constant C.

Therefore, the first term of (14) is bounded by:∣∣∣E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = 0]− logNPX(x, 0)
∣∣∣

≤
∣∣∣E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = 0]− log((N − k − 1)PX(x, 0) + k + 1)

∣∣∣
+
∣∣∣ log((N − k − 1)PX(x, 0) + k + 1)− logNPX(x, 0)

∣∣∣
≤ C

(N − k − 1)PX(x, 0) + k + 1
+
∣∣∣ log

(N − k − 1)PX(x, 0) + k + 1

NPX(x, 0)

∣∣∣
≤ C

NPX(x, 0)
+ log(1 +

(k + 1)(1− PX(x, 0))

NPX(x, 0)
)

≤ C

NPX(x, 0)
+

(k + 1)(1− PX(x, 0))

NPX(x, 0)
≤ k + C + 1

NPX(x, 0)
. (15)
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where we use the fact that log(1+x) < x for all x > 0. Similarly, the second term of (14) is bounded
by: (k + C + 1)/(NPY (y, 0)). For the third term, notice that |ψ(x) − log(x)| ≤ 1/x for every
integer x ≥ 1, therefore, |ψ(k̃1) − log(k̃1)| ≤ 1/k̃1 ≤ 1/k. So the third term of (14) is bounded
by: (k + C + 1)/(NPXY (x, y, 0)) + 1/k. By Combining three terms together and noticing that
PX(x, 0) ≥ PXY (x, y, 0) and PY (y, 0) ≥ PXY (x, y, 0), we obtain∣∣∣E [ξ1|(X,Y ) = (x, y), ρk,1 = 0]− log f(x, y)

∣∣∣
≤ k + C + 1

NPX(x, 0)
+
k + C + 1

NPY (y, 0)
+

k + C + 1

NPXY (x, y, 0)
+

1

k
≤ 3k + 3C + 3

NPXY (x, y, 0)
+

1

k
. (16)

Combine with the case that ρi,xy > 0, we obtain that:∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣

≤
∣∣∣E [ξ1|(X,Y ) = (x, y), ρk,1 > 0]− log f(x, y)

∣∣∣× P ( ρk,1 > 0 )

+
∣∣∣E [ξ1|(X,Y ) = (x, y), ρk,1 = 0]− log f(x, y)

∣∣∣× P ( ρk,1 = 0 )

≤ (2 logN + | log f(x, y) |)kNke−(N−k)PXY (x,y,0) +
3k + 3C + 3

NPXY (x, y, 0)
+

1

k
, (17)

where the first term comes from triangle inequality and the fact that |ξ1| ≤ 2 logN . Integrating over
Ω2, we have: ∫

Ω2

∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫

Ω2

(2 logN + | log f(x, y) |)kNke−(N−k)PXY (x,y,0) dPXY

+
3k + 3C + 3

N

∫
Ω2

1

PXY (x, y, 0)
dPXY +

1

k

≤ (2 logN +

∫
Ω2

| log f(x, y) |dPXY )kNke−(N−k) inf(x,y)∈Ω2
PXY (x,y,0)

+
3k + 3C + 3

N
µ(Ω2) +

1

k
, (18)

where µ denotes counting measure. By Assumption 1, k goes to infinity as N goes to infini-
ty, so 1/k vanishes as N increases. By Assumption 1 and 2, k/N goes to 0 and Ω2 has finite
counting measure, so the second term also vanishes. Since Ω2 has finite counting measure, so
inf(x,y)∈Ω2

PXY (x, y, 0) = ε > 0. By Assumption 5,
∫

Ω2
| log f(x, y) |dPXY < +∞. Therefore,

for sufficiently large N , the first term also vanishes. Therefore,

lim
N→∞

∫
Ω2

∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY = 0 . (19)

(x, y) ∈ Ω3: In this case, PXY (x, y, r) is a monotonic function of r such that PXY (x, y, 0) = 0 and
limr→∞ PXY (x, y, r) = 1. Hence, we can view log (PXY (x, y, r)/PX(x, r)PY (y, r) ) as a func-
tion of PXY (x, y, r), and it converges to log f(x, y) as PXY (x, y, r) → 0, for almost every (x, y).
Since PXY (Ω3) ≤ 1 < +∞ and

∫
Ω3
| log f(x, y)|dPXY < +∞. Then by Egoroff’s Theorem, for

any ε > 0, there exists a subset E ⊆ Ω3 with PXY (E) < ε and
∫
E
| log f(x, y)|dPXY < ε, such

that log (PXY (x, y, r)/PX(x, r)PY (y, r) ) converges as PXY (x, y, r) → 0, uniformly on Ω3 \ E.
For (x, y) ∈ E, notice that |ξ1| ≤ 2 logN , so we have:∫

E

∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫
E

( 2 logN + | log f(x, y) | ) dPXY < (2 logN + 1)ε . (20)

By choosing ε appropriately, we will have limN→∞
∫
E

∣∣∣E [ξ1|(X,Y ) = (x, y)] −

log f(x, y)
∣∣∣ dPXY = 0.
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Now for any (x, y) ∈ Ω3 \ E, since PXY (x, y, 0) = 0, we know that
P ( ρk,1 = 0 | (X,Y ) = (x, y) ) = 0, so k̃1 = k with probability 1. Conditioning on ρk,1 = r > 0,

the difference
∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)

∣∣∣ can be decomposed into four parts as follows∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣

=
∣∣∣ ∫ ∞

r=0

(E [ξ1|(X,Y ) = (x, y), ρk,1 = r]− log f(x, y) ) dFρk,1
(r)
∣∣∣

≤
∣∣∣ ∫ ∞

r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1

(r)
∣∣∣ (21)

+
∣∣∣ ∫ ∞

r=0

(ψ(k)− logN − logPXY (x, y, r) ) dFρk,1
(r)
∣∣∣ (22)

+
∣∣∣ ∫ ∞

r=0

(E [log(nx,1 + 1)|(X,Y, ρk,1) = (x, y, r)]− log(NPX(x, r)) ) dFρk,1
(r)
∣∣∣(23)

+
∣∣∣ ∫ ∞

r=0

(E [log(ny,1 + 1)|(X,Y, ρk,1) = (x, y, r)]− log(NPY (y, r)) ) dFρk,1
(r)
∣∣∣(24)

here Fρk,1
(r) is the CDF of the k-nearest neighbor distance ρk,1, given (X,Y ) = (x, y). By results

of order statistics, its derivative with respect to PXY (x, y, r) is given by:

dFρk,1
(r)

dPXY (x, y, r)
=

(N − 1)!

(k − 1)!(N − k − 1)!
PXY (x, y, r)k−1 ( 1− PXY (x, y, r) )

N−k−1
.(25)

Now we consider the four terms separately. For (21), since log (PXY (x, y, r)/PX(x, r)PY (y, r) )
converges as PXY (x, y, r) → 0, uniformly on Ω3 \ E. So for every (x, y) ∈ Ω3 \ E, there
exists an rN such that PXY (x, y, rN ) = 4k logN/N and | log (PXY (x, y, r)/PX(x, r)PY (y, r) )−
log f(x, y)| < δN for every r ≤ rN . Here rN may depend on (x, y), but δN does not depend on
(x, y) and limN→∞ δN = 0. Therefore, (21) is upper bounded by:∣∣∣ ∫ ∞

r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1

(r)
∣∣∣

≤
∫ rN

r=0

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣dFρk,1
(r)

+

∫ ∞
r=rN

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣dFρk,1
(r)

≤ δNP ( ρk,1 ≤ rN | (X,Y ) = (x, y) )

+

(
sup
r≥rN

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣ )P ( ρk,1 > rN | (X,Y ) = (x, y) ) .(26)

Firstly, the probability P ( ρk,1 ≤ rN | (X,Y ) = (x, y) ) is smaller than 1. Secondly, since
PX(x, y, r) ≥ 4k logN/N > 1/N for r ≥ rN , so we have | logPXY (x, y, r)| ≤ logN . The same
bounds apply for | logPX(x, r)| and | logPY (y, r)| as well. By triangle inequality, the supremum is
upper bounded by 3 logN + | log f(x, y)|. Finally, the probability P ( ρk,1 > rN | (X,Y ) = (x, y) )
is upper bounded by

P ( ρk,1 > rN | (X,Y ) = (x, y) )

=

k−1∑
m=0

(
N − 1

m

)
PXY (x, y, rN )m(1− PXY (x, y, rN ))N−1−m

≤
k−1∑
m=0

Nm(1− PXY (x, y, rN ))N−k

= kNk(1− 4k logN

N
)N/2

≤ kNke−2k logN =
k

Nk
. (27)
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for sufficiently large N such that N − k > N/2. Therefore, (21) is upper bounded by∣∣∣ ∫ ∞
r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1

(r)
∣∣∣

≤ δN +
k(3 logN + | log f(x, y)|)

Nk
. (28)

For (22), we simply plug in Fρk,1
(r) and integrate over PXY (x, y, r) and obtain∫ ∞

r=0

(ψ(k)− logN − logPXY (x, y, r) ) dFρk,1
(r)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

×
∫ ∞
r=0

(logPXY (x, y, r))PXY (x, y, r)k−1 ( 1− PXY (x, y, r) )
N−k−1

dPXY (x, y, r)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(log t)tk−1(1− t)N−k−1dt

= ψ(k)− logN − (ψ(k)− ψ(N)) = ψ(N)− logN . (29)

where we use the fact that ψ(k)− ψ(N) = (N−1)!
(k−1)!(N−k−1)!

∫ 1

t=0
(log t)tk−1(1− t)N−k−1dt. Notice

that ψ(N) < logN and limN→0(ψ(N)− logN) = 0.

For (23), recall that in Lemma B.2, we have shown that conditioning on (X,Y ) = (x, y) and ρk,1 =
r > 0, nx,1 − k is distributed as Bino(N − k − 1, (PX(x, r)− PXY (x, y, r))/(1− PXY (x, y, r))).
The expectation E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r] is given by Lemma B.3. Therefore, we
can rewrite the term (23) as:∣∣∣ ∫ ∞

r=0

(E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r]− logN − logPX(x, r) ) dFρk,1
(r)
∣∣∣

≤
∣∣∣ ∫ ∞

r=0

(
E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) )
dFρk,1

(r)
∣∣∣

+
∣∣∣ ∫ ∞

r=0

 log
(N − k − 1)PX(x,r)−PXY (x,y,r)

1−PXY (x,y,r) + k + 1

NPX(x, r)

 dFρk,1
(r)
∣∣∣

≤
∫ ∞
r=0

∣∣∣E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) ∣∣∣dFρk,1
(r) (30)

+
∣∣∣Er [ log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)] ∣∣∣ . (31)

where Er denotes expectation over Fρi,xy . By Lemma B.3, the term (30) is upper bounded by∫ ∞
r=0

∣∣∣E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) ∣∣∣dFρk,1
(r)

≤
∫ ∞
r=0

C

(N − k − 1)PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r) + k + 1

dFρk,1
(r)

≤
∫ ∞
r=0

C

k + 1
dFρk,1

(r) =
C

k + 1
. (32)
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For (31), by the fact that log(x/y) ≤ (x− y)/y for all x, y > 0 and Cauchy-Schwarz inequality, we
have the following:

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≤ Er

[
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))
− 1

]
= Er

[
(k + 1−NPXY (x, y, r))(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

]

≤

√√√√Er

[(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2
]
Er

[(
PXY (x, y, r)(1− PX(x, r))

PX(x, r)(1− PXY (x, y, r))

)2
]
. (33)

Notice that PX(x, r) ≥ PXY (x, y, r) for all r, so the second expectation is always no larger than 1.
For the first expectation, we plug in Fρk,1

(r) and integrate over PXY (x, y, r), let t = PXY (x, y, r)
and observe,

Er

[(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2
]

=

∫ ∞
r=0

(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2

dFρi,xy
(r)

=
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(k + 1−Nt)2

N2t2
tk−1(1− t)N−k−1dt

=
(N − 1)!

(k − 1)!(N − k − 1)!

(k + 1)2

N2

∫ 1

t=0

tk−3(1− t)N−k−1dt

− (N − 1)!

(k − 1)!(N − k − 1)!

2(k + 1)

N2

∫ 1

t=0

tk−2(1− t)N−k−1dt

+
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

tk−3(1− t)N−k−1dt

=
(N − 1)!

(k − 1)!(N − k − 1)!

(k + 1)2

N2

(k − 3)!(N − k − 1)!

(N − 3)!

− (N − 1)!

(k − 1)!(N − k − 1)!

2(k + 1)

N2

(k − 2)!(N − k − 1)!

(N − 2)!
+ 1

=
(N − 1)(N − 2)(k + 1)2

N2(k − 1)(k − 2)
− 2(N − 1)(k + 1)

N(k − 1)
+ 1 . (34)

For sufficiently large N and k, it is upper bounded by C1(1/N + 1/k) for some constant C1 > 0.
Therefore,

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≤
√
C1(

1

N
+

1

k
) . (35)

Similarly, by using the fact that log(x/y) > (x− y)/x and Cauchy-Schwarz inequality again, we
conclude that there are some constant C2 > 0 such that

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≥ −

√
C2(

1

N
+

1

k
) . (36)

Therefore, by combining (32), (35) and (36), we obtain∣∣∣ ∫ ∞
r=0

(E [log(nx,1 + 1)|(X,Y ) = (x, y), ρk,1 = r]− logN − logPX(x, r) ) dFρk,1
(r)
∣∣∣

≤ C

k + 1
+

√
C ′(

1

N
+

1

k
) . (37)
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where C ′ = max{C1, C2}. Since (24) and (23) are symmetric, the same upper bound (37) also
applies to (24). Combine (28), (29) and (37), we have∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)

∣∣∣
≤ δN +

k(3 logN + | log f(x, y)|)
Nk

+ logN − ψ(N) +
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
) (38)

for every (x, y) ∈ Ω3 \ E. By integration over Ω3 \ E, we have∫
Ω3\E

∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫

Ω3\E

(
δN +

k(3 logN + | log f(x, y)|)
Nk

+ logN − ψ(N)

+
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
)
)
dPXY

≤ δN +
k(3 logN +

∫
X×Y | log f(x, y)|dPXY )

Nk
+ logN − ψ(N)

+
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
) . (39)

By Assumption 1, k increases as N → ∞. By Assumption 5,
∫
X×Y | log f(x, y)|dPXY < +∞.

Therefore, this quantity vanishes as N →∞. Combining with the case that (x, y) ∈ E, we have

lim
N→∞

∫
Ω3

∣∣∣E [ξ1|(X,Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY = 0 (40)

B.1 Proof of Lemma B.1

We will need to prove that for any measurable setA ⊆ X ×Y , we have
∫
A
fdPXPY = PXY (A). For

any ε > 0, by Egoroff’s Theorem, there existsB ⊆ X×Y such that PXY (BC) < ε, PXPY (BC) < ε
and PXY (x, y, r)/PX(x, r)PY (y, r) converges to f(x, y) uniformly on B. Now we have:

|PXY (A)−
∫
A

fdPXPY |

= |PXY (A ∩B) + PXY (A ∩BC)−
∫
A∩B

fdPXPY −
∫
A∩BC

fdPXPY |

≤ |PXY (A ∩B)−
∫
A∩B

fdPXPY |+ PXY (A ∩BC) +

∫
A∩BC

fdPXPY

≤ |PXY (A ∩B)−
∫
A∩B

fdPXPY |+ PXY (BC) + CPXPY (BC)

≤ |PXY (A ∩B)−
∫
A∩B

fdPXPY |+ ε(1 + C), (41)

where C is the upper bound for f(x, y) in Assumption 3. Now we need to deal with the first term
of (41). By Assumption 4, X × Y can be decomposed into countable disjoint sets {Ei}∞i=1 such that
f(x, y) is uniformly continuous on each Ei, so by define Ai = A ∩B ∩ Ei, we have

|PXY (A ∩B)−
∫
A∩B

fdPXPY | ≤
∞∑
i=1

|PXY (Ai)−
∫
Ai

fdPXPY |. (42)

Since f(x, y) is uniformly continuous on Ei, so there exists δ1 > 0 such that for every (x1, y1) ∈
Ai ⊆ Ei and (x2, y2) ∈ Ai ⊆ Ei such that ‖x1 − x2‖ < δ1 and ‖y1 − y2‖ < δ1, we have
|f(x1, y1) − f(x2, y2)| < ε. Additionally, since PXY (x, y, r)/PX(x, r)PY (y, r) converges to
f(x, y) uniformly on B, there exists δ2 > 0 such that for every (x, y) ∈ Ai ⊆ B and r < δ2, we
have |PXY (x, y, r)/PX(x, r)PY (y, r)− f(x, y)| < ε. Take δ = min{δ1, δ2}. Since Ai is a subset
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of Euclidean space, we can decompose Ai as Ai = ∪∞j=1Aij , where Aij is a square set centered at
(xij , yij) with radius rij < δ. Then consider the following simple function φ(x, y),

φ(x, y) ≡

{
PXY (Aij)

PX(Ai)PY (Ai)
=

PXY (xij ,yij ,rij)
PX(xij ,rij)PY (yij ,rij) , if(x, y) ∈ Ai,j

0 , otherwise
. (43)

Then we have∫
Ai

φ(x, y)dPXPY =

∞∑
j=1

∫
Aij

PXY (Aij)

PX(Ai)PY (Ai)
dPXPY =

∞∑
j=1

PXY (Aij) = PXY (Ai),(44)

and

|φ(x, y)− f(x, y)| ≤ | PXY (xij , yij , rij)

PX(xij , rij)PY (yij , rij)
− f(xij , yij)|+ |f(xij , yij)− f(x, y)|

≤ ε+ ε = 2ε (45)

for every (x, y) ∈ Aij . Therefore, we have

|PXY (Ai)−
∫
Ai

fdPXPY | = |
∫
Ai

φdPXPY −
∫
Ai

fdPXPY |

≤
∫
Ai

|φ− f | dPXPY ≤ 2εPXPY (Ai). (46)

Plug this to (42), we have:

|PXY (A ∩B)−
∫
A∩B

fdPXPY | ≤
∞∑
i=1

2εPXPY (Ai) = 2εPXPY (

∞⋃
i=1

Ai) ≤ 2ε. (47)

Plug this to (41), we have |PXY (A)−
∫
A
fdPXPY | < (3 + C)ε. Notice that this statement holds

for any ε > 0. By choosing ε ↓ 0, we conclude that PXY (A) =
∫
A
fdPXPY . Hence, f is the

Radon-Nikolym derivative.

B.2 Proof of Lemma B.2

Given that (X1, Y1) = (x, y) and ρk,1 = r, we sort the samples {(Xi, Yi)}Ni=2 by their distance to
(x, y) defined as di = max{‖Xi − x‖, ‖Yi − y‖}. To avoid the case that two samples have identical
distance, we introduce a set of random variables {Zi}Ni=2 i.i.d. samples from Unif[0, 1] and define a
comparison operator ≺ as:

i ≺ j ⇐⇒ di < dj or {di = dj and Zi < Zj} . (48)

Since for any i 6= j, the probability that Zi = Zj is zero, so we can have either i ≺ j or i � j with
probability 1. Now let {2, 3, . . . , N} = S ∪ {j} ∪ T be a partition of the indices with |S| = k − 1
and |T | = N − k − 1. Define an event AS,j,T associated to the partition as:

AS,j,T =
{
s ≺ j,∀s ∈ S, and t � j,∀t ∈ T

}
. (49)

Since (Xj , Yj)− (x, y) are i.i.d. random variables each of the events AS,j,T has identical probability.
The number of all partitions is (N−1)!

(N−k−1)!(k−1)! and thus P (AS,j,T ) = (N−k−1)!(k−1)!
(N−1)! . So the cdf

of k̃1 is given by:

P
(
k̃1 ≤ k +m

∣∣ρk,1 = r, (X1, Y1) = (x, y)
)

=
∑
S,j,T

P (AS,j,T | ρk,1 = r, (X1, Y1) = (x, y))P
(
k̃1 ≤ k +m

∣∣AS,j,T , ρk,1 = r, (X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

P
(
k̃1 ≤ k +m

∣∣AS,j,T , ρk,1 = r, (X1, Y1) = (x, y)
)

(50)

Now condition on eventAS,j,T and ρk,1 = r, namely (Xj , Yj) is the k-nearest neighbor with distance
r, S is the set of samples with distance smaller than (or equal to) r and T is the set of samples with
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distance greater than (or equal to) r. Recall that k̃1 is the number of samples with dj ≤ r. For any
index s ∈ S ∪ {j}, dj ≤ r are satisfied. Therefore, k̃1 ≤ k +m means that there are no more than
m samples in T with distance smaller than r. Let Ul = I{dl ≤ r

∣∣ dl ≥ r}. Therefore,

P
(
k̃1 ≤ k +m

∣∣AS,j,T , ρk,1 = r, (X1, Y1) = (x, y)
)

= P
( ∑
l∈T

I{dl ≤ r} ≤ m
∣∣ ds ≤ r, ∀s ∈ S, dj = r, dt ≥ r, ∀t ∈ T

)
= P

(∑
l∈T

I{dl ≤ r} ≤ m
∣∣ dl ≥ r, ∀l ∈ T ) = P

(∑
l∈T

Ul ≤ m

)
, (51)

where Ul follows bernoulli distribution with P{Ul = 1} = Pr{dl ≤ r|dl ≥ r}. We can drop the
conditioning of (Xs, Ys)’s for s 6∈ T since (Xs, Ys) and (Xt, Yt) are independent. Therefore, given
that dl ≥ r for all l ∈ T , the variables I{dl ≤ r} are i.i.d. and have the same distribution as Ul. We
conclude:

P
(
k̃1 ≤ k +m

∣∣ρk,1 = r, (X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

P
(
k̃1 ≤ k +m

∣∣AS,j,T , ρi,xy = r, (X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

P

(∑
l∈T

Ul ≤ m

)
= P

(∑
l∈T

Ul ≤ m

)
. (52)

Thus we have shown that k̃i − k has the same distribution as
∑
l∈T Ul, which is a Binomial random

variable with parameter |T | = N − k − 1 and P{dl ≤ r | dl ≥ r} = P{dl = 0} = PXY (x, y, 0).
For nx,1 and ny,1, we can follow the same proof and conclude that nx,i − k and ny,i − k are also
Binomial random variables with |T | = N − k − 1. But the probabilities are different.

• If r = 0, then for nx,i, the probability is P{‖Xl−x‖ ≤ 0 | dl ≥ 0} = P{‖Xl−x‖ = 0} =
PX(x, 0) and the probability for ny,i is PY (y, 0).

• If r > 0, then for nx,i, the probability is P{‖Xl − x‖ ≤ r | dl ≥ r} = PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r) .

Similarly, the probability for ny,i is PY (x,r)−PXY (x,y,r)
1−PXY (x,y,r) .

B.3 Proof of Lemma B.3

By Jensen’s inequality, we know that E[logX] ≤ logE[X] = log(Np+ k). So it suffices to give an
upper bound for log(Np+ k)− E[logX]. We consider two different cases.

(i) Np ≥ k. In this case, for any x, by applying Taylor’s theorem around x0 = Np+ k, there exists
ζ between x and x0 such that

log(x) = log(Np+ k) +
x−Np− k
Np+ k

− (x−Np− k)2

2ζ2
(53)

By noticing that ζ ≥ min{x, x0} = min{x,Np+ k}, we have

− log(x) + log(Np+ k) +
x−Np− k
Np+ k

=
(x−Np− k)2

2ζ2

≤ max{ (x−Np− k)2

2x2
,

(x−Np− k)2

2(Np+ k)2
} ≤ (x−Np− k)2

2x2
+

(x−Np− k)2

2(Np+ k)2
. (54)

Now let X − k be a Bino(N, p) random variable. By taking expectation on both sides, we have:

−E[logX] + log(Np+ k) +
E[X]−Np− k

Np+ k

≤ E
[

(X −Np− k)2

2X2

]
+

E
[

(X −Np− k)2
]

2(Np+ k)2
. (55)
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Since E[X] = Np+ k, E
[

(X −Np− k)2
]

= Var [X] = Np(1− p), and

E
[

(X −Np− k)2

2X2

]
=

N∑
j=0

(j −Np)2

2(j + k)2

(
N

j

)
pj(1− p)N−j

≤
N∑
j=0

(j −Np)2

2(j + 2)(j + 1)

(
N

j

)
pj(1− p)N−j

=

N∑
j=0

(j −Np)2

2(N + 2)(N + 1)p2

(
N + 2

j + 2

)
pj+2(1− p)N−j

≤ 1

2(N + 2)(N + 1)p2
EY∼Bino(N+2,p)

[
(Y −Np)2

]
=

(N + 2)p(1− p) + 4p2

2(N + 2)(N + 1)p
≤ (N + 2)p

2(N + 2)(N + 1)p
≤ 1

2Np
(56)

for k ≥ 2 and N ≥ 4. Plug these in (55), we have

−E[logX] + log(Np+ k) ≤ 1

2Np
+

Np(1− p)
2(Np+ k)2

≤ 1

Np+ k
+

1

2(Np+ k)
=

3

2(Np+ k)
. (57)

where 1/(2Np) ≤ 1/(Np+ k) comes from the fact that Np ≥ k.

(ii) Np < k. In this case, for any x, by applying Taylor’s theorem around x0 = Np+ k, there exists
ζ between x and x0 such that

log(x) = log(Np+ k) +
x−Np− k
Np+ k

− (x−Np− k)2

2ζ2
(58)

By noticing that ζ ≥ min{x, x0} ≥ k ≥ (Np+ k)/2, we have:

− log(x) + log(Np+ k) +
x−Np− k
Np+ k

≤ 2(x−Np− k)2

(Np+ k)2
. (59)

Similarly, by taking expectation on both sides, we have

− E[logX] + log(Np+ k) +
E[X]−Np− k

Np+ k
≤

E
[

2(X −Np− k)2
]

(Np+ k)2
. (60)

By plugging in E[X] = Np+ k and E
[

(X −Np− k)2
]

= Var [X] = Np(1− p), we obtain

− E[logX] + log(Np+ k) ≤ 2Np(1− p)
(Np+ k)2

≤ 2(Np+ k)

(Np+ k)2
=

2

Np+ k
. (61)

Combining the two cases, we obtain the desired statement.

C Proof of Theorem 2

We use the Efron-Stein inequality to bound the variance of the estimator. For simplicity, let Î(N)(Z)
be the estimate based on original samples {Z1, Z2, . . . , ZN}, where Zi = (Xi, Yi). For the usage of
Efron-Stein inequality, we consider another set of i.i.d. samples {Z ′1, Z ′2, . . . , Z ′n} drawn from PXY .
Let Î(N)(Z(j)) be the estimate based on {Z1, . . . , Zj−1, Z

′
j , Zj+1, . . . , ZN}. Then Efron-Stein

inequality states that

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]
. (62)
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Now we will give an upper bound for the difference |Î(N)(Z) − Î(N)(Z(j))| for given index j.
First of all, let Î(N)(Z\j) be the estimate based on {Z1, . . . , Zj−1, Zj+1, . . . , ZN}, then by triangle
inequality, we have:

sup
Z1,...,ZN ,Z′j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣

≤ sup
Z1,...,ZN ,Z′j

( ∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣+
∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))

∣∣∣ )
≤ sup

Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣+ sup

Z1,...,Zj−1,Z′j ,Zj+1,...,ZN

∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))
∣∣∣

= 2 sup
Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣ (63)

where the last equality comes from the fact that {Z1, . . . , Zj−1, Z
′
j , Zj+1, . . . , ZN} has the same

joint distribution as {Z1, . . . , ZN}. Now recall that

Î(N)(Z) =
1

N

N∑
i=1

ξi(Z) =
1

N

N∑
i=1

(
ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1)

)
, (64)

Therefore, we have

sup
Z1,...,ZN ,Z′j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣ ≤ 2

N
sup

Z1,...,ZN

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣ . (65)

Now we need to upper-bound the difference | ξi(Z)− ξi(Z\j) | created by eliminating sample Zj for
different i ’s. There are three cases of i’s as follows,

• Case I. i = j. Since the upper bounds |ξi(Z)| ≤ 2 logN and |ξi(Z\j)| ≤ 2 log(N − 1)
always holds, so | ξi(Z)− ξi(Z\j) | ≤ 4 logN . The number of i’s in this case is only 1. So∑

Case I | ξi(Z)− ξi(Z\j) | ≤ 4 logN .

• Case II. ρi,xy = 0. In this case, recall that k̃i =
∣∣∣ {i′ 6= i : Zi = Zi′}

∣∣∣, nx,i =
∣∣∣ {i′ 6= i :

Xi = Xi′}
∣∣∣ and ny,i =

∣∣∣ {i′ 6= i : Yi = Yi′}
∣∣∣. There are 4 sub-cases in this case.

– Case II.1. Zi = Zj . By eliminating Zj , k̃i, nx,i, ny,i will all decrease by 1. Therefore,

| ξi(Z)− ξi(Z\j) |

= |
(
ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1)

)
−
(
ψ(k̃i − 1) + log(N − 1)− log(nx,i)− log(ny,i)

)
|

≤ |ψ(k̃i)− ψ(k̃i − 1)|+ | logN − log(N − 1)|
+ | log(nx,i + 1)− log(nx,i)|+ | log(ny,i + 1)− log(ny,i)|

≤ 1

k̃i − 1
+

1

N − 1
+

1

nx,i
+

1

ny,i
≤ 4

k̃i − 1
=

4

k̃j − 1
. (66)

The number of i’s in this case is the number if i’s such that Zi = Zj , which is just k̃j .
Therefore,

∑
Case II.1 | ξi(Z)− ξi(Z\j) | ≤ 4k̃j/(k̃j − 1) ≤ 8, for k̃j ≥ k ≥ 2.

– Case II.2. Xi = Xj but Yi 6= Yj . By eliminating Zj , k̃i and ny,i won’t change but
nx,i will decrease by 1. Therefore,

| ξi(Z)− ξi(Z\j) | ≤ | logN − log(N − 1)|+ | log(nx,i + 1)− log(nx,i)|

≤ 1

N − 1
+

1

nx,i
≤ 2

nx,i
=

2

nx,j
(67)

The number of i’s in this case is the number if i’s such that Xi = Xj but Yi 6= Yj ,
which is less than nx,j . Therefore,

∑
Case II.2 | ξi(Z)− ξi(Z\j) | ≤ 2nx,j/nx,j ≤ 2.
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– Case II.3. Yi = Yj butXi 6= Xj . By eliminating Zj , k̃i and nx,i won’t change but ny,i
will decrease by 1. Similarly as Case II.2, we have

∑
Case II.3 | ξi(Z)− ξi(Z\j) | ≤ 2.

– Case II.4. Xi 6= Xj and Yi 6= Yj . In this case, none of k̃i, nx,i, or ny,i will change.
So | ξi(Z)− ξi(Z\j) | = logN − log(N − 1) ≤ 1/(N − 1). The number of i’s in this
case is simply less than N − 1. Therefore,

∑
Case II.4 | ξi(Z)− ξi(Z\j) | ≤ 1.

Combining the four sub-cases, we conclude that
∑

Case II | ξi(Z)− ξi(Z\j) | ≤ 13.

• Case III. ρi,xy > 0. In this case, recall that k̃i always equals to k, nx,i =
∣∣∣ {i′ 6= i :

‖Xi − Xi′‖ ≤ ρi,xy}
∣∣∣ and ny,i =

∣∣∣ {i′ 6= i : ‖Yi − Yi′‖ ≤ ρi,xy}
∣∣∣. Similar to Case II,

there are 4 sub-cases.
– Case III.1. Zj is in the k-nearest neighbors of Zi. In this case, we don’t know

how nx,i and ny,i will change by eliminating Zj , so we just use the loosest bound
| ξi(Z)−ξi(Z\j) | ≤ 4 logN . However, the number of i’s in this case is upper bounded
by the following lemma.
Lemma C.1. Let Z,Z1, Z2, . . . , ZN be vectors of Rd and Zi be the set
{Z1, . . . , Zi−1, Z, Zi+1, . . . , ZN}. Then

N∑
i=1

I{Z is in the k-nearest neighbors of Zi in Zi} ≤ kγd , (68)

(distance ties are broken by comparing indices). Here γd is the minimum number of
cones with angle smaller than π/6 needed to cover Rd. Moreover, if we allow k to be
different for difference i, we have

N∑
i=1

1

ki
I{Z is in the ki-nearest neighbors of Zi in Zi} ≤ γd(logN + 1) . (69)

By the first inequality in Lemma C.1, the number of i’s in this case is upper bounded
by kγd. Therefore,

∑
Case III.1 | ξi(Z)− ξi(Z\j) | ≤ 4kγdx+dy logN .

– Case III.2. Zj is not in the k-nearest neighbors of Zi, but ‖Xj −Xi‖ ≤ ρi,xy, i.e.,
Xj is in the nx,i-nearest neighbors of Xi. In this case, nx,i will decrease by 1 and ny,i
remains the same. So

| ξi(Z)− ξi(Z\j) | ≤ | logN − log(N − 1)|+ | log(nx,i + 1)− log(nx,i)|

≤ 1

N − 1
+

1

nx,i
≤ 2

nx,i
(70)

We don’t have an upper bound for the number of i’s in this case, but from the sec-
ond inequality in Lemma C.1, we have the following upper bound, where Xi,j =
{X1, . . . , Xi−1, Xj , Xi+1, . . . , XN}:∑

Case III.2

| ξi(Z)− ξi(Z\j) |

≤
N∑
i=1

2

nx,i
I{Xj is in the nx,i-nearest neighbors of Xi in Xi,j}

≤ 2γdx(logN + 1) ≤ 2γdx+dy (logN + 1) . (71)

– Case III.3. Zj is not in the k-nearest neighbors of Zi, but ‖Yj − Yi‖ ≤ ρi,xy, i.e., Yj
is in the ny,i-nearest neighbors of Yi. In this case, ny,i will decrease by 1 and nx,i
remains the same. Follow the same analysis in Case III.2, we have

∑
Case III.2 | ξi(Z)−

ξi(Z\j) | ≤ 2γdx+dy (logN + 1) as well.
– Case III.4. Zj is not in the k-nearest neighbors of Zi, and ‖Xj − Xi‖ > ρi,xy,
‖Yj − Yi‖ > ρi,xy . In this case, neither nx,i nor ny,i will change. Similar to Case II.4,∑

Case III.4 | ξi(Z)− ξi(Z\j) | ≤ 1.

Combining the four sub-cases, we conclude that
∑

Case III | ξi(Z) − ξi(Z\j) | ≤ (4k +
4)γdx+dy logN + 4γdx+dy + 1.
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Combining the three cases, we have:

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣ ≤ 4 logN + 13 + (4k + 4)γdx+dy logN + 4γdx+dy + 1

≤ 30γdx+dyk logN (72)

for k ≥ 1, logN ≥ 1 and all {Z1, . . . , ZN}. Plug it into (65), we obtain,

sup
Z1,...,ZN ,Z′j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣ ≤ 60γdx+dyk logN

N
. (73)

Plug it into Efron-Stein inequality (62), we obtain:

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]

≤ 1

2

N∑
j=1

sup
Z1,...,Zn,Z′j

(
Î(N)(Z)− Î(N)(Z(j))

)2

≤ 1

2

N∑
j=1

(
60γdx+dyk logN

N
)2 =

1800γ2
dx+dy

(k logN)2

N
. (74)

Since 1800γ2
dx+dy

is a constant independent of N , and (kN logN)2/N → 0 as N → ∞ by

Assumption 6, we have limN→∞ Var
[
Î(N)(Z)

]
= 0.

C.1 Proof of Lemma C.1

For the first part of the lemma, we refer to Lemma 20.6 in [5].

The second part of the lemma is a consequence of the first part. We reorder the indices i’s by ki and
rewrite the summation as follows,

N∑
i=1

1

ki
I{Z is in the ki-nearest neighbors of Zi in Zi}

=

N∑
k=1

1

k

N∑
i=1

I{ki = k}I{Z is in the k-nearest neighbors of Zi in Zi}

=

N∑
k=1

1

k

N∑
i=1

I{ki = k and Z is in the k-nearest neighbors of Zi in Zi} (75)

Notice that we take the summation over k = 1 to N since
each ki can not be more than N . Denote Sk =

∑N
i=1 I{ki =

k and Z is in the k-nearest neighbors of Zi in {Z1, . . . , Zi−1, Z, Zi+1, . . . , ZN}} for simplici-
ty. Then we need to prove that

∑N
k=1(Sk/k) ≤ γd logN . By the first part of this lemma, we

obtain,
k∑
`=1

S` =

k∑
`=1

N∑
i=1

I{ki = ` and Z is in the `-nearest neighbors of Zi in Zi}

=

N∑
i=1

k∑
`=1

I{ki = ` and Z is in the `-nearest neighbors of Zi in Zi}

≤
N∑
i=1

I{ki ≤ k and Z is in the k-nearest neighbors of Zi in Zi}

≤ kγd . (76)
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Therefore, we obtain

N∑
k=1

Sk
k

=

N−1∑
k=1

1

k(k + 1)

(
k∑
`=1

S`

)
+

1

N

N∑
`=1

S`

≤
N−1∑
k=1

kγd
k(k + 1)

+
Nγd
N

=

N∑
k=1

γd
k
< γd(logN + 1) , (77)

which completes the proof.
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