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Abstract

We propose a generic algorithmic building block to accelerate training of machine
learning models on heterogeneous compute systems. Our scheme allows to effi-
ciently employ compute accelerators such as GPUs and FPGAs for the training
of large-scale machine learning models, when the training data exceeds their me-
mory capacity. Also, it provides adaptivity to any system’s memory hierarchy in
terms of size and processing speed. Our technique is built upon novel theoretical
insights regarding primal-dual coordinate methods, and uses duality gap informa-
tion to dynamically decide which part of the data should be made available for
fast processing. To illustrate the power of our approach we demonstrate its perfor-
mance for training of generalized linear models on a large-scale dataset exceeding
the memory size of a modern GPU, showing an order-of-magnitude speedup over
existing approaches.

1 Introduction
As modern compute systems rapidly increase in size, complexity and computational power, they
become less homogeneous. Today’s systems exhibit strong heterogeneity at many levels: in terms
of compute parallelism, memory size and access bandwidth, as well as communication bandwidth
between compute nodes (e.g., computers, mobile phones, server racks, GPUs, FPGAs, storage nodes
etc.). This increasing heterogeneity of compute environments is posing new challenges for the
development of efficient distributed algorithms. That is to optimally exploit individual compute
resources with very diverse characteristics without suffering from the I/O cost of exchanging data
between them.

Unit A

⚙

Unit B

⚙⚙⚙⚙

Figure 1: Compute unitsA, B with
different memory size, bandwidth
and compute power.

In this paper, we focus on the task of training large scale
machine learning models in such heterogeneous compute en-
vironments and propose a new generic algorithmic building
block to efficiently distribute the workload between heteroge-
neous compute units. Assume two compute units, denoted A
and B, which differ in compute power as well as memory ca-
pacity as illustrated in Figure 1. The computational power of
unit A is smaller and its memory capacity is larger relative to
its peer unit B (i.e., we assume that the training data fits into
the memory of A, but not into B’s). Hence, on the compu-
tationally more powerful unit B, only part of the data can be
processed at any given time. The two units, A and B, are able
to communicate with each other over some interface, however
there is cost associated with doing so.

This generic setup covers many essential elements of modern machine learning systems. A typical
example is that of accelerator units, such as a GPUs or FPGAs, augmenting traditional computers
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or servers. While such devices can offer a significant increase in computational power due to their
massively parallel architectures, their memory capacity is typically very limited. Another example
can be found in hierarchical memory systems where data in the higher level memory can be accessed
and hence processed faster than data in the – typically larger – lower level memory. Such memory
systems are spanning from fast on-chip caches on one extreme to slower hard drives on the other
extreme.

The core question we address in this paper is the following: How can we efficiently distribute the
workload between heterogeneous units A and B in order to accelerate large scale learning?

The generic algorithmic building block we propose systematically splits the overall problem into two
workloads, a more data-intensive but less compute-intensive part for unit A and a more compute-
intensive but less data-intensive part for B. These workloads are then executed in parallel, enabling
full utilization of both resources while keeping the amount of necessary communication between
the two units minimal. Such a generic algorithmic building block is useful much more widely than
just for training on two heterogeneous compute units – it can serve as a component of larger training
algorithms or pipelines thereof. In a distributed training setting, our scheme allows each individual
node to locally benefit from its own accelerator, therefore speeding up the overall task on a cluster,
e.g., as part of [14] or another distributed algorithm. Orthogonal to such a horizontal application, our
scheme can also be used as a building block vertically integrated in a system, serving the efficiency
of several levels of the memory hierarchy of a given compute node.

Related Work. The most popular existing approach to deal with memory limitations is to process
data in batches. For example, for the special case of SVMs, [17] splits data samples into blocks
which are then loaded and processed sequentially (on B), in the setting of limited RAM and the
full data residing on disk. This approach enables contiguous chunks of data to be loaded which is
beneficial in terms of I/O overhead; it however treats samples uniformly. The same holds for [16]
where blocks to be loaded are selected randomly. Later, in [2, 7] it is proposed to selectively load
and keep informative samples in memory in order to reduce disk access, but this approach is specific
to support vectors and is unable to theoretically quantify the possible speedup.

In this work, we propose a novel, theoretically-justified scheme to efficiently deal with memory
limitations in the heterogeneous two-unit setting illustrated in Figure 1. Our scheme can be applied
to a broad class of machine learning problems, including generalized linear models, empirical risk
minimization problems with a strongly convex regularizer, such as SVM, as well as sparse models,
such as Lasso. In contrast to the related line of research [17, 2, 7], our scheme is designed to take full
advantage of both compute resources A and B for training, by systematically splitting the workload
amongA and B in order to adapt to their specific properties and to the available bandwidth between
them. At the heart of our approach lies a smart data selection scheme using coordinate-wise duality
gaps as selection criteria. Our theory will show that our selection scheme provably improves the
convergence rate of training overall, by explicitly quantifying the benefit over uniform sampling. In
contrast, existing work [2, 7] only showed that the linear convergence rate on SVMs is preserved
asymptotically, but not necessarily improved.

A different line of related research is steepest coordinate selection. It is known that steepest coor-
dinate descent can converge much faster than uniform [8] for single coordinate updates on smooth
objectives, however it typically does not perform well for general convex problems, such as those
with L1 regularization. In our work, we overcome this issue by using the generalized primal-dual
gaps [4] which do extend to L1 problems. Related to this notion, [3, 9, 11] have explored the use
of similar information as an adaptive measure of importance, in order to adapt the sampling prob-
abilities of coordinate descent. Both this line of research as well as steepest coordinate descent [8]
are still limited to single coordinate updates, and cannot be readily extended to arbitrary accuracy
updates on a larger subset of coordinates (performed per communication round) as required in our
heterogeneous setting.

Contributions. The main contributions of this work are summarized as follows:

• We analyze the per-iteration-improvement of primal-dual block coordinate descent and how it
depends on the selection of the active coordinate block at that iteration. Further, we extend the
convergence theory to arbitrary approximate updates on the coordinate subsets. We propose
a novel dynamic selection scheme for blocks of coordinates, which relies on coordinate-wise
duality gaps, and precisely quantify the speedup of the convergence rate over uniform sampling.
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• Our theoretical findings result in a scheme for learning in heterogeneous compute environments
which is easy to use, theoretically justified and versatile in that it can be adapted to given re-
source constraints, such as memory, computation and communication. Furthermore our scheme
enables parallel execution between, and also within, two heterogeneous compute units.

• For the example of joint training in a CPU plus GPU environment – which is very challenging
for data-intensive work loads – we demonstrate a more than 10× speed-up over existing methods
for limited-memory training.

2 Learning Problem
For the scope of this work we focus on the training of convex generalized linear models of the form

min
α∈Rn

O(α) := f(Aα) + g(α) (1)

where f is a smooth function and g(α) =
∑
i gi(αi) is separable, α ∈ Rn describes the parameter

vector and A = [a1,a2, . . . ,an] ∈ Rd×n the data matrix with column vectors ai ∈ Rd. This setting
covers many prominent machine learning problems, including generalized linear models as used for
regression, classification and feature selection. To avoid confusion, it is important to distinguish the
two main application classes: On one hand, we cover empirical risk minimization (ERM) problems
with a strongly convex regularizer such as L2-regularized SVM – where α then is the dual variable
vector and f is the smooth regularizer conjugate, as in SDCA [13]. On the other hand, we also cover
the class of sparse models such as Lasso or ERM with a sparse regularizer – where f is the data-fit
term and g takes the role of the non-smooth regularizer, so α are the original primal parameters.

Duality Gap. Through the perspective of Fenchel-Rockafellar duality, one can, for any primal-
dual solution pair (α,w), define the non-negative duality gap for (1) as

gap(α;w) := f(Aα) + g(α) + f∗(w) + g∗(−A>w) (2)

where the functions f∗, g∗ in (2) are defined as the convex conjugate1 of their corresponding coun-
terparts f, g [1]. Let us consider parameters w that are optimal relative to a given α, i.e.,

w := w(α) = ∇f(Aα), (3)

which implies f(Aα) + f∗(w) = 〈Aα,w〉. In this special case, the duality gap (2) simplifies and
becomes separable over the columns ai of A and the corresponding parameter weights αi given w.
We will later exploit this property to quantify the suboptimality of individual coordinates.

gap(α) =
∑
i∈[n]

gapi(αi), where gapi(αi) := w>aiαi + gi(αi) + g∗i (−a>i w). (4)

Notation. For the remainder of the paper we use v[P] to denote a vector v with non-zero entries
only for the coordinates i ∈ P ⊆ [n] = {1, . . . , n}. Similarly we write A[P] to denote the matrix A
composing only of columns indexed by i ∈ P .

3 Approximate Block Coordinate Descent
The theory we present in this section serves to derive a theoretical framework for our heterogeneous
learning scheme presented in Section 4. Therefore, let us consider the generic block minimization
scheme described in Algorithm 1 to train generalized linear models of the form (1).

3.1 Algorithm Description

In every round t, of Algorithm 1, a block P of m coordinates of α is selected according to an
arbitrary selection rule. Then, an update is computed on this block of coordinates by optimizing

arg min
∆α[P]∈Rn

O(α + ∆α[P]) (5)

where an arbitrary solver can be used to find this update. This update is not necessarily perfectly
optimal but of a relative accuracy θ, in the following sense of approximation quality:

1For h : Rd → R the convex conjugate is defined as h∗(v) := supu∈Rd v
>u− h(u).
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Algorithm 1 Approximate Block CD

1: Initialize α(0) := 0
2: for t = 0, 1, 2, ... do
3: select a subset P with |P| = m
4: ∆α[P] ← θ-approx. solution to (5)
5: α(t+1) := α(t) + ∆α[P]

6: end for

Algorithm 2 DUHL

1: Initialize α(0) := 0, z := 0
2: for t = 0, 1, 2, ...
3: determine P according to (13)
4: refresh memory B to contain A[P].
5: on B do:
6: ∆α[P] ← θ-approx. solution to (12)
7: in parallel on A do:
8: while B not finished
9: sample j ∈ [n]

10: update zj := gapj(α
(t)
j )

11: α(t+1) := α(t) + ∆α[P]

Definition 1 (θ-Approximate Update). The block update ∆α[P] is θ-approximate iff

∃θ ∈ [0, 1] : O(α + ∆α[P]) ≤ θO(α + ∆α?[P]) + (1− θ)O(α) (6)

where ∆α?[P] ∈ arg min∆α[P]∈Rn O(α + ∆α[P]).

3.2 Convergence Analysis

In order to derive a precise convergence rate for Algorithm 1 we build on the convergence analysis
of [4, 13]. We extend their analysis of stochastic coordinate descent in two ways: 1) to a block
coordinate scheme with approximate coordinate updates, and 2) to explicitly cover the importance
of each selected coordinate, as opposed to uniform sampling.

We define
ρt,P :=

1
m

∑
j∈P gapj(α

(t)
j )

1
n

∑
j∈[n] gapj(α

(t)
j )

(7)

which quantifies how much the coordinates i ∈ P of α(t) contribute to the global duality gap
(2). Thus giving a measure of suboptimality for these coordinates. In Algorithm 1 an arbitrary
selection scheme (deterministic or randomized) can be applied and our theory will explain how
the convergence of Algorithm 1 depends on the selection through the distribution of ρt,P . That
is, for strongly convex functions gi, we found that the per-step improvement in suboptimality is
proportional to ρt,P of the specific coordinate block P being selected at that iteration t:

ε(t+1) ≤ (1− ρt,Pθc) ε(t) (8)

where ε(t) := O(α(t)) −O(α?) measures the suboptimality of α(t) and c > 0 is a constant which
will be specified in the following theorem. A similar dependency on ρt,P can also be shown for
non-strongly convex functions gi, leading to our two main convergence results for Algorithm 1:

Theorem 1. For Algorithm 1 running on (1) where f is L-smooth and gi is µ-strongly convex with
µ > 0 for all i ∈ [n], it holds that

EP [ε(t) |α(0)] ≤
(

1− ηP
m

n

µ

σL+ µ

)t
ε(0) (9)

where σ := ‖A[P]‖2op and ηP := mint θ EP [ρt,P |α(t)]. Expectations are over the choice of P .

That is, for strongly convex gi, Algorithm 1 has a linear convergence rate. This was shown before
in [13, 4] for the special case of exact coordinate updates. In strong contrast to earlier coordinate
descent analyses which build on random uniform sampling, our theory explicitly quantifies the im-
pact of the sampling scheme on the convergence through ρt,P . This allows one to benefit from smart
selection and provably improve the convergence rate by taking advantage of the inhomogeneity of
the duality gaps. The same holds for non-strongly convex functions gi:
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Theorem 2. For Algorithm 1 running on (1) where f is L-smooth and gi has B-bounded support
for all i ∈ [n], it holds that

EP [ε(t) |α(0)] ≤ 1

ηPm

2γn2

2n+ t− t0
(10)

with γ := 2LB2σ where σ := ‖A[P]‖2op and t ≥ t0 = max
{

0, nm log
(

2ηmε(0)

nγ

)}
where ηP :=

mint θ EP [ρt,P |α(t)]. Expectations are over the choice of P .

Remark 1. Note that for uniform selection, our proven convergence rates for Algorithm 1 recover
classical primal-dual coordinate descent [4, 13] as a special case, where in every iteration a single
coordinate is selected and each update is solved exactly, i.e., θ = 1. In this case ρt,P measures the
contribution of a single coordinate to the duality gap. For uniform sampling, EP [ρt,P |α(t)] = 1
and hence ηP = 1 which recovers [4, Theorems 8 and 9].

3.3 Gap-Selection Scheme
The convergence results of Theorems 1 and 2 suggest that the optimal rule for selecting the block
of coordinates P in step 3 of Algorithm 1, leading to the largest improvement in that step, is the
following:

P := arg max
P⊂[n]:|P|=m

∑
j∈P

gapj
(
α

(t)
j

)
. (11)

This scheme maximizes ρt,P at every iterate. Furthermore, the selection scheme (11) guarantees
ρt,P ≥ 1 which quantifies the relative gain over random uniform sampling. In contrast to existing
importance sampling schemes [18, 12, 5] which assign static probabilities to individual coordinates,
our selection scheme (11) is dynamic and adapts to the current state α(t) of the algorithm, similar
to that used in [9, 11] in the standard non-heterogeneous setting.

4 Heterogeneous Training
In this section we build on the theoretical insight of the previous section to tackle the main objective
of this work: How can we efficiently distribute the workload between two heterogeneous compute
units A and B to train a large-scale machine learning problem where A and B fulfill the following
two assumptions:
Assumption 1 (Difference in Memory Capacity). Compute unit A can fit the whole dataset in its
memory and compute unit B can only fit a subset of the data. Hence, B only has access to A[P], a
subset P of m columns of A, where m is determined by the memory size of B.
Assumption 2 (Difference in Computational Power). Compute unit B can access and process data
faster than compute unit A.

4.1 DUHL: A Duality Gap-Based Heterogeneous Learning Scheme

We propose a duality gap-based heterogeneous learning scheme, henceforth referring to as DUHL,
for short. DUHL is designed for efficient training on heterogeneous compute resources as described
above. The core idea of DUHL is to identify a block P of coordinates which are most relevant to
improving the model at the current stage of the algorithm, and have the corresponding data columns,
A[P], residing locally in the memory of B. Compute unit B can then exploit its superior compute
power by using an appropriate solver to locally find a block coordinate update ∆α[P]. At the same
time, compute unit A, is assigned the task of updating the block P of important coordinates as
the algorithm proceeds and the iterates change. Through this split of workloads DUHL enables full
utilization of both compute unitsA and B. Our scheme, summarized in Algorithm 2, fits the theoret-
ical framework established in the previous section and can be viewed as an instance of Algorithm 1,
implementing a time-delayed version of the duality gap-based selection scheme (11).

Local Subproblem. In the heterogeneous setting compute unit B only has access to its local data
A[P] and some current state v := Aα ∈ Rd in order to compute a block update ∆α[P] in Step 4
of Algorithm 1. While for quadratic functions f this information is sufficient to optimize (5), for
non-quadratic functions f we consider the following modified local optimization problem instead:

arg min
∆α[P]∈Rn

f(v) + 〈∇f(v), A∆α[P]〉+
L

2
‖A∆α[P]‖22 +

∑
i∈P

gi((α + ∆α[P])i). (12)
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Figure 2: Illustration of one round of DUHL as described in Algorithm 2.

It can be shown that the convergence guarantees of Theorems 1 and 2 similarly hold if the block
coordinate update in Step 4 of Algorithm 1 is computed on (12) instead of (5) (see Appendix C for
more details).

A Time-Delayed Gap Measure. Motivated by our theoretical findings, we use the duality gap as a
measure of importance for selecting which coordinates unit B is working on. However, a scheme as
suggested in (11) is not suitable for our purpose since it requires knowledge of the duality gaps (4)
for every coordinate i at a given iterate α(t). For our scheme this would imply a computationally
expensive selection step at the beginning of every round which has to be performed in sequence to
the update step. To overcome this and enable parallel execution of the two workloads on A and B,
we propose to introduce a gap memory. This is an n-dimensional vector z where zi measures the
importance of coordinate αi. We have zi := gap(α

(t′)
i ) where t′ ∈ [0, t] and the different elements

of z are allowed to be based on different, possibly stale iterates α(t′). Thus, the entries of z can be
continuously updated during the course of the algorithm. Then, at the beginning of every round the
new block P is chosen based on the current state of z as follows:

P := arg max
P⊂[n]:|P|=m

∑
j∈P

zj . (13)

In DUHL, keeping z up to date is the job of compute unit A. Hence, while B is computing a block
coordinate update ∆α[P], A updates z by randomly sampling from the entire training data. Then,
as soon as B is done, the current state of z is used to determine P for the next round and data
columns on B are replaced if necessary. The parallel execution of the two workloads during a single
round of DUHL is illustrated in Figure 2. Note, that the freshness of the gap-memory z depends
on the relative compute power of A versus B, as well as θ which controls the amount of time spent
computing on unit B in every round.

In Section 5.2 we will experimentally investigate the effect of staleness of the values zi on the
convergence behavior of our scheme.

5 Experimental Results
For our experiments we have implemented DUHL for the particular use-case where A corresponds
to a CPU with attached RAM and B corresponds to a GPU – A and B communicate over the PCIe
bus. We use an 8-core Intel Xeon E5 x86 CPU with 64GB of RAM which is connected over PCIe
Gen3 to an NVIDIA Quadro M4000 GPU which has 8GB of RAM. GPUs have recently experience
a widespread adoption in machine learning systems and thus this hardware scenario is timely and
highly relevant. In such a setting we wish to apply DUHL to efficiently populate the GPU memory
and thereby making this part of the data available for fast processing.

GPU solver. In order to benefit from the enormous parallelism offered by GPUs and fulfill As-
sumption 2, we need a local solver capable of exploiting the power of the GPU. Therefore, we
have chosen to implement the twice parallel, asynchronous version of stochastic coordinate descent
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(a) (b)

Figure 3: Validation of faster convergence: (a)
theoretical quantity ρt,P (orange), versus the
practically observed speedup (green) – both re-
lative to the random scheme baseline, (b) con-
vergence of gap selection compared to random
selection.

(a) (b)

Figure 4: Effect of stale entries in the gap me-
mory of DUHL: (a) number of rounds needed
to reach suboptimality 10−4 for different update
frequencies compared to o-DUHL, (b) the num-
ber of data columns that are replaced per round
for update frequency of 5%.

(TPA-SCD) that has been proposed in [10] for solving ridge regression. In this work we have gene-
ralized the implementation further so that it can be applied in a similar manner to solve the Lasso,
as well as the SVM problem. For more details about the algorithm and how to generalize it we refer
the reader to Appendix D.

5.1 Algorithm Behavior

Firstly, we will use the publicly available epsilon dataset from the LIBSVM website (a fully dense
dataset with 400’000 samples and 2’000 features) to study the convergence behavior of our scheme.
For the experiments in this section we assume that the GPU fits 25% of the training data, i.e.,m = n

4
and show results for training the sparse Lasso as well as the ridge regression model. For the Lasso
case we have chosen the regularizer to obtain a support size of ∼ 12% and we apply the coordinate-
wise Lipschitzing trick [4] to the L1-regularizer in order to allow the computation of the duality
gaps. For computational details we refer the reader to Appendix E.

Validation of Faster Convergence. From our theory in Section 3.2 we expect that during any
given round t of Algorithm 1, the relative gain in convergence rate of one sampling scheme over
the other should be quantified by the ratio of the corresponding values of ηt,P := θρt,P (for the
respective block of coordinates processed in this round). To verify this, we trained a ridge regression
model on the epsilon dataset implementing a) the gap-based selection scheme, (11), and b) random
selection, fixing θ for both schemes. Then, in every round t of our experiment, we record the value
of ρt,P as defined in (7) and measure the relative gain in convergence rate of the gap-based scheme
over the random scheme. In Figure 3(a) we plot the effective speedup of our scheme, and observe
that this speedup almost perfectly matches the improvement predicted by our theory as measured
by ρt,P - we observe an average deviation of 0.42. Both speedup numbers are calculated relative to
plain random selection. In Figure 3(b) we see that the gap-based selection can achieve a remarkable
10× improvement in convergence over the random reference scheme. When running on sparse
problems instead of ridge regression, we have observed ρt,P of the oracle scheme converging to n

m
within only a few iterations if the support of the problem is smaller than m and fits on the GPU.

Effect of Gap-Approximation. In this section we study the effect of using stale, inconsistent gap-
memory entries for selection on the convergence of DUHL. While the freshness of the memory
entries is, in reality, determined by the relative compute power of unit B over unitA and the relative
accuracy θ, in this experiment we artificially vary the number of gap updates performed during each
round while keeping θ fixed. We train the Lasso model and show, in Figure 4(a), the number of
rounds needed to reach a suboptimality of 10−4, as a function of the number of gap entries updated
per round. As a reference we show o-DUHL which has access to an oracle providing the true duality
gaps. We observe that our scheme is quite robust to stale gap values and can achieve performance
within a factor of two over the oracle scheme up to an average delay of 20 iterations. As the update
frequency decreases we observed that the convergence slows down in the initial rounds because the
algorithm needs more rounds until the active set of the sparse problem is correctly detected.
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(d) Lasso (e) SVM (f) ridge regression

Figure 5: Performance results of DUHL on the 30GB ImageNet dataset. I/O cost (top) and conver-
gence behavior (bottom) for Lasso, SVM and ridge regression.

Reduced I/O operations. The efficiency of our scheme regarding I/O operations is demonstrated
in Figure 4(b), where we plot the number of data columns that are replaced on B in every round
of Algorithm 2. Here the Lasso model is trained assuming a gap update frequency of 5%. We
observe that the number of required I/O operations of our scheme is decreasing over the course of
the algorithm. When increasing the freshness of the gap memory entries we could see the number
of swaps go to zero faster.

5.2 Reference Schemes

In the following we compare the performance of our scheme against four reference schemes. We
compare against the most widely-used scheme for using a GPU to accelerate training when the data
does not fit into the memory of the GPU, that is the sequential block selection scheme presented
in [17]. Here the data columns are split into blocks of size m which are sequentially put on the GPU
and operated on (the data is efficiently copied to the GPU as a contiguous memory block).

We also compare against importance sampling as presented in [18], which we refer to as IS. Since
probabilities assigned to individual data columns are static we cannot use them as importance mea-
sures in a deterministic selection scheme. Therefore, in order to apply importance sampling in the
heterogeneous setting, we non-uniformly sample m data-columns to reside inside the GPU memory
in every round of Algorithm 2 and have the CPU determine the new set in parallel. As we will see,
data column norms often come with only small variance, in particular for dense datasets. Therefore,
importance sampling often fails to give a significant gain over uniformly random selection.

Additionally, we compare against a single-threaded CPU implementation of a stochastic coordinate
descent solver to demonstrate that with our scheme, the use of a GPU in such a setting indeed yields a
significant speedup over a basic CPU implementation despite the high I/O cost of repeatedly copying
data on and off the GPU memory. To the best of our knowledge, we are the first to demonstrate this.

For all competing schemes, we use TPA-SCD as the solver to efficiently compute the block update
∆α[P] on the GPU. The accuracy θ of the block update computed in every round is controlled by
the number of randomized passes of TPA-SCD through the coordinates of the selected block P . For
a fair comparison we optimize this parameter for the individual schemes.

5.3 Performance Analysis of DUHL

For our large-scale experiments we use an extended version of the Kaggle Dogs vs. Cats ImageNet
dataset as presented in [6], where we additionally double the number of samples, while using single
precision floating point numbers. The resulting dataset is fully dense and consists of 40’000 samples
and 200’704 features, resulting in over 8 billion non-zero elements and a data size of 30GB. Since
the memory capacity of our GPU is 8GB, we can put ∼ 25% of the data on the GPU. We will show
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results for training a sparse Lasso model, ridge regression as well as linear L2-regularized SVM.
For Lasso we choose the regularization to achieve a support size of 12%, whereas for SVM the
regularizer was chosen through cross-validation. For all three tasks, we compare the performance
of DUHL to sequential block selection, random selection, selection through importance sampling
(IS) all on GPU, as well as a single-threaded CPU implementation. In Figure 5(d) and 5(e) we
demonstrate that for Lasso as well as SVM, DUHL converges 10× faster than any reference scheme.
This gain is achieved by improved convergence – quantified through ρt,P – as well as through
reduced I/O cost, as illustrated in the top plots of Figure 5, which show the number of data columns
replaced per round. The results in Figure 5(f) show that the application of DUHL is not limited
to sparse problems and SVMs. Even for ridge regression DUHL significantly outperforms all the
reference scheme considered in this study.

6 Conclusion

We have presented a novel theoretical analysis of block coordinate descent, highlighting how the
performance depends on the coordinate selection. These results prove that the contribution of in-
dividual coordinates to the overall duality gap is indicative of their relevance to the overall model
optimization. Using this measure we develop a generic scheme for efficient training in the presence
of high performance resources of limited memory capacity. We propose DUHL, an efficient gap
memory-based strategy to select which part of the data to make available for fast processing. On a
large dataset which exceeds the capacity of a modern GPU, we demonstrate that our scheme out-
performs existing sequential approaches by over 10× for Lasso and SVM models. Our results show
that the practical gain matches the improved convergence predicted by our theory for gap-based
sampling under the given memory and communication constraints, highlighting the versatility of the
approach.

References
[1] Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. CMS Books in Mathematics. Springer New York, New York, NY, 2011.

[2] Kai-Wei Chang and Dan Roth. Selective block minimization for faster convergence of limited memory
large-scale linear models. In Proceedings of the 17th ACM SIGKDD international conference on Knowl-
edge Discovery and Data Mining, pages 699–707, New York, USA, August 2011. ACM.
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Appendix
Organization of the appendix: We state detailed proofs of Theorem 1 and Theorem 2 in Appendix A.
Then, we give some background information on coordinate descent and the local subproblem in
Appendix B and C respectively. In Appendix D we then present details on the generalization of the
TPA-SCD algorithm to SVM as well as Lasso. We provide exact expressions for the local updates,
which together with the expression for the duality gap in Appendix E should guide the reader on how
to easily practically implement our scheme for the different settings considered in the experiments.

A Proofs

In this section we state the detailed proofs of Theorem 1 and Theorem 2.

A.1 Key Lemma

Lemma 3. Consider problem formulation (1). Let f be L-smooth. Further, let gi be µ-strongly
convex with convexity parameter µ ≥ 0 ∀i ∈ [n]. For the case µ = 0 we need the additional
assumption of gi having bounded support. Then, in any iteration t of Algorithm 1 on (1), we denote
the updated coordinate block by P with |P| = m and define

ρt,P :=
1
m

∑
j∈P gapj(α

(t)
j )

1
n

∑n
i=1 gapi(α

(t)
i )

(14)

Then, for any s ∈ [0, 1], it holds that

EP
[
O(α(t))−O(α(t+1))|α(t)

]
≥ θ

[
s
m

n
EP
[
ρt,P |α(t)

]
gap(α(t)) +

s2

2
γ

(t)
P

]
(15)

where

γ
(t)
P := EP

[
µ(1− s)

s
‖u(t) −α(t)‖2 − L‖A(u(t) −α(t))‖2

∣∣α(t)

]
. (16)

and u(t)
i ∈ ∂g∗i (−a>i w(α(t))).

Proof. First note that in every round of Algorithm 1, α(t) → α(t+1), only coordinates i ∈ P are
changed and a θ-approximate solution is computed on these coordinates. Hence, the improvement
∆t
O := O(α(t))−O(α(t+1)) in the objective (1) can be written as

∆t
O = O(α(t))−O(α(t) + ∆α[P])

≥ O(α(t))−
[
(1− θ)O(α(t)) + θO(α(t) + ∆α?[P])

]
= θ

[
O(α(t))− min

∆α[P]

O(α(t) + ∆α[P])

]
. (17)

In order to lower bound (17) we look at a specific update direction: ∆α[P] = s(u(t) − α(t)) with
u

(t)
i ∈ ∂g∗i (−a>i w(α(t))) for i ∈ P (u(t)

i = α
(t)
i otherwise) and some s ∈ [0, 1]. Note that for

the subgradient to be well defined even for non-strongly convex functions gi we need the bounded
support assumption on gi.
This yields

∆t
O ≥ θ

[
O(α(t))−O(α(t) + s(u(t) −α(t)))

]
= θ

[
f(Aα(t))− f(A(α(t) + s(u(t) −α(t))))︸ ︷︷ ︸

∆f

]
+θ
∑
i∈P

[
gi(α

(t)
i )− gi(α(t)

i + s(u
(t)
i − α

(t)
i ))︸ ︷︷ ︸

∆gi

]
.
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First, to bound ∆f we use the fact that the function f : Rd → R has Lipschitz continuous gradient
with constant L which yields

∆f ≥ −
〈
∇f(Aα(t)), As(u(t) −α(t))

〉
− L

2
‖As(u(t) −α(t))‖2

= −
∑
i∈P

a>i w
(t)s(u

(t)
i − α

(t)
i )− Ls2

2
‖A(u(t) −α(t))‖2. (18)

Then, to bound ∆gi we use µ-strong convexity of gi together with the Fenchel-Young inequality
gi(ui) ≥ −uia>i w − g∗i (−a>i w) which holds with equality at ui ∈ ∂g∗i (−a>i w) and find

∆gi ≥ −sgi(u(t)
i ) + sgi(α

(t)
i ) + µ

2 s(1− s)(u
(t)
i − α

(t)
i )2

= suia
>
i w

(t) + sg∗i (−a>i w(t)) + sgi(α
(t)
i ) + µ

2 s(1− s)(u
(t)
i − α

(t)
i )2. (19)

Finally, recalling the definition of the duality gap (4) and combining (18) and (19) yields

∆t
O ≥ θ ∆f + θ

∑
i∈P

∆gi

≥ θ
∑
i∈P

s gapi(α
(t)
i ) +

θs2

2

[
µ(1− s)

s
‖u(t) −α(t)‖2 − L‖A(u(t) −α(t))‖2

]
.

To conclude the proof we recall the definition of ρt,P in (7) and take the expectation over the choice
of the coordinate block P which yields

EP
[
O(α(t))−O(α(t+1))|α(t)

]
≥ θs

m

n
EP
[
ρt,P |α(t)

]
gap(α(t)) +

θs2

2
γ

(t)
P (20)

with

γ
(t)
P := EP

[
µ(1− s)

s
‖u(t) −α(t)‖2 − L‖A(u(t) −α(t))‖2

∣∣∣α(t)

]
. (21)

A.2 Proof Theorem 1

Proof. For strongly convex function gi we have µ > 0 in Lemma 3. This allows us to choose s such
that γ(t)

P in (15) vanishes. That is s = µ
σ
β+µ , where

σ := ‖A[P]‖2 = max
v∈Rn

‖A[P]v‖2

‖v‖2
. (22)

This yields

EP
[
O(α(t))−O(α(t+1))|α(t)

]
≥ θs

m

n
EP
[
ρt,P |α(t)

]
gap(α(t)).

Now rearranging terms and exploiting that the duality gap always upper bounds the suboptimality
we get the following recursion on the suboptimality ε(t) := O(α(t))−O(α?):

EP
[
ε(t+1)|α(t)

]
≤

(
1− θsm

n
EP
[
ρt,P |α(t)

] )
ε(t).

Defining ηP := mint θEP
[
ρt,P |α(t)

]
and recursively applying the tower property of conditional

expectations [15] which states

EP
[
EP
[
ε(t+1)|α(t)

]
|α(t−1)

]
= EP

[
ε(t+1)|α(t−1)

]
we find

EP
[
ε(t+1)|α(0)

]
≤

(
1− sm

n
ηP

)t
ε(0)

which concludes the proof.
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A.3 Proof Theorem 2

Proof. For the case where µ = 0 Lemma 3 states:

EP
[
O(α(t))−O(α(t+1)) |α(t)

]
≥ sθ

m

n
EP
[
ρt,P |α(t)

]
gap(α(t))

−θs
2

2
LEP

[
‖A(u(t) −α(t))‖2 |α(t)

]
.

Now rearranging terms, using σ as defined in (22) and ε(t) ≤ gap(α(t)), we find

EP
[
ε(t+1) |α(t)

]
≤

(
1− sθm

n
EP
[
ρt,P |α(t)

])
ε(t) +

θs2

2
Lσ EP

[
‖u(t) −α(t)‖2 |α(t)

]
.

In order to bound the last term in the above expression we use 1) the fact that
∑
i∈P gi has B-

bounded support which implies ‖α‖ ≤ B and 2) the duality between bounded support and Lips-
chitzness which implies ‖u‖ ≤ B since u ∈ ∂

∑
i∈P g

∗
i (−a>i w). Then, by triangle inequality we

find ‖u − α‖2 ≤ 2B2 which yields the following recursion on the suboptimality for non strongly-
convex gi:

EP
[
ε(t+1) |α(t)

]
≤

(
1− sθEP

[
ρt,P |α(t)

]m
n

)
ε(t) +

s2

2
θγ, (23)

where γ := 2LB2σ. Now defining ηP := mint θ EP
[
ρt,P |α(t)

]
and assuming ηP ≥ 1 ,∀t we can

upperbound the suboptimality at iteration t as

EP
[
ε(t) |α(0)

]
≤ 1

ηPm

2γn2

2n+ t− t0
(24)

with t ≥ t0 = max
{

0, nm log
(

2ηPmε
(0)

γn

)}
.

Similar to [4] we prove this by induction:

t = t0: Choose s := 1
ηP

where ηP = mint θEP
[
ρt,P |α(t)

]
. Then at t = t0, we have

EP
[
ε(t) |α(0)

]
≤

(
1− m

n

)
EP
[
ε(t−1) |α(0)

]
+
s2

2
θγ

≤
(

1− m

n

)t
ε(0) +

t−1∑
i=0

(
1− m

n

)i θγ
2η2

≤
(

1− m

n

)t
ε(0) +

1

1− (1−m/n)

θγ

2η2

≤ e−tm/nε(0) +
θnγ

2mηP2

θ<η

≤ nγ

mηP
.

t > t0: For t > t0 we use an inductive argument. Suppose the claim holds for t, giving

EP
[
ε(t) |α(t−1)

]
≤

(
1− θEP

[
ρt−1,P |α(t−1)

]s m
n

)
ε(t−1) − s2

2

m

n
θγ,

≤
(

1− ηP
s m

n

) 1

ηP

2γn

2n+ (t− 1)− t0
− s2

2

m

n
θγ,
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then, choosing s = 2n
2n+(t−1)−t0 ∈ [0, 1] and applying the tower property of conditional expectations

we find

EP
[
ε(t) |α(0)

]
≤

(
1− 2mηP

2n+ (t− 1)− t0

)
1

ηP

2γn

2n+ (t− 1)− t0

+

(
2n

2n+ (t− 1)− t0

)2
m

n

θγ

2

θ<1
≤

(
1− mηP

2n+ (t− 1)− t0

)
1

ηP

2γn

2n+ (t− 1)− t0

=
1

ηP

2γn

(2n+ (t− 1)− t0)

2n+ (t− 1)− t0 −mηP
2n+ (t− 1)− t0

≤ 1

ηP

2γn

(2n+ t− t0)
.

B Coordinate Descent
The classical coordinate descent scheme as described in Algorithm 3 solves for a single coordinate
exactly in every round. This algorithm can be recovered as a special case of approximate block
coordinate descent presented in Algorithm 1 where m = 1 and θ = 1. In this case, similar to ρt,P
we define

ρt,i :=
gapi(α

(t)
i )

1
n

∑
j∈[n] gapj(α

(t)
j )

(25)

which quantifies how much a single coordinate i of iterate α(t) contributes to the duality gap (4).

Strongly-convex gi. Using Theorem 1 we find that for Algorithm 3 running on (1) where f is
L-smooth and gi is µ-strongly convex with µ > 0 for all i ∈ [n], it holds that

Ej [ε(t) |α(0)] ≤
(

1− ρmin

[
µ

µ+ LR2

]
1

n

)t
ε(0), (26)

where R upper bounds the column norm of A as ‖ai‖ ≤ R ∀i ∈ [n], ρmin := mint Ej [ρt,j |α(t)]
and expectations are taken over the sampling distribution.

General convex gi. Using Theorem 2 we find that for Algorithm 3 running on (1) where f is
L-smooth and gi has B-bounded support for all i ∈ [n] it holds that

Ej [ε(t) |α(0)] ≤ 1

ρmin

2γn2

2n+ t− t0
(27)

with t ≥ t0 = max
{

0, n log
(

2ρminε
(0)

γn

)}
and γ = 2LB2R2.

Note that these two results also cover widely used uniform sampling as a special case, where the
coordinate j in step 3 of Algorithm 3 is sampled uniformly at random and hence Ej

[
ρt,j |α(t)

]
= 1

which yields ρmin = 1. In this case we exactly recover the convergence results of [4, 13].

Algorithm 3 Coordinate Descent

1: Initialize α(0) = 0
2: for t = 0, 1, 2, ..... do
3: select coordinate i
4: ∆αi = arg min∆αO(α + ei∆α)
5: α(t+1) = α(t) + ei∆αi
6: end for
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C Local Subproblem

In Section 4.1, we have suggested to replace the local optimization problem in Step 4 of Algorithm
1 with a simpler quadratic local problem. More precisely, to replace

arg min
∆α[P]∈Rn

f(A(α + ∆α[P])) +
∑
i∈P

gi((α + ∆α)i) (5)

by instead

arg min
∆α[P]∈Rn

f(Aα) +∇f(Aα)>A∆α[P] +
L

2
‖A∆α[P]‖22 +

∑
i∈P

gi((α + ∆α)i). (12)

Note that the modified objective (12) does not depend on ai for i /∈ P other than through v. Thus,
(12) can be solved locally on processing unit B with only access to A[P] (columns ai of A with
i ∈ P) and the current shared state v := Aα. Note that for quadratic functions f the two problems
(5) and (12) are equivalent. This applies to ridge regression, Lasso as well as L2-regularized SVM.

For functions f where the Hessian ∇2f cannot be expressed as a scaled identity, (12) forms a
second-order upper-bound on the objective (5) by L-smoothness of f .

Proposition 4. The convergence results of Theorem 1 and 2 similarly hold if the update in Step 4 of
Algorithm 1 is performed on (12) instead of (5), i.e., a θ-approximate solution is computed on the
modified objective (12).

Proof. Let us define

Õ(α(t),v,∆α[P]) := f(Aα) +∇f(Aα)>A∆α[P] +
L

2
‖A∆α[P]‖22 +

∑
i∈P

gi((α + ∆α)i)

Assume the update step ∆α[P] performed in Step 4 of Algorithm 1 is a θ-approximate solution to
(12), then we can bound the per-step improvement in any iteration t as:

O(α(t))−O(α(t+1)) ≥ O(α(t))− Õ(α(t),v,∆α[P])

≥ O(α(t))−
[
θmin

s[P]

Õ(α(t),v, s[P]) + (1− θ)Õ(α(t),v,0)
]

= θ
[
O(α(t))−min

s[P]

Õ(α(t),v, s[P])
]
.

where we used Õ(α(t),v,0) = O(α(t)) andO(α(t)+∆α[P]) ≤ Õ(α(t),v,∆α[P]) which follows
by smoothness of f . Hence, the following inequality holds for an arbitrary block update s̃[P]:

O(α(t))−O(α(t+1)) ≥ θ
[
O(α(t))− Õ(α(t),v, s̃[P])

]
(28)

Now, if we plug in the definitions ofO(α(t)) and Õ(α(t),v, s̃P), then split the expression into terms
involving f and terms involving gi as in Section A.1 and consider the same specific update direction,
(i.e. s̃ = s(u−α) where ui ∈ g∗i (−a>i w), s ∈ [0, 1]), we recover the bounds (19) and (18) for the
respective terms. If we then proceed along the lines of Section A we get exactly the same bound on
the per step improvement as in (15). The convergence guarantees from Theorem 1 and Theorem 2
follow immediately.

15



C.1 Examples

For completeness, we state the local subproblem formulation explicitly for the objectives considered
in the experiments.

a) Ridge regression. The ridge regression objective is given by

min
α∈Rn

1

2d
‖Aα− b‖22 +

λ

2
‖α‖22, (29)

where b ∈ Rd denotes the vector of labels. For (29) the local subproblem (12) can be stated as

arg min
∆α[P]∈Rn

1

2d

∥∥∥∑
i∈P

ai∆α[P]i

∥∥∥2

2
+

1

d

∑
i∈P

(v − b)>ai∆α[P]i
+
λ

2

∑
i∈P

(α + ∆α[P])
2
i .

b) Lasso. For the Lasso objective

min
α∈Rn

1

2d
‖Aα− b‖22 + λ‖α‖1, (30)

where b ∈ Rd denotes the vector of labels, the local problem (12) can similarly be stated as

arg min
∆α[P]∈Rn

1

2d

∥∥∥∑
i∈P

ai∆α[P]i

∥∥∥2

2
+

1

d

∑
i∈P

(v − b)>ai∆α[P]i
+ λ

∑
i∈P
|(α + ∆α[P])i|.

c) L2-regularized SVM. In case of the L2-regularized SVM problem we consider the dual prob-
lem formulation

min
α∈Rn

1

n

∑
i

(−yiαi) +
1

2λn2
‖Aα‖22, (31)

with yiαi ∈ [0, 1], ∀i, where column ai of A corresponds to sample i with corresponding label yi.
The local subproblem (12) for (31) can then be stated as

arg min
∆α[P]∈Rn

1

n

∑
i∈P

(−yi(α + ∆α[P])i) +
1

2λn2

∥∥∥∑
i∈P

ai∆α[P]i

∥∥∥2

2
+

1

λn2

∑
i∈P

v>ai∆α[P]i

subject to yi(α + ∆α[P])i ∈ [0, 1] for i ∈ P .

D Generalization of TPA-SCD

TPA-SCD is presented in [10] as an efficient GPU solver for the ridge regression problem. TPA-SCD
implements an asynchronous version of stochastic coordinate descent especially suited for the GPU
architecture. Every coordinate is updated by a dedicated thread block and these thread blocks are
scheduled for execution in parallel on the available streaming multiprocessors of the GPU. Individual
coordinate updates are computed by solving for this coordinate exactly while keeping all the others
fixed. To synchronize the work between threads, the vector ṽ := Aα−b is written to the GPU main
memory and shared among all threads. To keep α and ṽ consistent ṽ is updated asynchronously by
the thread blocks after every single coordinate update to α exploiting the atomic add operation of
modern GPUs.
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D.1 Elastic Net

The generalization of the TPA-SCD algorithm from L2 regularization to elastic net regularized prob-
lems including Lasso is straightforward. Let us consider the following objective:

min
α∈Rn

1

2d
‖Aα− b‖22 + λ

(η
2
‖α‖22 + (1− η)‖α‖1

)
(32)

with trade-off parameter η ∈ [0, 1].

In this case the only difference to the ridge regression solver presented in [10] is the compu-
tation of the individual coordinate updates in [10, Algorithm 2]. That is, solving for a single
coordinate j exactly in (32) yields the following update rule:

αt+1
j = sign(γ) [|γ| − τ ]+ (33)

with soft-thresholding parameter

τ =
λd(1− η)

‖aj‖22 + ληd
(34)

and

γ =
αtj ‖aj‖22 − a>j ṽ

t

‖aj‖22 + ληd
. (35)

Here ṽt denotes the current state of the shared vector ṽt := Aαt − b which is updated after every
coordinate update as

ṽt+1 = ṽt + aj(α
t+1
j − αtj).

Similar to ridge regression we parallelize the computation of a>j ṽ
t and a>j aj in (34) and (35) in

every iteration over all threads of the thread block in order to fully exploit the parallelism of the
GPU.

D.2 L2-regularized SVM

TPA-SCD can also be generalized to optimize the dual SVM objective (31). In the dual formulation
(31) a block of coordinates P of α corresponds to a subset of samples (as opposed to features).
Hence, individual thread blocks in TPA-SCD optimize for a single sample at a time where the share
information corresponds to v̂ := Aα (instead of Aα− b as in the ridge regression implementation
which only impacts initialization of the shared vector). The corresponding single coordinate update
can then be computed as

∆αj =
yj − 1

λna
>
j v̂

t

1
λn‖aj‖

2
2

(36)

and incorporating the constraint (yiαi ∈ [0, 1], ∀i) we find:

αt+1
j = yj max(0,min(1, yj(α

t
j + ∆αj)))

and update v̂ accordingly:
v̂t+1 = v̂t + aj(α

t+1
j − αtj).

Again, multiple threads in a thread block can be used to compute individual updates by parallelizing
the computation of a>j v and a>j aj for every update.

E Duality Gap

The computation of the duality gap is essential for the implementation of the selection scheme in
Algorithm 2. We therefore devote this section to explicitly state the duality gap for the objective
functions considered in our experiments.
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Ridge regression. Since the L2-norm is self-dual the computation of the duality gap for the ridge
regression objective (29) is straightforward:

gap(α) =
1

d

∑
i∈[n]

αi a
>
i w +

1

2λd
(a>i w)2 + λd

1

2
α2
i


where w := Aα− b.

Lasso. In order to compute a valid duality gap for the Lasso problem (30) we need to employ the
Lipschitzing trick as suggested in [4]. This enables to compute a globally defined duality gap even
for non-bounded conjugate functions g∗i such as when the gi form the L1 norm. The Lipschitzing
trick is applied coordinate-wise to every gi := | · |. It artificially bounds the support of gi, where
we choose the bound B such that ‖α(t)‖1 ≤ B ∀t > 0, and hence |αti| ≤ B, ∀i, t. Thus every
iterate α(t) is guaranteed to lie within the support. This choice further guarantees that the bounded
support modification does not affect the optimization and the original objective is untouched inside
the region of interest. For the Lasso objective (30) we can satisfy this with the following choice:
B = f(0)

λd =
‖b‖22
2λd . Given B, the duality gap for the Lasso problem can be computed as

gap(α) =
1

d

∑
i∈[n]

αi a
>
i w +B

[
|a>i w| − λd

]
+

+ λd|αi|


where we recall the primal-dual mapping:

w := Aα− b.

L2-regularized SVM. The L2-regularized SVM objective is given as

P(w) =
1

n

∑
i∈[n]

hi(a
>
i w) +

λ

2
‖w‖22 (37)

where for every i ∈ [n], hi(u) = max{0, 1 − yiu} denotes the hinge loss and ai sample i with
label yi. The corresponding dual problem formulation is given in (31). The duality gap (2) for the
L2-regularized SVM objective can be computed as follows:

gap(α) =
1

n

∑
i∈[n]

αia
>
i w + hi(a

>
i w)− yiαi


where the primal-dual mapping is given as

w :=
1

nλ
Aα.
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